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Attention is drawn to the fact that in equiaxed 
nanosilicon films (film thickness � 70 nm) joint lines lie 
along different directions, in particular, [211], [321], [431], 
[110]. This correlates with the absence of texture in these 
films. At the same time, in fibrous films (thickness � 70 nm) 
joint lines always coincide with the direction [110], which 
correlates with the presence of preferred orientation [110] 
in these films [7]. 

Conclusions 
1. Triple and multiple joints of grain boundaries are 

observed in nanosilicon films. Crystallographic 
classification of multiple joints carried out. 

2. As triple and multiple grain boundaries joints are 
divided in joints of general type and special joints. 

3. There are several types of special grain boundaries 
joints, which differ in the number and mutual arrangement 
of special boundaries � = 3n. 

4. In films with equiaxed structure (thickness � 70 nm) 
joint lines lie along different directions, in particular, [211] 
[321 ] [431] and [110] that corresponds to a disordered 
film structure. 

5. In films with fibrous structure (thickness � 70 nm) 
joint lines coincide that correlates with the presence of 
texture [110] in these films. 

 

REFERENCE: 
1. Dillon S. J. Mechanism for the development of anisotropic grain 

boundary character distributions during normal grain growth / S. J. Dillon, 
G. S. Rohrer // Acta Materialia, 2009. – Vol. 57, – P. 1–7.  

2. Kopetsky Ch. V. Grain boundaries in pure materials / 
Ch. V. Kopetsky, A. N. Orlov, L. K. Fionova – Moskow: Nauka, 1987. – 158 
p. [in Russian].  

3. Mukhopadhyay S. Nanocrystalline silicon: A material for thin film 
solar cells with better stability / S. Mukhopadhyay, A. Chowdhury, S. Ray // 
Thin Solid Films, 2008. – Vol. 516, Issue 20. – P. 6824–6828.  

4. Nakhodkin N. G. Effect of thickness on structural characteristics of 
nanosilicon films / N. G. Nakhodkin, N. P. Kulish, T. V.Rodionova, 
A. S. Sutyagina // Bulletin of Taras Shevchenko National University of Kyiv 
Series Physics & Mathematics, 2012. – V. 1. – P. 285–288.  

5. Nakhodkin N. G. Troinye i mnozestvennye spetsialnie styki zeren v 
polikremnievych plenkach s raznym tipom struktury / N. G. Nakhodkin, 
N. P. Kulish, P. M. Lytvyn, T. V.Rodionova // in Coll. of Sci. works on 
Nanosystems, Nanomaterials, Nanotechnologies, Kiev,2004. – V. 2, � 3. – 
P. 793–801.  

6. Costantini S. Cleri F. Triple junctions and elastic stability of 
polycrystalline silicon / S. Costantini, P. Alippi, L. Colombo / Phys. Rev. B, 
2001. – Vol. 63, Issue 4. – P. 045302-1–045302-4.  

7. Nakhodkin, N. G. Formation of different types of polysilicon film 
structures and their grain growth under annealing / N. G. Nakhodkin, 
T. V. Rodionova // Phys. Status Solidi A., 1991. – Vol. 123, � 2. – P. 431–439.  

8. Rath J. K. Low temperature polycrystalline silicon: a review on 
deposition, physical properties and solar cell applications / J. K. Rath // Sol. 
Energy Mater. Sol. Cells., 2003. – Vol. 76, � 4. – P. 431–487.  

9. ���� �. ����	
���� ���
������� 	����� �
��	���� / �. ��
�, 
�. ����, �. ��������, �. �����, �. ���� / ��
. � ���. ��! 
�!. 
�	������� ".�. – �.: ��
,. 1968. 574 �. 

S u b m I t t e d  o n  2 0 . 0 3 . 1 4  

 
�������	 
., �-� ��.-���. 	���, ����., ����. ����, ����� 
., �-� ��.-���. 	���, ����., ��.-���. ����,  
��������� 	����	���	�� �	��������� ���	� !����� "����	��,  
#����	 $., ��	�. ��.-���. 	���, %	������ ����� 	����������	���� ���	� &. '. #��������� ��� �����	�,  
(����	��� !., ��	�. ��.-���. 	���, )��*+�	� �., ����.,  
��������� 	����	���	�� �	��������� ���	� !����� "����	�� 

 
�������	
� ���� ���
��	 ����
 � 
�
����
����� ������ � ���
���	����  

�� ����
����� ��������� 
��	
��� �	
�
� ���
�
� ���
��
��� �
�������
 � ��������� �	��� ������� ����� � ���
��������� �������. �
�����
, �
 � ������� � ����

��
�
� 	� 

�
�
����	
� �	���	��
� �	��� �������!�	��! �������	� 	� ������ �
�	�������! ����������� ������� " = 3n 	� ������� �������
�
 	���. 
������� 	���
: ���
�������� ������; �	���	���; �	��� ������� ����� 
 

�������	 �., �-� ��.-���. 	���, ����., ����. ����, ����� �., �-� ��.-���. 	���, ����., ��.-���. ����,  
�������� 	����	���	/� �	��������� ���	� !����� "����	��,  
#����	 $., ��	�. ��.-���. 	���, 5	������ ����� ����������	���� ���	� &. 6. #�������� ��� �����	/, 
(����	��� !., ��	�. ��.-���. 	���, )��*+�	� �., ����.,  
�������� 	����	���	/� �	��������� ���	� !����� "����	�� 

 
�������	
�� ���� ���
�� ����
 � 
�
����
����� ���
�� � ���
���
��  

� ����
����� ��������� 
��	
��� �	
�
# ���
�
# ���
��
��� ������
���$ �	$�� ������ ����� � ���
�������$� �������. �
�����
, %	
 � ������� � ����

��
# � 

�
�
����	
# �	���	��
# �	$�� 
	��%��	�! �
��%��	�
 � �����$ ����
�
����� ���������$� ������ " = 3n � ������ 
&���
 	���. 
�������� 	���
: ���
�������$� ������; �	���	���; �	$�� ������ ����� 

 
 

UDC 53; 547.136.13; 576.535; 577.037 
Ye. Oberemok, Ph.D. 

Department Quantum Radiophysics, 
Faculty of Radio Physics, Electronics and Computer Systems 

Taras Shevchenko National University of Kyiv 
 

THE MUELLER MATRIX STRUCTURE OF MEDIA WITH ORTHOGONAL EIGENPOLARIZATIONS 
 

The Mueller matrix structure and relationships between its elements for media with orthogonal eigenpolarizations were studied. 
Relations has been derived were verified on basic types of anisotropy and mixtures of ones. It was shown that Mueller matrix of medium 
with orthogonal eigenpolarizations has less than twelve independent elements. In addition the conditions which determine the values of 
anisotropy parameters for the eigenpolarizations to be orthogonal have been derived and examined for several characteristic mixtures of 
anisotropies. In particular it was founded that the orthogonality of eigenpolarization is always possible in mixtures of four basic types of 
anisotropy by properly fitted birefringent part. Finally the symmetry of the Mueller matrix, resulted from eigenpolarizations orthogonality, 
was established and analyzed for optimal measurement. 

�eywords: Mueller matrix, eigenpolarizations orthogonality, parameters of anisotropy. 
 

Introduction. It is well known that in optics and 
electrodynamics the crystalline medium are characterized 
by the types of eigenpolarizations that this medium 
possesses. Eigenpolarizations are those polarization 

states of light that do not change when passing through a 
medium. The amplitude and the overall phase of the beam 
of light with an eigenpolarization do, however, change. 
These changes are described by the corresponding 
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eigenvalues. In scope of this research we intend to study 
the conditions, under which homogeneous anisotropic 
medium has in general case the orthogonal 
eigenpolarizations (eigenmodes). It is known, that all four 
basic types of anisotropy, circular and linear birefringence 
and circular and linear dichroism, each taken separately, 
possess orthogonal eigenpolarizations. Generalized 
birefringence, i.e. the case of medium exhibiting linear and 
circular birefringence simultaneously, is characterized by 
unitary matrix model and has orthogonal 
eigenpolarizations. At the same time, simultaneous 
presence of dichroism and birefringence in a medium may 
lead to nonorthogonal eigenpolarizations. However, to the 
best of our knowledge, so far there has been no systematic 
study of conditions under which such medium possesses 
orthogonal eigenpolarizations. Ascertainment of 
generalized conditions for orthogonality of medium’s 
eigenpolarizations allows determining the structure and 
symmetry of matrix model for such class of media. 

Given input and scattering directions and wavelength of 
input radiation, medium anisotropy properties are completely 
described by 4x4 real Mueller matrix. The measurement of 
complete Mueller matrix oriented to the case when all 16 
elements of the Mueller matrix are independent. However, in 
practice, all 16 elements may very frequently not be 
independent. Some are zero and some are identical to 
others, depending on the symmetry and certain properties of 
the studied medium. A typical example of such situation is 
the deterministic class of crystalline media [1, 3, 6, 7] with 
Mueller matrices consisting in general of 7 independent 
elements – degrees of freedom. Measuring all 16 elements of 
the Mueller matrix for this class of media one consequently 
makes more than 50% ‘‘uninformative’’ measurements. In 
practice the part of uninformative measurements is even 
higher. This means that determination of the symmetry of 
inner structure of Mueller matrix model of medium, that is, 
the determination of the number and location of 
independent, informative elements in matrix, is perspective 
way to increase the speed of measurements. Furthermore, 
analysis carried out by us earlier shows that the 
measurement of incomplete matrix is characterized by 
higher precision than that of complete matrix. 

Thus, relying on model symmetry which will be 
determined in scope of intended research; it will be 
possible to determine the incomplete Mueller matrices 
which are sufficient for full description of media with 
orthogonal eigenpolarizations in general case and for 
solving of corresponding classes of the inverse problems. 
In its turn, this allows to determine the scheme of 
polarimeter which is optimally fit for the measurement of 
these structures of incomplete Mueller matrices. This 
would permit to increase both the speed and accuracy of 
polarimetric measurements. This has ultimate importance 
for imaging Mueller polarimetry as well. 

Methods, Assumptions and Procedures. To describe 
the linear interaction of polarized radiation with the 
medium, the Jones and Mueller matrix methods, which is 
uniquely related in case of a homogeneous anisotropic 
media [2], are used. 

When Jones matrix method is used than 
out in� �E T E ,                                 (1) 

where in(out)E  is the Jones vector of input (output) radiation, 
and T  denotes the Jones matrix. 

Jones matrix T (2x2 matrix with complex elements tmn) 
describes anisotropic properties of homogeneous medium: 

11 12

21 22

t t
t t
� �

� � �
	 


T ;     where | | exp( )mn mn mnt t i� � � .      (2) 

Eigenpolarizations   of such matrix can be obtained as: 
2

22 11 22 11 12 21
1,2

21

( ) 41
2

t t t t t t
t

� � � � �
 � ;              (3) 

where /x yE E �  – complex variable [2]; ,x yE  – components 
of the Jones vector E. 

For orthogonal eigenpolarizations the following relation: 

1 2 1�  � � ,                                   (4) 

is satisfied. 
In experimental studies the Mueller method is used for 

description of interaction between electromagnetic 
radiation and medium because it operates with intensities 
of radiation that can be directly measured. 

Then, in scope of the Muller matrix method (1) can be 
rewritten as: 

out in�S MS ,                                (5) 

where in(out)S  – denotes input (output) Stokes vectors. 
The definition of Stokes vector is follows: 

� � � � � � � � � �� �cos 2 cos 2 sin 2 cos 2 sin 2 ,
T

I Ip Ip Ip� � � � � �S  (6) 

where I – overall intensity of radiation; p – polarization 
degree; �  – azimuth and �  – ellipticity angle of 
polarization ellipse; T – transposing. 

In accordance with (5) the Mueller matrix M is a 4x4 
matrix with real elements 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

m m m m
m m m m
m m m m
m m m m

� �
� �
� ��
� �
� �
� �	 


M .                     (7) 

This matrix, as well as Jones matrix, describes 
completely anisotropic properties of homogeneous medium 
for a given input and output (scattering) directions and 
wavelength of input radiation. 

Direct solving of the spectral problem in scope of 
Mueller formalism, i.e., finding the conditions on Mueller 
matrix elements for eigenpolarizations to be orthogonal, is 
quite complicated task because of Mueller matrix 
dimension. However, this problem, as it was demonstrated 
in [8], can be solved in scope of the Jones formalism both 
in terms of matrix. Taking into account the fact that Mueller 
M and Jones T matrices for homogeneous medium are 
interconnected by relation 

1( )� �� �M A T T A ,                          (8) 

where �  – conjugation; �  – Kronecker product; and 

1 0 0 1
1 0 0 1
0 1 1 0
0 0i i

� �
� ��� ��
� �
� �

�	 


A , 

all results, which are obtained for the Jones formalism, can 
be translated to the Mueller formalism with 8). Note that 
the main condition for that is the medium under 
consideration does not depolarize input radiation. 

It is important to note that any 2x2 matrix could be 
called "Jones matrix", i.e., arbitrary 2x2 matrix with 
complex elements describes always a physical realizable 
transformation of polarization trough the (1). The same can 
not to be said about any 4x4 matrix with real elements. To 
be named as "Mueller matrix" this matrix has to meet an 
ample of requirements [4]. 
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Due to above conditions the solving of spectral problem 
even for Mueller-Jones matrix (which is determined by (8)) 
case is generally difficult. We can write it in the following form: 

� � � �1 1
1 1 2 2 1 0 0 0 T� �� � � �M S S .            (9) 

Conditions on matrices elements. In [8] was 
established that for orthogonality of eigenpolarizations the 
following relations between amplitudes and phases of 
Jones matrix elements need to be satisfied: 

12 21t t� ,                               (10) 

22 11 12 212 n�� � � � � � � ,                       (11) 

21 12 12 212 n�� � � � � � � ,                       (12) 

� � 12 2121 122 i n�� � � � � � � .                     (13) 

where � �argmn kl mn klt t�� � � , � �( ) arg ( )i mn kl mn kli t t�� � � . 
Using interrelation (8) between Jones and Mueller 

methods, (10)-(12) and description of spectral problem as 
(9) we can also study symmetry of the Mueller matrix for 
medium with orthogonal polarizations. 

In particular, from (8) it follows: 

11 21 12 22
21 2

m m m mt � � �
� , 

11 21 12 22
12 2

m m m mt � � �
� , 

11 21 12 22
11 2

m m m mt � � �
� , 

11 21 12 22
22 2

m m m mt � � �
� ,                 (14) 

13 23
12

11 12

cos( )
2

m m
t t
�

� � ;   14 24
12

11 12

sin( )
2

m m
t t
�

� � ; 

31 32
21

11 21

cos( )
2
m m

t t
�

� � ;   41 42
21

11 21

sin( )
2

m m
t t
�

� � ; 

33 44
22

11 22

cos( )
2

m m
t t
�

� � ;   43 34
22

11 12

sin( )
2

m m
t t
�

� � .     (15) 

Here we assumed that all phases of Jones matrix 
elements (2) are normalized on phase of the first matrix 
element (i.e. 11mn mn� � � �� ). Thus, in this case the phase 

of element 11t  is 11 0� � . 
Condition (4) for orthogonality of eigenpolarizations of 

medium in terms of Jones matrix elements can be 
transformed using (14) into relation: 

11 21 12 22 11 21 12 22m m m m m m m m� � � � � � � , 

or 
12 21m m� .                                 (16) 

Considering (10)–(12) as equivalent 11 22 (21 12)2 2� �� � � �  

(21 12) 12 212 i n�� � � � � � � �  we can write: 

� �
� �

� �
� �

21 12 21 1222 11

22 11 21 12 21 12

Im ( ) ImIm( )
Re( ) Re ( ) Re

i t t t tt t
t t i t t t t

� ��
� �

� � �
,       (17) 

then, invoking (14) and (15) we’ll get: 

13 23 31 32 41 42 14 24

41 42 14 24 13 23 31 32

43 34

11 21 12 22 33 44

m m m m m m m m
m m m m m m m m

m m
m m m m m m

� � � � � �
� �

� � � � � �

�
�

� � � � �

,   (18) 

and 

� � � � � � � �2 2 2 2
13 23 31 32 41 42 14 24m m m m m m m m� � � � � � �  (19) 

After exploiting of relation (8) we tried to expand (9) in 
assumption that polarization degree of eigenpolarizations 
is p=1, i.e. 2 2 2 2

1 2 3 4s s s s� � � . 
From (9) for normalized Stokes vectors we can write: 

� �1 2 3 41 Ts s s�S , � �2 2 3 41 Ts s s� � � �S      (20) 

As the Stokes vectors (20) are eigenvectors of Mueller 
matrix M  it is right that: 

1,(2 )

11 12 2 13 3 14 4

21 22 2 23 3 24 4
1,(2)

31 32 2 33 3 34 4

41 42 2 43 3 44 4

11 12 2 13 3 14 4 1,(2)( )

m m s m s m s
m m s m s m s
m m s m s m s
m m s m s m s
m m s m s m s

�

� � �� �
� �� � �� �� � �� �� � �
� �� �� � �� �

� � � �

M S

S�������������

,   (21) 

From (21) it follows: 

21 22 2 23 3 24 4 2 1

31 32 2 33 3 34 4 3 1

41 42 2 43 3 44 4 4 1

21 22 2 23 3 24 4 2 2

31 32 2 33 3 34 4 3 2

41 42 2 43 3 44 4 4 3

0
0
0
0
0
0

m m s m s m s s
m m s m s m s s
m m s m s m s s
m m s m s m s s
m m s m s m s s
m m s m s m s s

� � � � � � 
! � � � � � �!
! � � � � � �!
" � � � � � �!
! � � � � � �
!

� � � � � �!#

           (22) 

Combining (22) we obtain: 

21 2 12 2 13 3 14 4

31 3 12 2 13 3 14 4

41 4 12 2 13 3 14 4

( ),
( ),
( ).

m s m s m s m s
m s m s m s m s
m s m s m s m s

� � �

� � �

� � �

               (23) 

Multiplying (23) by s2, s3, s4, respectively, and, taking 
into account that for completely polarized light 

� �1/22 2 2
2 3 4 1s s s� � � , we have: 

� � � � � �2 21 12 3 31 13 4 41 14 0s m m s m m s m m� � � � � �       (24) 

� � � � � �21 21 12 31 31 13 41 41 14 0m m m m m m m m m� � � � � � ,   (25) 
2 2 2

12 13 14

12 21 13 31 14 41

1m m m
m m m m m m

� �
�

� �
.                 (26) 

As for homogeneous media it is true that [1,4] 
2 2 2 2 2 2

12 13 14 21 31 41m m m m m m� � � � � .             (27) 

From (26) and (27) we can gat that: 

� � � �2 2 2
12 21 13 31 14 41( ) 0m m m m m m� � � � � � .       (28) 

From (28) it results that: 

12 21 13 31 14 41, , .m m m m m m� � �                (29) 

From (30) it follows that for complete description of 
anisotropy of medium with orthogonal eigenpolarizations 
the knowledge of second, third and fourth columns(rows) 
of Mueller matrix is sufficient. This result can be used 
during optimization of polarimeter for studying of given 
polarization class of media. 

Conditions on anisotropy. To derive orthogonality 
condition in terms of anisotropy parameters we use the 
matrix model of arbitrary homogeneous anisotropy that has 
recently been presented in [6] and combines both 
mathematical generality and physical interpretability: 

( , , , , , ) ( ) ( , ) ( ) ( , )CP LP CA LAR P R P� $ % & � � $ % &T T T T T ,     (30) 
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where: value of linear dichroism is in the range ' (0;1P )  
and the azimuth of maximum transition is in the range 

;
2 2
� �� �& ) �� �	 


; value of circular dichroism ' (1;1R ) � ; value of 

linear birefringence ' (0;2$) �  with it’s fast axis orientation 

;
2 2
� �� �%) �� �	 


; value of optical activity is ' (;�) �� � . 

Let write next useful relations: 

� �22 11 1 1 exp
2

t t a ib i $� �� � � �� �
� �

,                   (31) 

� �21 12 2 2 exp
2

t t a ib i $� �� � � �� �
� �

,                  (32) 

� �21 12 3 3 exp
2

t t a ib i $� �� � � �� �
� �

.                  (33) 

In compliance with (31) parameters ia  and ib  have the 
following form: 

� � � � � � � �1 1 sin sin 2 1 cos cos 2
2 2

a P R P$ $
� � % � � � � & � � , 

� � � � � � � �1 1 cos sin 2 1 sin cos 2
2 2

b P R P$ $
� � & � � � � % � � , 

� � � � � � � �2 1 sin cos 2 2 1 cos sin
2 2

a P R P$ $
� � % � & � � � � � , 

� � � � � � � �2 1 cos cos 1 sin sin 2 - 2 -
2 2

b P R P$ $
� � � � � % & � , 

� � � � � � � �3 1 sin cos 2 1 cos sin 2 -
2 2

a P R P$ $
� � % � � � � & � , 

� � � � � � � �3 1 cos cos 2 - 1 sin sin 2 -
2 2

b P R P$ $
� � & � � � % � ,(34) 

From (34) and (10) can be written: 

2 3 2 3 0a a b b� � ;                           (35) 
(11)–(13) are transformed to: 

1 3 3 1 0a b a b� � ,                           (36) 

1 2 2 1 0a b a b� � .                           (37) 
(35)–(37) can be used for determination of anisotropy 

parameters. In particular we had got that for media have 
orthogonal eigenpolarizations its dichroism can be arbitrary 
but birefringence need to satisfy: 

2 21 1tg A A 4
2 2 1

P R
R P

$ � � �� � � �� �	 
�
, 

2

2

1 1arccos cos2( )
2 1 2

R
R

� �� �
� � % � & � % � & �� ��	 


,   (38) 

where � �2A (1 )sin2R� � % � & . 
It turns convenient to determine the parameters $  and 

� , while other four parameters are fixed in a range of 
definition. For example: 

o o o o(9.4 ,51.8 ,84 ,0.7,0.2,25 )
0.803+0.61 0.457+0.098

0.188+0.428 0.261+0.168
i i
i i

�

� �
� � �
	 


T
              (39) 

It is easy to see that eigenpolarizations 1,2  of the 
Jones matrix (39) are orthogonal 

1 2

1 2

0.446+0.228 ; 1.777-0.908 ;

1.

i i
�

 �  � �

  � �
          (40) 

Taking to account (8) and (30), in terms of Mueller 
matrix we can obtain: 

1.000 0.593 0.707 0.361
0.593 0.436 0.394 0.155

( , , , , , )
0.707 0.356 0.568 0.260
0.361 0.229 0.197 0.238

R P

� �
� �
� �� $ % & �
� �
� �
	 


M     (41) 

Eigenpolarizations of the Mueller matrix M : 

� �1 1 0.599 0.713 0.365 T
�S ; 

� �2 1 0.599 0.713 0.365 T
� � � �S ; 

� �1 2 1 0 0 0 .T
� �S S                     (42) 

Summary. Summarizing obtained results we can 
formulate next conclusions. Anisotropy of homogeneous 
media with orthogonal eigenpolarizations has limitations. In 
particular when we use for modeling such media an 
equivalence theorem in form (30) eigenpolarizations will be 
orthogonal always if linear $ and circular birefringence � 
will have values as (38), whereas other four anisotropy 
parameters (R, P,&,%) can take an arbitrary values. In other 
words a media with orthogonal eigenpolarizations can 
demonstrate all six possible anisotropy behaviors as 
separately as simultaneously. One exclusion need to be 
taking into account: when the medium has simultaneously 
only two dichroismes (circular and linear) it can’t have 
orthogonal eigenpolarizations under no conditions. 

Limited anisotropy of media with orthogonal 
eigenpolarizations leads to symmetry in Mueller matrix (see 
(29)) and to other more difficult relations between elements 
on those matrices. These relations can be useful for simplify 
an analysis of properties of objects and utilized for 
optimization of measurement procedure. In last context we 
have used an equality of first column and row of Mueller 
matrix of studied objects to reduction measurement time 
with saving accuracy on polarimeter with four  
LC-transducers [5]. If we could to remove limitation on shift 
of LC transducers than measurement error limit could be 
reduced to m* 13 =1.9%, in comparison 6m* 1 =2.1%. 
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DIGITAL PROCESSING OF MEDICAL IMAGE WITH MAPLE 

 
Typical medical images are most often in gray scale and their matrices of pixel intensities are convenient for digital processing. Recent 

versions of popular computer mathematics system Maple have special program packages for this aim. We are going to illustrate the 
possibilities of these packages by example of usual medical image. Our case study presents the discrete dyadic wavelet analysis (DWT), 
block thresholding of detail coefficients and evaluations of quality for reconstructed image. We investigated in addition the dependences of 
quality parameters on the digital filters used within DWT procedure. 

Keywords: medical image, discrete wavelet analysis, dyadic decomposition, block thresholding, factors of image quality, image 
compression 
 

Introduction. Digital processing is important for many 
applications that involve huge data storage, transmission 
and retrieval such as for multimedia, documents, 
videoconferencing, and medical imaging. Uncompressed 
images require considerable storage capacity. The 
objective of image compression technique is to reduce 
redundancy of the image data in order to be able to store 
or transmit data in an efficient form. This results in the 
reduction of file size and allows more images to be stored 
in a given amount of disk or memory space [1]. 

Medical image compression may be based on wavelet 
decomposition. It can produce notably better medical 
image results compared to the compression results that are 
generated by Fourier transform based methods such as the 
discrete cosine transform (DCT) used by JPEG [6]. 

The aim of this paper is to illustrate how discrete dyadic 
wavelet analysis (DWT) and block thresholding may be 
applied in medical image compression to reduce the 
volume of data. 

Experimental. If we consider the quadratic image with 
sizes mN N 2+ � , we can get at least 2m 2log N�  
consecutive Wavelet-Transformations (so called the scale 
levels). In practice, usually from two to six scale levels are 
enough for useful analysis [3]. We were starting with image 
size N 224�  and m 2� (see Fig. 1). 

a                                                    b 
 

 
Fig. 1. A medical image before (A) and  

after processing (B) 
 

Two-dimensional wavelet transform can be represented 
as a composition of one-dimensional wavelet 
decompositions in rows and columns of the matrix image. 

Image after single-level wavelets transformation in rows 
and columns is divided into four frequency blocks with 
different interpretation (Fig. 2) [5]: 

1. LL-blok is top left block of approximation coefficients, 
which were filtered out in the analysis (decomposition) with 
two low-pass filters. The block contains a copy of the 
primary image with half resolution. 
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