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INFLUENCE OF FREQUENCY AND AMPLITUDE
OF HARMONIC LOADING ON COMPLEX MODULI FOR POLYMER MATERIALS

This paper is devoted to the modeling and characterization of cyclic response of polymers subjected to monoharmonic kine-
matic loading. To predict the time dependent behavior of the polymeric materials, the Goldberg constitutive model is used. To
simulate the response in terms of amplitudes, the relations between the amplitudes of main field variables are established with
making use of complex moduli concept. Characterization of the complex moduli dependence on frequency as well as amplitude
of strain intensity is performed. Results demonstrate a weak dependence of loss moduli on the frequency of the loading within
the wide interval of it.

Introduction. Harmonic loading of a viscoelastic or elasto-plastic material (beyond the elastic domain) yields a hys-
teresis loop in the stress-strain relationship. Such a loop indicates that part of the strain energy is not recovered but dis-
sipated during the cycle. This phenomenon is usually called the "dissipative heating" [1, 11]. Their viscoelastic responses
become more significant under high loading levels and severe environmental conditions and are often accompanied by
inelastic deformations. This self-heating effect caused by mechanical energy dissipation in polymer materials subjected
to harmonic loads is considered to have a great influence on the residual life of the component. Therefore taking account
of this effect is important for characterization of a material response at different excitation frequencies and temperatures.
Concerning polymeric materials, the effect of hysteretic heating has been clearly shown to dramatically affect the me-
chanical response of the material [3].

There are currently two approaches to address this issue. In the first approach, the complex set of constitutive equations
governing response of numerous internal parameters is introduced. The relationship between these parameters and the
strain and temperature history yields evolution equations, which account for both dynamic recovery, and also creep. For
polymers, the constitutive modeling utilizes, either directly or with some modifications, viscoplastic constitutive equations
which have been developed for metals. The generalized yield theories of Schapery, Perzyna, Frank and Brockman, Gold-
berg and others [2, 4, 6, 10] apply to identify this relationship. It is generally admitted that to describe the material time de-
pendent behavior accounting for different features and peculiarities over the cycle of vibration, a direct integration of the set
of constitutive equations is necessary.

Within the second approach, the approximate amplitude relations are used to characterize the cyclic response of the
material, i.e. the relations between amplitudes of the main mechanical field parameters over the cycle [9]. Naturally, the
application of this technique is justified for the class of problems where there is no need for detailed information on the ma-
terial response during the cycle (life prediction of the structure, failure due to overheating as a result of internal dissipa-
tion etc.). The key point of the amplitude theories is concept of complex moduli [9]. For an inelastic (particularly viscoelastic)
material, the modulus governing the relation between strain and stress amplitudes is represented by a complex quantity
with real and imaginary parts referred to as storage and loss modulus respectively. The former characterizes elastic re-
sponse of material and the latter one defines the dissipative ability of the material [1]. In other words, the energy is stored
during the loading part of cycle and released under unloading phase, whereas the energy loss occurs during complete cycle
due to dissipative properties of the material. The drawback of the approach was the overestimation of stress amplitudes as
a result of making use of standard equivalent linearization technique for calculation of both storage and loss moduli. To
overcome this difficulty, the modified scheme was proposed in [9, 11]. But applicability of the method should be verified for
each particular type of the material.

Considering the importance of examination of self-heating effect under cyclic loading in polymeric materials, researches
done on time dependent behavior of polymeric materials are mainly aimed to study the viscoelastic behavior in different
frequency application over wide ranges of loading amplitudes. These researches show that, the temperature will change
with respect to the frequency spectrum of cyclically loading due to the stress relaxation processes in the material, thus it is
necessary to determine the dependence of the modal characteristics in a frequency domain on mechanical properties.

This paper is devoted to investigation of the technique applicability to the typical viscoelastic materials such as PR-520,
and to determination the frequency effect on complex moduli for isothermal loading case for wide range of loading ampli-
tudes. Particular attention will be paid to simulation of cyclic response of pure polymer material (PR-520) to monoharmonic
kinematic loading in the frame of the second approach.

Time dependent constitutive relations. To accurately predict an overall performance and lifetime of polymer, it is nec-
essary to model time dependent and inelastic responses. Viscoelastic materials such as polymer materials have the particu-
larity of possessing viscous, elastic and, under some conditions, plastic behavior. Constitutive material models of viscoelas-
tic solids have been proposed for isotropic materials undergoing small deformation gradients whereas the inelastic strain
can be calculated as the difference of the total strain and elastic strain.

Goldberg et al. [5,6] proposed a model for predicting the viscoplastic response of neat polymers, utilizing a set of state
variables as an indication of the resistance of polymeric chains against flow. It should also be mentioned that polymer's me-
chanical properties and loading/strain rate are the two main parameters that govern the nonlinear response of the polymer.
The formulation employed in this model is based on that used by Pan and co-workers [8]. First, an inelastic potential func-
tion based on the Drucker-Prager yield criterion [7] is defined as
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where J, is the second invariant of the deviatoric stress tensor that can be expressed as a function of o;;. The variable

o, is the sum of the normal stress components and is equal to three times the hydrostatic stress.
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The variable o is a state variable which controls the level of the hydrostatic stress effects. According to this model, the
inelastic strain components can be expressed in terms of the deviatoric stress components as follows
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where, gl’j” is the inelastic strain rate tensor which can be defined as a function of deviatoric stress and Z and o are the

state variables.
Moreover, D, and n are material constants; D, represents the maximum inelastic strain rate and n controls the rate

dependency of the material. The equivalent (effective) stress, also be defined as a function of the mean stress, such that
the summation of the normal stress components o, is three times of the mean stress, as follows

c, = \/E+\/§ackk, (3)
the evolution of the internal stress state variable Z and the hydrostatic stress state variable o are defined by the equations
Z=q(2,-2)¢;, (4)
a=q(oy ~2)¢;", (5)
where ¢q is a material constant representing the "hardening" rate, and Z; and o, are material constants representing the
maximum values of Z and o, respectively.
The initial values of Z and o are defined by the material constants Z, and «,. The term e'é” in equations (4) and (5)
represents the effective deviatoric inelastic strain rate, which was defined as follows
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where &' is the effective deviatoric inelastic strain rate and &), is the mean inelastic strain rate, which matches the effec-

tive inelastic strain rate definition given by Pan and co-workers [8].
The material constants Z,, Z;, a,, a,, n and D, can be determined using the shear stress-strain and tensile or

compression stress-strain curves, obtained by experiments conducted under constant strain rates on neat polymers. Em-
pirically, it has been shown that the value of D, , quantitatively, can be set equal to 10° times the maximum applied total

strain rate; qualitatively, it is the restricting (controlling) value of the inelastic strain rate. The values of Z; and n can be

identified using the shear stress-strain curves constructed under various strain rates. The plateau region of the effective
stress under a uniaxial tensile loading at a particular strain rate, corresponds to the saturation region of the effective stress
obtained under pure shear loading.

Complex moduli approach. Harmonic loading is one of the most widely used and important types of loadings imposed
upon a mechanical structure. In this investigation, approximate model of inelastic behavior developed in [9,11] for the case
of proportional harmonic loading has been used. In this case, the cyclic properties of the material are described in terms of
complex moduli. It is important to notice that the inelastic deformation is considered to be incompressible and thermal ex-
pansion is dilatational, it may be more convenient in some applications to separate the isotropic stress-strain relations into
deviatoric and dilatational components that can be shown by equations as

j 0
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where G is the shear modulus, K, is the bulk modulus, i, j, k=1,2,3 and repeated index implies a summation over.
Due to incompressibility of plastic deformation, éj; =0, i.e. the plastic strain rate is deviatoric: &' = ¢

According to this model, if a body as a system subjected to harmonic deformation or loading, then its response is also
close to harmonic law

€; (1) = ¢ cosot —e; sinot, s, () =s; cos Ol —s;; sinwl. 9)
The complex amplitudes of the deviator of total strain, éz‘/" inelastic strain, é;”, and the stress deviator, s, are related
inthe N ™ cycle by the complex shear modulus, éN, and plasticity factor, XN , as shown below
§;,=2Gg,;, &'=k&;, N=123,.., (10)
here
&, =ej+ie), §;=sp+is), & =e)" +ie]", G=Gy+iGy, hy =Ly +iky, (1)

and N is the cycle number; (-)" and ()" denote the real and imaginary parts of complex quantities.

The shear modulus and plasticity factor are functions of the intensity of the strain-range tensor, frequency and tempera-
ture

G=Gy(ey,»0), Ay =hy(eyn,0), (12)

where the square of the intensity of strain-range tensor is calculated as ef = eje; +ejey .
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The imaginary parts of the complex moduli are determined from the condition of equality of the energies dissipated over
a period and are calculated according to the formula
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where D' is the rate of dissipation of mechanical energy, G, is the elastic shear modulus.

The real parts are found with making use of the condition that generalized cyclic diagrams s,y = s,y (€,,®) and
€,an = €pay (€9, ®)  Which relate the ranges of the stress and plastic-strain intensities in the N" cycle, coincide in the frame
of the complete and approximate approaches
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where G' and A’ are the sought-for real part of shear modulus and plasticity factor.

In spite of the fact that the single-frequency approximation based on harmonic linearization has a well agreement with
precise model of nonlinear behavior, it's necessary to analyze its practical accuracy for specific classes of problems.

As mentioned in the introduction, the second approach is based on the concept of complex moduli, which are deter-
mined by standard and modified techniques of equivalent linearization. It is important to notice that, the imaginary parts of
complex moduli are defined by the exact expression for rate of dissipation averaged over the period of cyclic loading while
to improve the accuracy of real parts of complex moduli the modified approach is proposed as shown in equation (14). Ac-
cording to equation (12), the complex moduli for isothermal loading case depend on the frequency and amplitude of kine-
matic loading only. The purpose of this paper is to investigate the influence of these parameters on complex moduli.

Numerical technique and the material properties. In the present work, as it was mentioned above, due to significant
nonlinearity of the stiff type, the numerical integration of Goldberg equations was adopted. To solve the implicit equation (2),
one should utilize an appropriate numerical discretization technique. Three step scheme of attacking the problem of com-
plex moduli determination was designed. At the first step, the elastic-viscoplastic response of the material to harmonic de-
formation was calculated by numerical technique for different amplitudes of loading strain at different frequencies. At the
second step, the stabilized cyclic stress—strain and inelastic-strain—strain diagrams were obtained for the whole set of calcu-
lated data. At the final step, the complex moduli were calculated by the averaging over the period of vibration of the results
of direct integration and making use of cyclic diagrams and formulae (13) and (14). The system of nonlinear ordinary differ-
ential equations that describes the polymer response to harmonic loading in the case of pure shear consists of the one-
dimensional equations of Goldberg model comprising equations (2), (4), (5) and evolutionary equations
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The law of strain deviator variation e = ¢, sin?, as well as Hooke law for shear stress
512 =2G (e —51h ). (18)

should be added to the system.
The values of material constants for RP-520, which were used for calculations, have been taken from [5]. The list of the
values is given below

E =3250 MPa, D, =10° 1/sec, n=0.92, ¢ =253.6,
Z,=407.5 MPa, Z, =768.6 MPa, o, =0.571, o, =0.122, v=0.4.

Numerical results and discussion. The results of transient response simulation and frequency effects (short and long
times) on the complex moduli in the frame of modified technique described above are presented. Evolution of stress and

inelastic strain for epoxy resin (PR-520) under harmonic loading in pure shear with strain amplitude ¢, =5.5-107 are

shown in Fig. 1 and Fig. 2 respectively for frequency 1 Hz. The material demonstrates cyclically stable response over the
whole interval of loading amplitudes and frequencies investigated. According to Fig. 3, stabilization of the response ampli-
tude occurs after the several initial cycles. Relatively slow stabilization is observed only in the vicinity of yield point. Fig. 4
illustrates the mechanical hysteresis phenomenon under cyclic loading in the maximum dissipation condition

(ey = 55-1072 ) at the frequency 1 Hz.

As it was mentioned earlier, this actual loop can be approximated with making use of either standard or modified equiva-
lent linearization scheme. In the same figure, the actual loop (line 1) is shown along with the loops calculated in the frame of
standard (line 2) and modified (line 3) equivalent linearization techniques.
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Fig. 1. Stress evolution under harmonic loading Fig. 2. Inelastic strain evolution under harmonic loading

The cyclic diagrams at stabilized stage of the vibration s, =s,(e,) (i.e. concretization of general cyclic diagram
S,n =S,y (€y,®) used in the formulae (14) for N — oo ) are shown in Fig. 5. The curves are calculated for cyclic pure shear

for different frequencies (1, 50,100 Hz). The effect of frequency is easily observable. Two order of magnitude variation in
frequency leads to approximate 20 % change in stress amplitude at the stage of advanced deformation.
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Fig. 3. Stabilized cyclic diagram for PR-520 at 1 Hz Fig. 4. Hysteresis loops

Using the cyclic diagram and making use of the formulae (13) and (14), the imaginary and real parts of the complex
moduli (the loss moduli G" and A", storage moduli G’ and ') in the frame of modified equivalent linearization scheme
are determined. The improved values of G' and G”" have been found according to the modified scheme for different fre-
quencies at steady-state cyclic regime and constant temperature. Dependency of storage modulus, G', and loss modulus,
G", on the amplitude of strain, €y, and frequency for the PR-520 are shown in Fig.6. for 1, 50, 100 Hz by solid, circle-solid

and dashed lines, respectively. This figure and cyclic diagram show the inelastic behavior will be started at higher strain
amplitude with increase of frequency.

The trend of storage moduls behavior presented in Fig. 6 show that the it's values increase with increase of frequency.
The loss modulus varies slightly. The peak values of the modulus increase insignificantly. Within the interval of interest be-
tween 1 and 100 Hz, the maximum in loss modulus occurs in the vicinity of 6% of strain intensity. For higher values of strain
intensity, the loss modulus decreases.

Conclusions. In this paper, Goldberg model was used to simulate the time dependent response of PR-520. Obtained
histories of main field variables evolution were used to find the stress—strain cyclic diagram and real as well as imaginary
parts of complex shear modulus with making use of both standard and modified equivalent linearization techniques over
wide range of frequency and amplitude.

Results of calculations show evidently that, the strength of material increases with increase of frequency. The sensitivity
of cyclic diagrams to frequency variations at the low values is more profound than at the region of higher frequency (see
Fig.5). It's important to notice that with the increase of strength of material the sensitivity to frequency is reduced. Therefore
the behavior of saturation type is clearly exhibited. In general, it is possible to conclude that complex moduli demonstrate
the weak dependence on the frequency within the interval investigated.
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Fig. 5. Cyclic diagram for PR-520 at 1, 50, 100 Hz Fig. 6. The real and imaginary parts of complex
modulus at various frequencies
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CraTTAa Hapginwna ao peakonerii 22.02.16

Xawemi M., acn.
XKyk f., a-p dis.-mar. Hayk, npod.
KuiBcbkui HauioHanbHUI yHiBepcuTeT imeHi Tapaca LLleByeHka, Kuis

BMJIUB YACTOTU | AMONITYAU TAPMOHIYHOINO HABAHTAXEHHA
HA KOMMJEKCHI MmoAayni NONIMEPHUX MATEPIANIB

lNposedeHo moderosaHHsI i Xxapakmepu3auiio peakuii rnoniMepHo20 Mamepiarny Ha MOHO2aPMOHIYHE KIHeMamu4iHe HagaHMaxeHHs. [risi onucaHHs HecmaujoHapHOI
rosediHKU rorniMepy 8uKopucmaHi eusHavasbHi pieHsiHHS Moderi [ondbepaa. [ns ModertosaHHs peakuii Mamepiany 6 mepMiHax amrimyd ecmaHosneHi ammimyoHi
CriggiOHOWEeHHST Orisi OCHOBHUX T1OMbOBUX 3MIHHUX. [ns yb020 8UKOPUCMAaHO KOHUEMNUio KOMIIEKCHUX MoOyris. [JoCrioKeHO 3arnexHiCmb KOMIIEKCHUX Modyrie 6io
Yacmomu ma amrnnimydu iHme+HcusHocmi degbopmauiti. NMokasaHo, wo KoediuieHm empam OEeMOHCMPYE HU3LKY 3aNeXHIiCmb 8i0 4acmomu HaBaHMAaKeHHs 8 yCboMy
docnidxeHoMy iHmepsani Yyacmom.

Xawemu M., acn.
Xyk 4., A-p dus.-mat. Hayk, npodp.
KneBckui HaumoHanbHbIN yHMBepcuteT uMeHu Tapaca LLeBuyeHko, Kues

BJIMAHME YACTOTbI U AMNNUTYAbl FAPMOHUYECKOIO HArPY>XEHMA
HA KOMMJEKCHBIE MOoAYJI1 NONMUMEPHbLIX MATEPIANOB

NposedeHbl MOOenuposaHue U Xapakmepusauusi peakyuu MoluMEepHO20 Mamepuana Ha MOHO2aPMOHUYECKoe KUHeMamu4yeckoe HazgpyxeHue. [nsi orucaHusi
HecmauuoHapHo20 ogedeHusi noruMepa Ucrornb308aHbl onpedernsowue ypasHeHUst modernu ondbepea. [nsi modenuposaHusi peakyuu Mamepuana 8 mepMuHax
amumyd ycmaHossieHsl amnnumyOHsle COOMHOWEHUs1 Ol OCHOBHBIX 0f1eebIX NepeMeHHbIX. [ 3moeo ucnonb3osaHa KOHUENUUS KOMIMIEKCHbIX MOoOyried.
UccnedosaHa 3asucUMOCMb  KOMIIEKCHbIX MOOyriell om yYacmomb! U amiiumyObl UHmMeHcueHocmu Oegopmauull. [loka3aHo, 4mo  KoaghgbuyueHm romepb
demoHCmpUpPyem crabyto 3a8UCUMOCIb YaCmOMbl HagPyKeHUs1 80 8CeM UCCrIe008aHHOM UHMep8arte Yacmonm.



