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FLEXURAL VIBRATIONS AND DISSIPATIVE HEATING  

OF A NANOCOMPOSITE BEAM UNDER STATIC AND CYCLIC LOADING 
 
Forced resonance vibrations and dissipative heating of viscoelastic beam made of polymeric nanocomposite reinforced by 

unidirectionally aligned nanofibers made of straight single-walled carbon nanotubes (CNTs) are investigated. Geometrical nonlin-
earity of the second order as well as temperature dependence of the complex moduli of nanocomposite materials are taken into 
account. To solve the coupled nonlinear problem of thermovisoelasticity under cyclic loading, the quasi-linearization technique 
(for complex moduli determination) is used in combination with the discrete-orthogonalization method and iterative procedure. 
Orthogonal discretization is used at each iteration to integrate the complex-value analogues of beam motion equations. The explicit 
finite-difference scheme is used to solve the heat-conduction equation with a heating source caused by dissipation. The influence 
of the dissipative heating and nonlinearity of physical properties as well as geometrical nonlinearity on the dynamic characteristics, 
heating temperature and damping of the forced vibrations for the nanocomposite beam with different volume fraction of CNTs 
fibers under combined uniform transverse harmonic and static pressure are investigated. 

 
Introduction. The polymeric composite elements are widely used in current engineering applications, but these elements 

are sensitive to various kinds of loading. Thus, the response of such structure elements to actual force and kinematic loading 
must be evaluated [1]. The forced vibration analysis of structural elements occupies an important place in the dynamics of 
deformable systems. Especially of nonlinear systems, the applied researches in this field show the need for a broader theo-
retical analysis in this field of engineering for new materials [1, 2]. 

There are several factors that influence the behavior of a structure under high level of dynamic loading (resonance vibra-
tions). Some of them are inertia effects, non-linearity of material properties and the coupling of the mechanical and thermal 
fields [3]. In this situation, apart from purely mechanical fatigue failure, structural elements may undergo thermal failure, i.e., 
softening or even melting due to vibrational or self-heating, which occurs because of high hysteresis losses and low heat 
conductivity of polymer materials [4]. Indeed, the self-heating may alter the strength features of the structural element, and 
degrade its performance. The interaction of the mechanical and thermal fields in viscoelastic bodies is studied within the 
framework of a coupled thermomechanics [1–4]. Therefore, it is necessary to evaluate thermomechanical behavior of the 
material with taking into account the effects of physical and geometric nonlinearities. In recent years, the evaluation of both 
geometric and physical nonlinearity as well as their mutual influence on behavior of thin-walled structural elements has at-
tracted increasing research efforts [5, 6]. It must be mentioned that, in general, to derive the governing equations of motion 
of thin-walled structural elements, the von Karman type of geometrically nonlinear strain–displacement relationships is the 
most widely used. It is well known that, the solution of the coupled problem of thermoviscoelasticity is more complicated 
especially in the case of long-term inelastic deformation, because of the necessity of storing a large body of data and per-
forming extensive computations to take into account the deformation history. To overcome these difficulties in the specific 
case of harmonic loading, a simplified model of thermomechanically coupled processes was developed in [1, 3]. This 
model is based on the concept of complex moduli, and specified by a modified technique of equivalent linearization [3].  

The main aim of this investigation is to use the simplified model of the behavior of viscoelastic nanocomposite beam under 
combined cyclic and static loading to give an approximate formulation to the coupled thermomechanical problem. In the 
framework of approximate formulation [1, 7], the laws governing the forced vibrations and self-heating for nanocomposite 
beam with unidirectionally aligned CNTs fibers under considered conditions are derived. Also, the influence of geometric and 
physical nonlinearity at the different volume fraction of CNTs fibers on the dynamic characteristics of the system is investigated 
over a wide range of amplitude, frequency and temperature. As mentioned earlier, the approximate formulation is based on 
concept of complex moduli, therefore, the overall macroscopic properties of nanocomposite material with unidirectionally 
aligned CNTs fibers under harmonic loading are obtained as complex moduli by using approximate approach for its constitu-
ents (CNTs fibers, polymeric matrix and interface) and the homogenization procedure based on the modified Mori – Tanaka 
method [8]. The prediction procedure of nanocomposite material properties under different conditions of frequency, amplitude 
and temperature are presented in our previous works [11–13]. 

Problem formulation. Let consider a one-layer rectangular cross section beam made of the nanocomposite with unidi-
rectionally aligned CNTs fibers. The beam is referred to a Cartesian coordinate system Oxyz, so that, 0 < x < l , y = b/2 and 

z = h/2 which l, b and h are length, width and thickness of beam, respectively. The axis of the beam coincides with the axis 

Ox. The beam is subjected to bending by the transverse pressure 0( , ) ( ) ( )cos( )zq x t q x q x t    in the plane xOz, which con-
sists of the constant components q0(x) and harmonic in time, t, excitation with amplitude q′(x) and frequency ω, close to the 
resonance frequency. We assume that the strains are small, but the beam deflections are such that, it is necessary to take 
into account the squares of rotation angles in kinematic relations. Therefore, the equations of motion are also nonlinear. We 
also consider u=u(x), w=w(x) and v=v(x) are displacements of point of middle surface along axes Ox, Oz and Oy, respectively. 
The beam has a uniform heat distribution T=T(x) over the cross section of beam, and on the lateral surface heat exchange 
occurs with an environment having the temperature TC. Also, the material of beam is considered viscoelastic nanocomposite 
so that, its inelastic response under monoharmonic loading is assumed as function of the intensity of the stress, frequency 
and temperature [11]. 

Under considered assumptions above, the displacement field of the Euler – Bernoulli beam theory (EBT) is given by 
ˆ ˆ ˆx y zx = ue + ve + we  where – ,xu = u(x) zw (x), 0v =  and w = w(x).  Taking into account the von Karman nonlinearity, the strain 

component, εxx, will be as follow  

      , , , ,

2 2
ε – –xx x x xx x

u 1 w 1 1 2= + = u(x) zw (x) + w(x) = u (x) zw (x)+ w (x) .
x 2 x x 2 x 2
   
   

 (1) 
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In the framework EBT, considering the effect of temperature and the van Karman nonlinearity the strain component, the 
stress component, σxx , is  

  σ ε ε – – – – εx
xx xx x x C x x x ,x x

2
* * C 2

2
V w w 1= E = E + zk α (T T ) , k = = , V = , = u + V ,
x x 2x

  
 

 (2) 

where E* , kx , Vx, εx and αC are linear viscoelastic Young's operator, curvature, rotation angle, strain of point of middle surface 
along axis of the beam and coefficient of linear thermal expansion of nanocomposite material, respectively. By substituting 
Eq. (2), the integral quantities of force and momentum over the thickness of beam are presented as 

 σ – – σx xx xx x C x xx xx x

* 3h / 2 h / 2
* * C

-h / 2 -h / 2

E bhN = bN = b dz = E Aε E Aα (T T ), M = bM = b zdz = k .
12   (3) 

Using Eq (3) the equations of curvature, rotation angle and strain of point of middle surface along axis of the beam in Eq. 
(1) can rewrite as follow  

 1 12– – – and ,
2

x
x x C x x x x

2
2 C *

J
2 3

Vu w w= CN V +α (T T ), k = = M = DM V
x x xx bh

  
  

  
 (4) 

where 1J E


  is the reverse operator; JC A
  and 3

12D J
bh

 . 

Under considerations above, the equations of nonlinear vibrations of the flexible beam in the Ox and Oz axes can be 
written as follows [18] 

 0 0 0

2

2

ˆ ˆˆ ˆ ˆand where ,x x x
x x x

2 2 h / 2
z

2 2
-h / 2

Q M Nw u+ Aq = I , = Q + N V I I = b dz
x xx t t

   
 

   
 (5) 

where ˆ
x x x xQ Q N V  . Also, ρ  and Qx are the density and crosscutting force, respectively. In present investigation, we con-

sider the longitudinal vibration of beam is as quasi-static. Thus, the last equation of nonlinear vibration of beam in the Ox axis 
(Eqs. 5) can be written as 0.xN

x
   

With assuming that, the beam ends in the longitudinal direction are fastened rigidly and hingedly in the transverse direc-
tion, the mechanical boundary conditions have the form 

 0, 0, 0 0,xu w M x l   for . (6) 
The energy balance equation for the beam, averaged over its cross section area and the period of vibrations, can be 

expressed as 

  
/ 2 / 2

/ 2 / 2

2

2
ˆ ˆ, . ,C ij ijv

h h
in

h h

C C PT TC T T D D D dz s dz
t Ax  

             
where  (7) 

where 
v

CC , C and   are the volumetric heat capacity, thermal conductivity of composite material and heat transfer coeffi-

cient, respectively.  2P b h  is perimeter of the beam cross section and D̂ shows the volumetric rate of dissipation av-

eraged over the cross section that can be expressed as function of components of complex strain and stress. In current study, 
we consider the initial and boundary thermal conditions as follow 

  0 0 0 0T = T  t =   T = T x x = , l.and fa ort  (8) 

It worth to mentioned that, in this study, the volumetric heat capacity, v
CC , and the thermal expansion coefficients in the 

longitudinal direction, αC , of polymeric composites are predicated based on the rule of mixture and also the thermal conduc-
tivity, C , can be expressed by Halpin – Tsai model  [14–17] as follow: 

1, , 1 / ,
1v v v

f f f
C f f M M C f f M M C M

f M M
VC C V C V V V

V
                                          

and        (9) 

where   1. 
Construction of the solution of the problem. As mentioned earlier, the solution of the coupled problem of thermovisco-

elasticity is more complicated especially in the case of long-term inelastic deformation. To overcome these difficulties in the 
specific case of harmonic loading, in this section, an Approximate formulation is expanded based on [9, 10]. Let us 
develop the approximate solution of nonlinear Eqs. (4)–(8) as harmonic series in terms of time. In this solution, the variables 

ˆ
x x xw, V ,Q Mand  which characterize the beam deflection are assumed as a single-mode approximation while the variables 

u, Nx, and εx which describe the plane deformation of the beam are considered in the second–mode harmonic approximation, 
so that, we pursue an approximate solution of the problem in the form  

 
1 1 1 2 1 1 2 2

1 1 2 2

cosω sinω cos2ω sin2ω cosω sinω cos2ω sin2ω
cosω sinω cos2ω sin2ω , cosω sinω , cosω sinω ,

ˆ ˆ ˆ ˆcosω

x

x x x x x

x x x x

u = u +u t - u t +u t - u t, N = N + N t - N t + N t - N t,
= + t - t + t - t w= w+ w t - w t V = V +V t -V t

Q = Q +Q t - Q

       
          

 sinω , cosω sinω .x x x xt M = M + M t - M t 

 (10) 

In the frame of approximate solution, the reverse operator
 

J can be expressed in the complex quantity as form 
* ikωtJ (t)= J + Re Je     

 for k = 1, 2, so that the equilibrium creep compliance under monotonic loading, J  , depends on tem-

perature, while, the components of complex creep compliance under harmonic loading, J = J iJ  , depend on amplitude of 
stress, frequency and temperature as follow 

    1 1 2 2 σ, ω, T and σ, 2ω, T'," '," '," ',"J = J (T), J = J J = J .  (11) 
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By substituting variables of Eq (10) in Eqs (4)–(8), the following system of nonlinear equations can obtained, so that,  

 

   

 
12 2

2 2

1 1– – α – – –
2 4

1 1– – – – – – –
4 2

1
x x x C 1 1 1 1 x x 1 1 1 1 x x

2 2
2 2 2 2 x x 2 2 2 2 x x x x x

2 du dudu = CN V V +V + T T , = C N - C N -V V , = C N + C N V V ,
dx dx dx
du du dw dw dw= C N +C N V V , = C N + C N V V , = V , = V , = V ,
dx dx dx dx dx

dV

 
           

                

 0 2

– 0 0 0 0

ˆ ˆ ˆ 1ˆ0 – –ρ ω – –ρ ω
2

ˆ

x x x 1 1 2
1 x 1 x 1 x 1 x 1 x

x x x x2
x 1 x 1 x x

x
x 1

2

dV dV dN dN dNdN= D M , = D M + D M , = D M D M , = , = , = , = ,
dx dx dx dx dx dx dx

dQ dQ dQ dMdN
= , = q A, = A w q A, = A w , = Q + N V + N V + NV ,

dx dx dx dx dx
dM

= Q + N V
dx

    
       

 
      


 



1 1 1 1ˆ ,
2 2 2 2

x
x x 2 x 2 x x 1 x x 2 x 2 x

dM
+ NV + N V + N V , = Q + N V + NV + N V + N V

dx


           

 (12) 

where based on the Eq. (4), quantities C , D , kC  and kD  are defined in (13) in which, subscripts k=1, 2 show the frequency 
ω and 2ω, respectively. 

    3 3
12 1 12, ,  .k k k k k k k k k k

JC D J C C iC J iJ ,  D = D iD J iJ
A Abh bh


                 and  (13) 

According to the Eq. (6), the boundary conditions are assumed as follows: 
 1 1 2 2 1 1 0, 0 0 0, .x xu u u u u w w w M M M x l                  and for  (14) 

In the framework approximate formulation, the dissipative function for considered beam is determined by substituting 
complex variables into (2) and then (7) as 

   x

ωb ωˆ σ ε σ ε ε ε 2 ε ε
2λA 2

ε ε
λ

ε

 xx x 1 x,1 1 x,1 2 x,2 2 x,2 x x x x,1 1 1 1 1

x,1 1 1 1 1 x,2

x

2 2 2 2 x,1 2 2 2

h / 2

xx xx
-h / 2

ε = C N + C N , 

= C N + C N , = C N + C N , = C N + C N

D = dz = N N + N N + M k M k ,
A

             

         

  

    

    



     where

x 1 x 1 x x 1 x 12 xk = D M + D M k = D, M + D M .            and

(15) 

As a result, we have a system of equations for the average functions represented in (7) and (12)–(15) that must be solved 
as integration system. Also, the nonlinear coupled thermomechanic problem represented by these equations are solved as 
two-point boundary value problem (BVP) for ordinary differential equations (ODEs) system. In this investigation, to solve the 
first-order differential equations system above, the solver based on finite difference method (FDM) is employed. Recognizing 
that, the linearized system of ordinary differential equations in each approximation variables are integrated by the method of 
discrete orthogonalization with using a typical program [19]. 

Numerical results and analysis. 
Material properties. In order to predict the viscoelastic behavior of materials under monotonic and harmonic loading, an 

transversely isotropic nanocomposites system with unidirectionaly oriented CNTs fibers is considered. As mentioned earlier, 
In general, temperature, amplitude of loading, frequency and volume fraction of nanofiber are assumed as controlling 
parameters. The complete review of studies on the constitutive equations of micro- and macromechanical model of nonlinear 
viscoelastic behavior of polymeric nanocomposite materials under monoharmonic deformation is presented in previous works 
[11–13]. In this study,we have used the complex moduli computed in [11], in which the numerical solutions was carried out in 
a wide range of omplitude of harmonic loading for different volume fraction (3, 5 and 10 percent of CNTs fibers ). Also, 
temperature and frequency are considered 25, 50, 80 °C and 1, 50, 100 Hz, respectively. According to microstructural geometry 
of CNTs, the nanofiber aspect ratio for the transversely isotropic nanocomposites is chosen to be equal to 3.5. 

Amplitude, frequency and temperature characteristics (steady-state response). A numerical analysis has been 
conducted for the beam with single layer made of epoxy nanocomposite with unidirectionaly oriented CNTs fibers with the 
following physical parameters for epoxy resin and CNTs fibers [14–17]: v

fC  0.629 106 j/m3 K, v
MC  1.513 106 j/m3 K, 

f 

2000 j/m K,  M  0.47 j/m K, f  45 10-6 1/ K, M  3 10-6 1/ K, f  1680 kg/m3, M  1214 kg/m3 and   20 W /m2 K. 
Moreover, the geometry of the beam is assumed  l=0.35 m, b=0.01 m  and  h=0.01.  

In this section, the main aim is studing of amplitude and temperature frequency characteristics of the nanocomposite 
beam under consideration conditions with taking into accont the effects of nonlinear factores consist of geometrical and phys-
ically nonlinearity in the region of the first resonance. For this reason, we compare the solutions of the four problems, which 
are considered as follow: the first problem is a linear vescoelastic problem, in which the geometrical and physically nonlinearity 
aren't considered. Therefore, in this problem, the quadratic terms in (12) are ignored and also the properties of material are 
considered to be independent of temperature; the second problem is a nonlinear vescoelastic problem with taking into account 
the physically nonlinearity, in which thermomechanical coupling is considered; the third problem is a nonlinear viscoelastic 
problem with taking into account the geometrical nonlinearity, in which the properties of material are considered to be 
independent of temperature. Indeed, in this problem, the thermomechanical coupling is not considered; and finally, the fourth 
problem is a nonlinear viscoelastic problem with taking into account the geometrical nonlinearity and physically nonlinearity, 
so that it is called a completely nonlinear viscoelastic problem. 

The effect of geometrical nonlinearity. To study the effects of geometrical nonlinearity on amplitude and temperature 
frequency characteristics in the vicinity of the first resonance, the results of solution of first and third problems are compared. 
By defination above, the material of beam in both of these problem is assumed viscoelastic and independent of temperature. 
The frequency dependencies of the amplitudes and stationary temperature in the region of the first resonance for different 
volume fraction (0, 3, 5 and 10 %) and constant amplitude of cyclic loading (70 kPa) are presentd In Figs. 1 (a) and (b). In This 
figure, the maximum value of the normalized deflection ,

2 2
max* 0.5w = (w + w ) / h,   0 x l   and dimensionless temperature, 

max 0
*T = T / T , along the beam for problem 1 and problem 3 are compared. Here, solid and dashed lines correspond to the 

results of solution of the linear viscoelastic problem (problem 1) and nonlinear viscoelastic problem with regard for geometric 
nonlinearity (problem 3), respectively.  
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a) 
 

b) 
 

Fig. 1. The effects of geometrical nonlinearity on (a) amplitude-frequency characteristics and (b) temperature-frequency 
characteristics (comparison of the problem 1 and 3) 

 
This figure shows the increase of volume fraction leads to shift of the region of the first resonance toward higher values 

of frequency, and also it is evident that, the influence of geometric nonlinearity on the amplitude and temperature-frequency 
characteristics becomes pronounced, with a decrease in the volume fraction of CNTs fiber. Also, the beam displays soft 
nonlinear behavior. Note that, the maximal deflection amplitudes and temperatures of the resonance frequencies for linear 
viscoelastic problem (solid lines) are somewhat lower than similar quantities of the resonance frequencies of the nonlinear 
viscoelastic problem (dashed lines). The effects of geometric nonlinearity are manifest to a greater extent with a reduction in 
the level of viscosity and an increase in the level of elasticity with increasing in volume fraction. Therefore, the low value of 
the maximum deflection amplitudes, *w , can be limited to the linear formulation. 

The effect of physically nonlinearity. In this investigation, to study the effects of thermomechanical coupling (TMC) and 
volume fraction on the amplitude of deflection and temperature frequency characteristics, third and fourth problems are 
considered. For this reason, the both of problems are solved at the different volume fraction of CNTs fibers and constant 
amplitude of cyclic loading. In Figs. 2 (a) and (b), the frequency dependencies of the maximum value of the dimensionless 
deflection, *w , and the steady-state temperature, T*, corresponding to the both of nonlinear viscoelastic problems(3 and 4) at 
the q′=70 kPa are presented. In this figure, the dot-dash lines show the results of solution of the completely linear elastic 
system (problem 1 with the physically linear elastic responses), also the solid and dashed lines correspond to the results of 
the nonlinear viscoelastic problem, in which TMC is not considered (problem 3) and the completely nonlinear viscoelastic 
problem (problem 4), respectively. A comparison of the curves of variation in the region of natural frequency for completely 
linear elastic problem (dot-dosh lines) and nonlinear viscoelastic problem (solid and dash lines) reveals that, the effects of 
viscoelastic response of materials on the temperature and deflection–frequency responses become more profound for all 
amounts of volume fraction. In Fig. 2 (b), the presented results show with taking into account viscoelastic responses the 
stationary dimensionless temperatures, T*, increase in the region of first resonance, while the temperatures of dissipative 
heating in elastic problems are equal zero. However, Fig. 2 (a) shows the amplitudes of dimensionless deflection, w*, strongly 
decrease with considering viscoelastic responses. 

From Figs. 2 (a) and (b) it follows that, the deflection amplitude and dissipative-heating temperature are maximum in neat 
polymer beam (V f=0 %) for both considered nonlinear viscoelastic problems (3 and 4), while they decrease with increasing 
volume fraction. Also, analysis of the curves in these figures show that, the effect of thermomechanicl coupling is more sig-
nificant in lower volume fraction of CNTs fiber.. It is evident that, with taking into account physically nonlinearity (problem 4) 
leads to a decrease in the main amplitude of deflection in the region of first resonance frequency of the beam and formation 
of the amplitude-frequency characteristics and temperature-frequency characteristics of the soft type. However, with increase 
in volume fraction, this effect of physically nonlinearity and dependence of nanocomposite on temperature decrease. This is 
due to reducing of inelastic response and imaginary part of complex moduli with increasing volume fraction under constant 
amplitude loading. 

  
 

a)  b) 
Fig.  2. The effects of thermomechanical coupling on (a) amplitude-frequency characteristics  

and (b) temperature-frequency characteristics (comparison of the completely linear elastic problem, problem 3 and 4) 
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The comparison the curves of Figs. 2 (a) and (b) for problems 3 and 4 and analysis of the interaction of two types of 

nonlinearity show the geometric nonlinearity becomes the more significant determining factor in the low volume fraction of 
CNTs fibers. It reveals that, with reduce inelastic behavior and increase strength of material, the interaction of two types of 
nonlinearity decreases. Therefore, the low value of the maximum deflection amplitudes corresponding to the high volume 
fraction may be limited to the linear formulation. 

The effect of amplitude of loading. The frequency dependences of relative maximal amplitudes and temperatures of 
dissipative heating calculated in the vicinity of the main resonance frequency of vibrations for the different amplitudes of 
harmonic transverse pressure, q'=70, 90, 130 and 160 kPa, are presented in Figs. 3 (a) and (b) for unidirectionaly oriented 
nanocomposite beam with 3 % volume fraction of CNTs fiber. In this figure, the solid lines show the results of solution of the 
completely nonlinear viscoelastic problem (problem 4), in which the properties are considered to be dependent of temperature, 
and dashed lines correspond to the results of solution of the linear viscoelastic problem (problem 1), in which TMC is not 
considered. Analysis of the curves in these figures for complete nonlinear viscoelastic problem (solid lines) show the great 
influence of two nonlinearity factors on the frequency characteristics at the different amplitude of loading in the forced vibra-
tions of the considered beam. It is necessary to mention that, the curves with dashed lines show the influence of viscoelastic 
response of material on frequency characteristics without considering the physically and geometrical nonlinearity effect in 
isothermal process. Also, the presented results in Figs. 3 (a) and (b) show the importance of studying the interaction of two 
types of nonlinearity to known the first resonance region and the type of nonlinearity behavior. According to the curves of 
amplitude and temperature frequency characteristics, the nonlinearity at resonance is of soft type under different amplitudes 
loading for nanocomposite beam with 3 % volume fraction of CNTs fibers. A comparison of the results presented in Figs. 3 
(a) and (b) demonstrates that, with increasing amplitude of harmonic loading the effects of physically nonlinear viscoelastic 
responses will be pronounced and the level of viscosity and the amplitude of temperature of dissipative heating increase. In 
this situation, the role of thermomechanical coupling increases due to an increase in deflection of the beam. As mentioned 
earlier, the complex moduli or viscoelastic response of material depend on amplitude of stress or loading. As result, with 
increasing amplitude of loading, the leftward shift of the first resonance region is connected with thermal softening of the 
material and increasing viscoelastic response, so that, it indicates the predominant effect of TMC nonlinearity. 

The effect of volume fraction on the stationary temperatures at critical loading. It is well known that, the certain 
cyclic-loading and heat-transfer conditions may lead to thermal fatigue failure due to material softening or even melting. This 
problem is important for many fields of engineering and technology which use nanocomposite materials.  

 

 
 

a)  b) 
 

Fig. 3. The effects of amplitude of cyclic loading on (a) amplitude-frequency characteristics  
and (b) temperature-frequency characteristics under different amplitudes loading, q'=70, 90, 130  and 160 kPa,  

for nanocomposite beam with 3 % volume fraction (comparison of problem 1 and 4) 
 
To study critical value of amplitude of harmonic loading, q*, we consider the nanocomposite beam with small deflection 

under small static loading, qo=10 Pa and different harmonic loading. Fig. 4 (a) shows curves depicting the change in the 
maximum values of the stationary dimensionless temperatures of dissipative heating in relation to considered conditions for 
completely nonlinear viscoelastic problem (problem 4) at different volume fraction and constant frequency. 

In this figure, 1 2 3 4
* * * *q , q , q qand  are the critical value of amplitude of harmonic loading which correspond to the neat polymer 

and nanocomposite beam with, 3, 5, and 10 % volume fraction of CNTs fibers at  f = 47.3 Hz, which lie to the left of the first 
resonance frequency. In Fig. 4 (a), it is clearly evident that, with an increase in volume fraction at the constant frequency, the 
thermal instability occurs in high level of harmonic loading, 1 2 3 4

* * * *q < q < q < q . It shows the physically nonlinear response of 
material plays a significant role, so that the level of viscosity decreases with an increase in volume fraction and also the 
thermal conductivity of the beam will be improved. 
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a)  b) 
 

Fig. 4. The variation of the stationary temperature in complete nonlinear problem at different volume fraction  
and  f = 47.3 Hz  (а), the evolutions of the temperature over time at  f = 46 Hz  (b) 

 
Nonsteady-state behavior (thermal instability). To solve the non-steady problem, the derivatives with respect to time 

in (7) is replaced by a difference approximation as Δ – ΔT(t + t) T(t) / t . Accordingly, in this investigation, we used an implicit 
scheme to solve the system of  (7) and (12)–(15). The nonlinear boundary-value problem which arises at each time step is 
solved by the method of quasi-linearization with numerical approach. This is realized by the numerical method with a small 
incremental time step in the first stage of the process would have required a very small step with respect to the coordinate x. 
In this section, we restrict ourselves to examine non-steady state behavior of nanocomposite beam in the framework of com-
pletely nonlinear viscoelastic problem (problem 4). 

Fig. 4 (b) shows curves of the evolutions of temperature over time for considered nanocomposite beam with different 
volume fraction of CNTs fiber under constant amplitude harmonic loading, q'=100 kPa, at f = 46 Hz which lie to the left side 
and vicinity of first resonance frequency for neat polymer beam. According to these results, it is observed that, the self-heating 
temperature evolution of each polymeric nanocomposite beam grows until reaching the steady state. It is worth to emphasize 
that in all curves demonstrate the saturation type behavior of the temperature.  

 

 
 

Fig. 5. The evolutions of the dimensionless temperature over time for, q'=155 kPa 
 
The temperature evolution for considered nanocomposite beam with various volume fractions at the constant high level 

amplitude of harmonic loading, q'=155 kPa  at  f = 37 Hz are presented in Fig. 5. In this situation, the curves corresponding to 
the nanocomposite beam with neat polymer shows the self-heating temperature grows exponentially and finally rapid tem-
perature growth occurs until the breakdown of the beam and the thermal failure occurs. It is important to note that, with an 
increase in volume fraction the thermal instability happens at the higher frequency. Also, it is apparent from this figure, the 
nanocopmosite beam with V f=3, 5 and 10 % under considered conditions demonstrates the thermal equilibrium. It is worth to 
be mentioned, the fatigue process for neat polymer and nanocomposite beams, V f=3, 5 and 10 % may be presented by the 
evolution temperature in Fig. 5. In general, each curve with thermal instability can be separated into three phases, which will 
be explained as follow. In the first part a typical temperature growth is observed, which shows the changes in components of 
complex moduli and accompanies with the decrease of a storage modulus and increase of a loss modulus. 

It is clearly evident in curves of Fig. 5 that, in this phase, with increasing volume fraction and decreasing deflection of beam 
(reduction of viscoelastic response), the temperature growth occurs slowly. In the second part, at the critical values of deformation 
conditions, after equalizing of amounts of dissipated and convection energy at the beginning of this phase the slight temperature 
growth may be observed. As mentioned earlier, the trend of temperature growth in this phase depend on deformation conditions 
such as amplitude of loading, frequency, geometric of beam and ability of element to transfer dissipative heating to surround 
media. According to the presented results in Fig. 5, for neat polymer, the trend of temperature growth shows the beam isn't able 
to transfer dissipative heating to surround media, so that the temperature grows in the beam. Accordingly, in this phase both 
mechanical and thermal destruction occurs for neat polymer while the results of solution for nanocomposite beams with adding 
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3, 5 and 10 % volume fraction of CNTs fibers into polymer show after equalizing of amounts of dissipated and convection energy 
at the beginning of the second phase the slight temperature growth is observed and ultimately the saturation type behavior of 
the temperature is demonstrated. Finally, in the third phase the self-heating temperature grows rapidly in a short time period until 
breakdown. It is evident from curves for beam with neat polymer. Research has shown that, the third phase started due to the 
initiation of cracks in the area of stress concentration and highest temperature [16]. 

Conclusion. We have presented the approximate formulation of the problem of forced resonance vibrations and dissipa-
tive heating of a nanocomposite beam with unidirectionally oriented CNTs fibers with regard for geometric and physically 
nonlinearity. We have studied their influence on the dynamic characteristics and temperature of dissipative heating of the 
nanocomposite beam in the case of static and cyclic loads. We have shown that the effect of geometric nonlinearity on 
dynamic characteristics and temperature of dissipative heating reduce with increasing volume fraction. We have investigated 
the influence of volume fraction of nanofibers on the critical value of load amplitude, under which the temperature of vibration 
heating reaches the thermal instability point. 

 
References 
1. Karnaukhov V. G. Coupled thermo-viscoelastic problems . V. G. Karnaukhov. – Kiev : Naukova Dumka, [in Russian], 1982. 
2. Chang T. P. Nonlinear vibration analysis of geometrically nonlinear shell structures / Т. Р.  Chang, Н. С. Chang // Mech. Research Commun. – 2000. – 

Vol. 27. – No. 2. – P. 173–180.  
3. Coupled thermo-viscoplastic behaviour of bodies under harmonic load / І. К. Senchenkov, Y. A. Zhuk, G. A. Tabieva, О. Р. Chervinko // International 

Applied Mechanics. – 1997. – Vol. 33. – No. 9. – P. 698 –706.  
3. Constable I., Williams J. G., Bums D.J. Fatigue and thermal softening of thermoplastics // J. Mech. Eng. Sci. – 1970. – Vol.12. – P. 20-29. 
4. Senchenkov I. K. Thermal fatigue failure of a rectangular prism with a cut / І. К. Senchenkov, N. N Yakimenko, and О. Р. Chervinko // Numerical simulation 

and experiment,” Teor. Prikl. Mekh. – 2004. – Vol. 39. – P. 42–47. 
5.  Merzlyakov V. A. Elastoplastic deformation of shells of revolution under nonaxisymmetric loading (review) / V. A. Merzlyakov, Yu. N.  Shevchenko // Int. 

Appl. Mech. – 1999. – Vol. 35. – No. 5. – P. 431– 461. 
6. Sansour C. Large viscoplastic deformations of shells. Theory and finite element formulation  / С. Sansour, F .Kollmann // Comput. Mech. – 1998. – Vol. 21. 

– No. 21. – P. 512–525. 
7. Senchenkov I. K. Modelling the Thermomechanical Behavior of Physically Nonlinear Materials Under Monoharmonic Loading / І. К. Senchenkov, 

Y. A.. Zhuk, V. G. Karnaukhov // Int. Appl. Mech. – 2004. – Vol.  40, – No. 9. – P. 30–34.  
8. Mori T. Average stress in matrix, average elastic energy of materials with misfitting inclusions / Т. Mori, К. Танака // Acta Metall. – 1973. – Vol. 21. – 

P. 571–574. 
9. Karnaukhov V. G. Coupled Problems of the Theory of Viscoelastic Plates and Shells / V. G . Кarnaukhov, I. F. Kirichok. – Kiev : Naukova Dumka, [in 

Russian],1986. 
10. Senchenkov I. K. Forced nonlinear vibrations and dissipative heating of a viscoelastic beam / І. К. Senchenkov, I. F. Kirichok // Int. Appl. Mech. – 1987. 

– Vol. 23. – No. 1. – P. 80–86. 
11. Zhuk Y. A. Frequency and amplitude dependence of complex moduli of composite material reinforced with nanofibers / Y. A.. Zhuk,  // Journal of Phy. 

Math. Modeling & Inf. Tech. – 2016. – Vol. 23. – P. 92–107. 
12. Hashemi M. Influence of frequency and amplitude of harmonic loading on complex moduli for polymer materials / М. Hashemi, Y. A.. Zhuk // Bulletin of 

KNU. – 2016. – Vol. 35. – P. 53–57. 
13. Hashemi M. A procedure for complex moduli determination for polycarbonate plastic under harmonic loading / М. Hashemi, Y. A.. Zhuk // Bulletin of 

KNU. Phy. & Math. Sci. – 2015. – Vol. 4. – P. 67–73. 
14. Zimme M. Through-Thickness Thermal Conductivity Prediction Study on Nanocomposites and Multiscale Composites / М. Zimme, Х. Fan, J. Bao // 

Mater. Sci. & Applications. – 2012. – Vol. 3. – P. 131–138. 
15. Budiansky B. Thermal and thermoelastic properties of isotropic composites / В. Budiansky // J. Compos Mater. – 1970. – Vol. 4. – P. 286–295.  
16. Shen H. S. Thermal buckling and post buckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells / H. S. Shen // 

Composites: Part B. – 2012. – Vol. 43. – P. 1030 –1038. 
17. Yang D. J. Thermal conductivity of multiwalled carbon nanotubes / D. J. Yang,  Q Zhang, G. Chen // Phys. Rev.  – B 66, 165440. 
18. Grigorenko Y. M. Numerical and Analytical Solution of the Problems of Shell Mechanics Based on Different Models [in Russian] / Y. M. Grigorenko,  

G. G. Vlaikov, A. Y. Grigorenko, – Akademperiodika, Kiev, 2006. 
19. Stevens K. K. Transverse vibration of a viscoelastic column with initial curvature under periodic axial load / К. К. Stevens // Trudy Am. Obshch. Inzh. 

Mekh., Ser. E: Prikl. Mekh. – 1969. – Vol. 4. – P. 168–173. 
Н а ді й шл а  д о  р е дк о л ег і ї  14 . 0 6 . 17  

 
М. Хашемі, асп., Я. Жук, д-р фіз.-мат. наук, проф. 
Київський національний університет імені Тараса Шевченка, Київ, Україна 

 
ЗГИННІ КОЛИВАННЯ ТА ДИСИПАТИВНИЙ РОЗІГРІВ НАНОКОМПОЗИТНОЇ БАЛКИ  

ПРИ СТАТИЧНОМУ І ГАРМОНІЧНОМУ НАВАНТАЖЕННЯХ 
Досліджуються вимушені резонансні коливання і дисипативний розігрів в'язкопружної балки з композитного полімерного матеріалу, 

армованого однонаправленими нановолокнами, виготовленими з одношарових карбонових нанотрубок. Враховується геометрична не-
лінійність конструкції (квадрати кутів повороту перерізів) та температурна залежність комплексних модулів нанокомпозитного ма-
теріалу. Для розв'язання зв'язаної нелінійної задачі термов'язкопружності при циклічному навантаженні використовується методика 
еквівалентної лінеаризації (для визначення комплексних модулів) у поєднанні з методом дискретної ортогоналізації із застосуванням 
ітераційної процедури. На кожній ітерації методом ортогональної дискретизації розв'язуються комплексні аналоги рівнянь коливань 
балки. Для розв'язання задачі теплопровідності використовується явна схема методу скінченних різниць. Досліджено вплив дисипати-
вного розігріву, фізичної та геометричної нелінійності на динамічні характеристики коливань, температуру вібророзігріву та демпфі-
рування вимушених коливань нанокомпозитної балки для різних значень об'ємного вмісту нановолокон при поперечному комбінованому 
статичному та гармонічному навантаженнях. 
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ИЗГИБНЫЕ КОЛЕБАНИЯ И ДИССИПАТИВНЫЙ РАЗОГРЕВ НАНОКОМПОЗИТНОЙ БАЛКИ  

ПРИ СТАТИЧЕСКОЙ И ГАРМОНИЧЕСКОЙ НАГРУЗКАХ 
Исследуются вынужденные резонансные колебания и диссипативный разогрев вязкоупругой балки из композитного полимерного 

материала, армированного однонаправленными нановолокнами, изготовленными из однослойных углеродных нанотрубок. Учитыва-
ется геометрическая нелинейность конструкции (квадраты углов поворота сечения) и температурная зависимость комплексных мо-
дулей нанокомпозитного материала. Для решения связанной нелинейной задачи термовязкоупругости при циклической нагрузке ис-
пользуется методика эквивалентной линеаризации (для определения комплексных модулей) в сочетании с методом дискретной орто-
гонализации с использованием итерационной процедуры. На каждой итерации методом ортогональной дискретизации решаются ком-
плексные аналоги уравнений колебаний балки. Для решения задачи теплопроводности используется явная схема метода конечных раз-
ностей. Исследовано влияние диссипативного разогрева, физической и геометрической нелинейности на динамические характери-
стики колебаний, температуру виброразогрева и демпфирование вынужденных колебаний нанокомпозитной балки для разных значений 
объемного содержания нановолокон при поперечной комбинированной статической и гармонической нагрузках. 

 


