
~ 22 ~ � � � � � � ��	
��
��� ������������� ���
�������� ����� ������ ��
���
� ISSN 1728-2306

�. ������� , 	��
. ��
.-���. ���	,
	���
�� ���	�����
�	�, ��
����
����	�� ��	������
�����	�� ������������ ����������� ����� ������ ������	�

��!"���� �#$%&%&&'()*++%/���

0+1 !/2�&�3%���()!�! 3*������%+4&'(*��/!"���
���������� �	

���
� Cmn ��
� ����
��
��� �	
�� ��������������� ��
	����� � ������������ C60 � ��
���� ���
����.

����������
�
���� ���
�������� ��
� ��������� � 	
�
�����
�
����, �������, ������������ ���������� ����
��� �����������
����
��������, XPS � A�M. �
�	�
	�� ���������� Cmn � ��
���� ���
���� (������
� � �����
���������� �������) ��	��
���. �
�����
��
�! ���	
�
�
� �
 ���������
����� ������ ��������, ����������� �� ���������� � ������
���� �
�	�
	�� � ���	
�
�	!"��
�����
���, �� ��������� � ���	
�
�
��� �����
���� �
�
���
� �	�������
� �
����� �
� #����
�����
� ��
�#
��
���������
	�
����
�� �� #����
� �����
����� – �������� ����
��
	��. ��������� ����
��
���� ���������
�� ���������� Cmn ������ �
�
��������������� �
��� �����
�
� �����
� ����� ��������
���� ��	�� � ���������� Cmn.

$
!����� �
���: �	

���
� Cmn, �	
���
, ��������
�-, ������
-, ��
o-���������, #
��
������ �
�	�
	��, 	��
������ ���������
���
������������ ���
�"����.

UDC 004.(051+052+55)
A. Kotenko, post., D. Gryaznov, assist., Yu. Boyko, Ph.D.

Faculty of Radiophysics, Taras Shevchenko National University of Kyiv

OPTIMIZIATION WEB-APPLICATIONS WITHOUT USERS GENERATED CONTENT
FOR RELIABILITY AND PERFORMANCE USING NGINX TECHNOLOGY

The paper is considered to approach to develop reliable and productive web-application. Contradiction between performance,
achieved by building system from different, dedicated to one task, nodes, and reliability is analyzed. Proposed technical solution based
on nginx that eliminates the contradiction.

Keywords: web-applications, reliability, performance, nginx.

Introduction. Recently there has been continued
growth in both the number of online users and Web
applications (sites, services, social networks) [1] The
growing number of users requires a web application a
significant increase in performance due to the fact that the
process visits to web resources has a random nature with
significant fluctuations. And customer service even visiting
peaks should occur at the time of the order of 1–2 seconds
[7]. At the same time the web application requires
reliability, so even 15 minutes disability sites lead to a
significant reduction of its position in Google SERP [6].

So actual is the problem of building Web applications
that have improved reliability and performance
simultaneously. But these IT requirements are often those
that contradict each other. This contradiction occurs
because that productivity is generally associated with
parallel operation. This parallel operation requires some
parts of specialization that prevents duplication of their
work to ensure reliability.

Implementation. In this paper we propose a technical
solution that is optimal in terms of reliability and
performance. As the criteria of reliability, we used a
disability, as well as performance criteria – the number of
components that can perform the work at once.

To construct the solution we used technology nginx [4].
Nginx is a free, open-source, high-performance HTTP server
and reverse proxy. Nginx was started in 2002, with the first
public release in 2004. Nginx now hosts nearly 12.18%
(22.2M) of active sites across all domains. Nginx is known
for its high performance, stability, rich feature set, simple
configuration, and low resource consumption. [5] Scheme of
the standard Nginx configuration shown in Fig.1.

As can be seen from the scheme in the standard
technology Nginx configuration ensures reliable operation
in the case of a single server. However, any server can fail
for a number of reasons such as hardware or software
failure, network failure, or even problems with the electricity
in the data center.

As can be seen from the scheme in the standard
technology Nginx configuration ensures reliable operation
in the case of a single server. However, any server can fail
for a number of reasons such as hardware or software
failure, network failure, or even problems with the electricity
in the data center.

Client

Worker Processes

Master

Backend

Application

File System

Web Server

Fig. 1. Scheme of Nginx

The standard way to improve the reliability of system

works is mirroring servers, and the reserve server can be
located even in a different data center. �n case of failure of
one server it is possible to switch to another. However, the
use of reserve systems can not improve the performance of
the system as a whole, as the work performed by one
anyway. To improve performance main and reserve servers
have to serve clients simultaneously. It is clear, that in the
case where users generate the content this architecture
become complex because it requires synchronization of
content between servers when the user change it. But there
are a number of services, such as [3], where it is not
necessary to modify the stored content in response to the
user actions. The proposed solution is designed for these
systems. The main idea of solution is to create mirrored
copies of the service, access to which is performed under
round robin, implemented by domain name system service
[2]. Scheme of the round robin is shown in Fig. 2.

The main problem of this solution is that it requires
storing complete copy of the data on all used servers and
therefore takes up more memory than the parallel
operation of specialized copies. As the solution of this
problem it is proposed to use natural feature of database
cache – keeping in memory the data that are used more
commonly. But in order to work, data used to serve client's
request has to hit the cache in the server. So, on every
server users requests have to be limited to some subset, of

© Kotenko A., Gryaznov D., Boyko Yu., 2013

ISSN 1728-2306 ����!"�#��� �� $%$���!����. (2)20/2013 ~ 23 ~

Server 1

Server 2

DNS Server

Clients

Fig. 2. Scheme of the round robin

all requests, and every server handles it's own part. To
implement this mechanism it is proposed to use Nginx
server. It is flexible enough to define by configuration how
to distribute requests to servers to make cache effective.
Also in case of failure of one of them, requests are handled
by working servers. This detection efficiency of the server
is done automatically by analyzing the responses. The
general scheme of the proposed solution is shown in
Fig. 3. Example of Nginx configuration is shown below.
upstream application_application {

server 127.0.0.1:8090;}
upstream local_application {

#prefer local application over remote
server 127.0.0.1:81;
server server_2:81 backup;}

upstream remote_application {
#prefer remote application over local
server server_2:81;
server 127.0.0.1:81 backup;}

server {
listen 81;
location / {
proxy_set_header Host $host;
proxy_pass http://application_upstream;}

}
server {

#handle client's requests
listen 80;
server_name server_1;
location / {
#query classification.
if ($arg_query !~* "^[0-9a-n]") {

proxy_pass http://remote_application
break;}

if ($arg_query ~* "^[0-9a-n]") {
proxy_pass http://local_application;
break;}}}

Server 1 Server 2

Nginx

Classifier

Application

Database

Cache

File System

Nginx

Classifier

Application

Database

Cache

File System

Clients

Fig. 3. The proposed solution in general

Conclusions. The proposed solution can improve

overall system performance by parallelizing work on
several servers and effectively using resources of all
processors and of total memory of all servers. Also it
increases reliability of all system. On failure of a server
response time increases, but overall the service keeps
running smoothly.

Reference
1. Barney W. Origins, Growth, and Geographies of the Global Internet /

Barney W. // SpringerBriefs in Geography. – 2013. – � 1. – P. 9–44.
2. Brisco T. DNS Support for Load Balancing [Electronic resource] /
Brisco T. – Mode of access: http://tools.ietf.org/html/rfc1794. 3. Maps locale
search [Electronic resource]. – Mode of access: http://maplos.com/. 4. Nginx
official page [Electronic resource]. – Mode of access: http://nginx.org/.
5. Nginx official wiki [Electronic resource]. – Mode of access:
http://wiki.nginx.org/Main/. 6. Official Google help [Electronic resource]. –
Mode of access: http://www.youtube.com/watch?v=qXrwyTGOf1E/.
7. Waiting times in quality of experience for web based services / [Egger S.,
Hossfeld T., Schatz R., Fiedler M.] // Institute of Electrical and Electronics
Engineers – 2012.

S u b m i t t e d o n 3 0 . 04 . 13

�. �����	�, ��>., 0. 2�?
���, �����., @. E��	�. 	��
. �H
.-���. ���	,
��.,
��J���	�� ���H�������� ��H�������� H���H ������ ������	�

!L��$O#�QO1 �%E-0!0���� #� &�0O"&O��@ �� L/!0*����&O��@ # ���!/����&&1$

NGINX �%(&!+!2OV * ��L�0�* �O0�*�&!��O �!&�%&�*, Z! 2%&%/*[�4�1 �!/���*��3�$�
% �
�

& ����
��	
� �&��&� �� ���	���� �&������
&�����
� ����	�
������ ���-���
��	��	. '���
��	
� ���
��&��� �&*

����	�
���&�
!, ��� ������+
��� �� ���	��� ����&�
&���&/ �	�
&� ���
���,
� ���&��&�
! ���
���. 1������������
���&��� �&2���� �� �����&
nginx, ��� ��&��+ �� ���
��&���.

$
!���& �
���: ���-���
��	���, ���&��&�
�, ����	�
���&�
�, nginx.

�����	� �.C., ��>., 2�?
��� 0.E., ������., E��	� @. �., 	��
. ��
-���. ���	.,
�����	�� ������������ ����������� ����� ������ ������	�

!L��$�#�Q�1 �%E-L/�+!\%&�" L! &�0]\&!��� � E'��/!0%����@ � ��L!+4#!��&�%$
�%(&!+!2�� NGINX � �+*3�% !��*�����1 2%&%/�/*%$!2! L!+4#!���%+1$� �!&�%&��

3 �
�
�� ������
��� ������ � ���
�����! �
����	�
������� � ���������
�
���� ���-���
�*����. '�����
���� ���
�������� ��*�	
���������
�
����
�!, ���
���	
	! �� ���
 ������
������ 	�
�� � ���4*���
�! ���
���. 5���
�*���
���������� ��2���� �� ������
nginx, ��
���� ������
 ���
��������.

$
!����� �
���: ���-���
�*����, ���4*���
�, ���������
�
����
�, nginx

