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CTPYKTYPA MATPULI MIOJIJIEPA CEPEAOBMLL
3 OPTOrOHAJIbHUMU NONIAPU3ALIISIMU BJIACHUX XBWUJ1b

B pobomi docridxeHo 38’30k Mix enemeHmamu mampuuyi Mronnepa 0OHOPIOHUX aHI30MPOIHUX cepedosuly 3 OPMO20HaIbHUMU MOISPU3AUISIMU 81aCHUX X8UJb.
OmpumaHi criegiOHOWEHHSI repesipeHo Onsi sunadky cepedosuwy 3 NPOCMUMU ma 3MiWaHuMu murnamu aHisomporii. BcmaHoeneHo, wo opmoeoHarbHiCmb
ronsipu3auyiti ernacHux Xxeurnb 3MEHWYE KiflbKicmb He3anexHux enemeHmie Mmampuui Mionnepa 0o 12. [ocnioxeHo 38’930K MiX napamempamu aHizomporii makoao
murly cepedosuw ma 6CMaHoe/IeHo, WO IX aHi3omporisi MOXe ymeoplosamuch MOEOHAHHAIM 6CiX YOMUPLOX e/leMeHMapHuUX murlig OuxpoisMy ma
380rMPOMeHe3anIoMIIEHHs], pome, 3 0OMEXeHUM Crieg8iOHOWEHHSIM. 30KpeMa, rokasaHo, wo 3a O08iNbHUX 3Ha4YeHb OUXPOI3MY, Mipu MiHIHO20 ma YUPKYISpHO20
380rMPOMEeHe3anIoMIeHH MOXYmb NpuliMamu MifbKu KOHKpemHi 3HadyeHHsi. 3 oensidy Ha ecmaHoerieHy cumempito mampuyi Mionnepa, eumiprogaHHsi minbKu
HEeobXIOHOI Kiflbkocmi i enemeHmie 00380115IE CKOpoOMUMU Yac 8uMiprosaHHs 36epieuuu abo nidsuLu8LULU MOYHICMb.

Knro4voei cnoea: Mampuusi Mioninepa, opmo2oHarbHicmb griacHux nosspusayit, napamempu aHi3omportii.

O6epemok E., kaHAa. dpus.-maT. Hayk,
kadp. KBaHTOBOIN paanoduU3nku, pakynbTeT paamodUsnKm, INEKTPOHNKN U KOMMNbLIOTEPHbLIX CUCTEM,
KneBckuin HauMoHanbHbIW YyHUBepcuTeT MeHn Tapaca LLleBYeHko

CTPYKTYPA MATPULbI MIOJIJIEPA CPE[
C OPTOIOHAJ1IbHbIMU NOJIAPU3ALLUAMU COBCTBEHHbIX BOJTH

B pabome uccrnedosaHa ces3b Mex0y anemeHmamu mampuub! Mronnepa 0OHOPOOHbIX aHU30MPOITHbIX CPEO C OPMO2OHa TbHBIMU MOMSPU3aUUSIMU COBCMBEHHbIX
80s1H. [TonyyeHHble COOMHOWeEHUsI MposepeHbl Orisi criyyasi cped C NPOCMbIMU U CMeWaHHbIMU muramu aHU30mpornuy. YCmaHoBeHo, Ymo opmo20oHanbHOCMb
nonsipusayull cob6ecmeeHHbIX B0ITH YMEHbWaem 4YUc/o He3asucUMbIX 3anemeHmos Mmampuubi Mronnepa do 12. UccnedosaHa cessb Mexdy napamempamu
aHU30mMpONuUU Mako2o0 muna cped U yCmaHOB/IEHO, YIMO UX aHU30MpPOnuUsi MoXem 06pa308bi8ambCsl COYEMaHUEeM 8CeX YembIpex r1eMeHMapHbIX muros ouxpousma
u dsynyJerpenomreHusi, 0OHaKo, C 0epaHUYEHHbIM COOMHOWeHUeM. B yacmHocmu, nokasaHo, Ymo rpu npou3eosIbHbIX 3HAYEHUsIX OUXPOU3Ma, 3HaYeHUsl TUHEUHO20
U UUPKYNSpHO20 O8YyrTyqenperioMieHusi Mo2ym puHUMame MOMbKO KOHKPEMHbIe 3Ha4YeHus. Ydumblieasi yCmaHOBMEeHHYr cuMmmemputo Mampuubi Mronnepa,
U3MepeHUSs1 MoIbKo HEO6X0OUMO20 KOJIUYECmea ee 31IeMeHMO8 10380151eM COKpamumb 8peMsi U3MepeHUl, COXpaHU8 Unu roebicug MOYHOCMb.

Knrovesble cnosa: Mampuya Mronnepa, opmozoHaribHoCMb CO6CMBeHHbIX Mosspu3ayul, napamempb! aHU30mponuu.
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DIGITAL PROCESSING OF MEDICAL IMAGE WITH MAPLE

Typical medical images are most often in gray scale and their matrices of pixel intensities are convenient for digital processing. Recent
versions of popular computer mathematics system Maple have special program packages for this aim. We are going to illustrate the
possibilities of these packages by example of usual medical image. Our case study presents the discrete dyadic wavelet analysis (DWT),
block thresholding of detail coefficients and evaluations of quality for reconstructed image. We investigated in addition the dependences of
quality parameters on the digital filters used within DWT procedure.

Keywords: medical image, discrete wavelet analysis, dyadic decomposition, block thresholding, factors of image quality, image
compression

Introduction. Digital processing is important for many
applications that involve huge data storage, transmission
and retrieval such as for multimedia, documents,
videoconferencing, and medical imaging. Uncompressed
images require considerable storage capacity. The
objective of image compression technique is to reduce
redundancy of the image data in order to be able to store
or transmit data in an efficient form. This results in the
reduction of file size and allows more images to be stored
in a given amount of disk or memory space [1].

Medical image compression may be based on wavelet
decomposition. It can produce notably better medical
image results compared to the compression results that are
generated by Fourier transform based methods such as the

Fig. 1. A medical image before (A) and

discrete cosine transform (DCT) used by JPEG [6].

The aim of this paper is to illustrate how discrete dyadic
wavelet analysis (DWT) and block thresholding may be
applied in medical image compression to reduce the
volume of data.

Experimental. If we consider the quadratic image with

sizes NxN=2", we can get at least m=2log,N
consecutive Wavelet-Transformations (so called the scale
levels). In practice, usually from two to six scale levels are
enough for useful analysis [3]. We were starting with image
size N=224 and m =2 (see Fig. 1).

after processing (B)

Two-dimensional wavelet transform can be represented
as a composition of one-dimensional wavelet
decompositions in rows and columns of the matrix image.

Image after single-level wavelets transformation in rows
and columns is divided into four frequency blocks with
different interpretation (Fig. 2) [5]:

1. LL-blok is top left block of approximation coefficients,
which were filtered out in the analysis (decomposition) with
two low-pass filters. The block contains a copy of the
primary image with half resolution.
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2. HL/LH blocks, bottom left and top right blocks,
contain the detail coefficients, which were filtered by a low
pass filter and a high pass filter. Block LH contains vertical
edges, while the block HL — horizontal edges of the image.

3. HH-block, lower left. It contains detail coefficients
twice filtered by high pass filters. We can interpret this
block as an area which contains the edges of the original
image in the diagonal direction.

A large number of wavelet detail coefficients will be
small in absolute value (module) after decomposition since
the neighboring pixels of images have mostly similar
intensity values. As a result, the only part of the wavelet
coefficients, especially those that are located in the so-
called block LL of upper scale, chiefly represents the
energy of image.

LL® | HL®
LL HL HL
LH(Z) HH(Z)
LH HH LH HH
a b

Fig. 2. Frequency blocks of wavelet coefficients
for different numbers of levels of decomposition:
A - single-level wavelet decomposition of the image;
B — two-level (dyadic) wavelet decomposition

The following expression determines the image energy
N-1N-1 2
E=X X (%) (1)
r=0c=0
here 0 < x <1 isintensity of a pixel.

The usefulness of the DWT is the large number of zero
(or close to zero) wavelet coefficients in the matrix of
decomposition. Most of small wavelet-coefficients may be
neglected by shrinking (replaced by zeros). Such a
procedure is known as thresholding [3]. This last may deal
either with every wavelet coefficient or with blocks of them.
We used here the second kind of this procedure. If we are
going to neglect all wavelet coefficients of so-called LH, HL
and HH sub-matrices of decomposition matrix then the
percent of these increases with the scale levels as [7]:

N(m)=100~(1—2%) @)

The percentage of negligible coefficients increases with
the number of scale levels as it is evident from Figure 2.

Table 1 shows that for dyadic decomposition (m=2) it
gives 93.75 % of zeros in decomposition matrix.

Table 1
Maximum percentage of zeros for thresholding
of the matrix of wavelet coefficients depending
on the number of the scale levels

the number of the

scale levels (m) 1 2 3 4 5

percentage of zeros

or throsholding () | 75 | 9375 | 98.44 | 99.61 | 99.90

Thus, only few percent of wavelet coefficients were in
use for reconstruction of image (see Fig. 1B).

Figure 3 shows the intensity distribution of pixels on
frequency blocks of wavelet coefficients for the two-level
decomposition.

Fig. 3. Two-level refined from 93%
of small detail coefficients image

Thus, there are only less then 7 % of non-zero wavelet
coefficients, so the restored image will be significantly
compressed. Such a radical reduction of information can
be very useful in many cases, under condition that it is not
accompanied by significant losses in image quality.

The evaluation of reconstructed image quality is
possible with well-known factors: root of mean square error
(rmse), peak signal to noise ratio (PSNR), entropy,
coefficients of correlation between original and
reconstructed images [2].

The root mean square error (rmse) measures the
amount of change per pixel due to the processing. The
rmse between a reference image and the compressed
image is given by

rmse = J/mse (3)
Where mse is the mean square error
2
Z(ru _Si,j

wh

mse =

(4)

Here r,s are the reconstructed and source images, i, ]
range over all pixels, and w,h are the width and height [2, 8].

PSNR is most commonly used to measure the quality
of reconstruction of compressed image. PSNR is usually
expressed in terms of the logarithmic decibel scale.

2
PSNR = 10log,, (peak] (5)
mse

Where mse is the mean square error and peak is the
maximal intensity of a pixel in the image [2, 8]. For our
evaluations peak =1.

Entropy H is a scalar value representing the entropy of
grayscale image. Entropy is a statistical measure of
randomness that can be used to characterize the texture of
the input image.

The entropy of image is equal to

M
H = Zpi log, p; (6)
i=1

Here M is number of equal intervals between boundary
intensities 0 and 1 (normally M = 256 ).

Coefficients of correlation characterize correlation of
pixels of original and reconstructed images [2].
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The Table 2 presents these factors and their
dependences on the length of digital filters of Symlet
wavelet family. The Symlet wavelet family is one of the set
of orthogonal wavelets offered by Maple. Symlets are also
known as the Daubechies least asymmetric wavelets. Their
construction is very similar to the Daubechies wavelets.
The Symlet wavelet of size 2n has n vanishing moments.

Table 2
Factors of image quality vs. length of digital filters
Filter
length 2 4 6 8 10 12

rmse 0.060 | 0.050 | 0.046 | 0.045 | 0.045 | 0.044
PSNR (dB) | 24.45 | 26.07 | 26.66 | 26.90 | 26.91 | 27.05
Entropy (bit)| 5.921 | 6.218 | 6.288 | 6.256 | 6.290 | 6.276
Correlation | 0.981 | 0.987 | 0.989 | 0.989 | 0.989 | 0.990

Note: Entropy of original image is equal to 6.425877

Digital filters, more correctly the bank of digital filters
(low-pass and high-pass), are main thing as for real DWT of
image. You can know nothing about graphics of wavelet or
its properties but you are able to make a DWT if you have a
digital filter bank [7]. One can see that quality factors shown
in Tabl. 2 are better for lengthier digital filters, nonetheless
this gain is quite moderate. There should be found a
compromise between the quality factors (longer filters) and
the duration of computing (shorter filters).

One more problem is the optimal choice of wavelet
family for decomposition. The Tabl.3 presents the
collection of quality factors for different orthogonal wavelets
with equal lengths (n =12) of digital filters.

Table 3
Factors of image quality for different orthogonal wavelets
‘f"a’ﬁ:’lﬁg Daubechies, 12 | Coiflet, 12 | Symlet, 12
rmse 0.045274 0.044845 0.044407
PSNR (dB) 26.882917 26.965637 27.05098
Entropy (bit) 6.334132 6.256444 6.276446
Correlation 0.989195 0.989403 0.989611

Now the reader can independently estimate the results
of the switch from one family of orthogonal wavelets to
another. This effect does not look extremely strong, from
our point of view.

For processing images besides orthogonal wavelets
are also widely used biorthogonal wavelets. The
biorthogonal wavelets introduced by Cohen, Daubechies,
and Feauveau contain in particular compactly supported
biorthogonal spline wavelets with compactly supported
duals. In biorthogonal wavelets, separate decomposition
and reconstruction filters are defined and hence the
responsibilities of analysis and synthesis are assigned to
two different functions (in the biorthogonal case) as
opposed to a single function in the orthonormal case [4].

The bank of wavelets of computer mathematics system
Maple has the only biorthogonal wavelet Cohen-
Daubechies-Feauveau (CDF) (9, 7) [8]. However, digital
filters can be obtained by the algorithm outlined in the [7].
For processing we have chosen particularly biorthogonal
spline (2, 2). Fig. 4, 5 shows the low-pass and the high-pass
filters of biorthogonal spline (2, 2) for analysis and synthesis.

Table 4 displays evaluations of reconstructed image
quality processed by orthogonal and biorthogonal wavelets
with different number of digital filters.

As you see, biorthogonal wavelets have not advantages
over orthogonal wavelets in this case.

0,7

0,2 0,6
0 0,5
-0,2 1 23 4 0,4
-0,4{ 0,3
-0,6. 0,2
08 0,1
-1 0

1 2 3 4 5

Fig. 4. Digital low-pass and high-pass filters
of biorthogonal spline (2, 2) used for analysis
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Fig. 5. Digital low-pass and high-pass filters
of biorthogonal spline (2, 2) used for synthesis

Table 4

Comparison of factors of image quality
for orthogonal and biorthogonal wavelets

Orthogonal wavelets |Biorthogonal wavelets

Wavelet

families |Coiflet|Daubechies|Symiet| CDF (P79 cDF
12 12 12 | 53 | P 917
513
vanishing | ¢ 6 6 [22]| 22 |44
moments

rmse | 0,045 0,045 0,044 10,052 0,066 |0,054

PSNR (dB)| 26,97 26,88 27,05 [25,71| 23,65 |2534

Entropy
(bit)
Correlation| 0,989 0,989 0,990 [0,986| 0,977 |0,985

6,256 6,334 6,276 |5,955| 6,194 |5,853

Conclusions. Image compression and its clearing by
method discrete wavelet transform can significantly reduce
the size of a 2-D image (up to 6 times). Such a radical
reduction of information can be very useful in many cases,
under condition that it is not accompanied by significant
losses in image quality.

Many scientists working in this field, are trying to find
the optimal wavelet for image processing. However, the
analysis showed that the reconstructed image quality
parameters for different families of wavelets are almost
indistinguishable. Besides, comparison of factors of image
quality for orthogonal and biorthogonal wavelets shows,
that biorthogonal wavelets have not advantages over
orthogonal wavelets in our case study.

Research has shown that with increasing length of the
digital filters factors of image quality are better. However, a
compromise between quality factors (longer filters) and the
computing duration (shorter filters) needs to be found.
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LWwusH L., acn., Yynko I'., A-p ¢is.-maT. Hayk,
MaBneHko A., maricTpaHT, kKad. MeAMYHMX NpUnaaiB i cucteM, hpakynbTeT €KONOro-MeaAUuYHUX HaykK
YopHoMopchKui aepkaBHUA yHiBepcuTeT imeHi NMeTtpa Morunu

LiIN®POBA OBPOBKA MEANYHUX 30BPAXKEHb 3ACOBAMM CKM MAPLE

Binbwicmb MeduyHuXx 306paxeHb 3a3suydall npedcmasrieHi 8 cipux sidmiHkax, a ix Mampuui iHmeHcusHocmel rnikcerig 3py4Hi Ons yugpoeoi 06pobku. OcmaHHi
sepcii ronynsipHoi cucmemu  Komrn'tomepHoi Mamemamuku Maple maromb  crieuianbHi  npoespamHi nakemu Onsi supiwieHHs1 makux 3adady. B Oarili po6omi
rpointocmposaHi MOXIUBOCMI UuX rakemie Ha npuknadi muroso2o MeduyHo20 306paxeHHs. [na uugposoi 06pobKku 306paxeHHs euKopucmosysanucsi 3acobu
AuckpemHo20 eeligriem-repemeopeHHs, rMpoyedypu mpewondiHey (mak 38aHO20 "KOpPCmKo20 nopoay”) ma rnposodunacs ouiHka sIKocmi 8iOHOBTIEHO20 300PaxKeHHsI.
Kpim moezo e pobomi nposedeHuli aHani3 3anexHocmi napamempie sikocmi 306paxeHHs1 8i0 yugposux hirbmpis, sukopucmogysaHux y npouedypi OUCKPemHo2o
8eligriem-repemeopeHHsi.

Knro4oei cnoea: meduyre 300paxeHHs1, duckpemHe gelisriem-nepemeopeHHsi, 080pisHese po3skiadaHHs, mpewosnodiHe, napamempu OUiHKU SIKOCMI 300paxeHHs.

LWusaH W., acn., Yywko I'., o-p cdu3s.-mat. Hayk,
MaBneHko A., maricTpaHT, kad. MeAULIMHCKMUX NPUGOPOB U cucTeM, haKynbTeT IKONOro-MeAULIMHCKUX HayK,
YepHOMOpCKUiA rocyaapcTBeHHbIN yHUBepcuteT umenu Metpa Morunbi

LMOPOBASl OBPABOTKA MEAULIMHCKNX NU30B5PAXXKEHUA METOAAMU CKM MAPLE

BornblwuHecmeo MeduyuHCKUX u30bpaxeHull 0bbI4HO rMpedcmasrieHbl 8 CEPbIX OMMEHKax, a Ux Mampuubl UHMeHcusHocmed rukcesnel y0obHb! Ons yugpoeol
obpabomku. lMocredHue sepcuu romynspHol cucmembl KOMIblomepHoU Mamemamuku Maple umerom crieyuarnbHble poepaMMHbIe rakems! Ons peleHuUst makux
3aday. B daHHoU pabome npounmocmpuposaHsbl 03MOXHOCMU 3MUX 1akemoe Ha rpumMepe murogo2o MeOUUUHCKO20 u3obpaxeHus. [ns obpabomku usobpaxeHul
ucrionb3osanuck cpedcmea OUCKPEemHoeo eelieriem-rpeobpasosaHusi, npouedypbl mpewonduHea (mak Ha3bleaeMoz0 "KecmKoeo ropoea”) u rposodunack oueHka
Kayecmea 80CCMaHOB/IeHHO20 U306paxeHus. Kpome moeso, & pabome nposedeH aHanu3 3asUCUMOCMU fapaMempos Kadecmea U300paxeHusi om Uugposbix
cbunbmpos, ucrornb3yembix & npouedype OUCKPEeMHO20 8eligriem-peobpasosaHus.

Knrouesble crnioea: mMeduyuHckoe usobpaxeHue, AuckpemHoe eelisnem-npeobpa3osaHue, 08yXyposHEEOe pa3rioxeHue, mpewornduHe, napamempbl OUEeHKU
Kayecmea Uu306paxeHus.
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METAL MICRO-DETECTORS FOR IMAGING
AND BEAM PROFILE MONITORING IN RADIATION THERAPY

Metal micro-detector (MMD) has been developed at Kiev Institute for Nuclear Research (KINR). Physics and techniques of this detector
applied for monitoring and imaging of charged particles beams are presented. To provide the precise beam profile monitoring a 128-
channel X-Y MMD was produced. Test studies with this detector were performed for 20 MeV electrons (Cancer Center "Innovacia”) and
high energy hadrons (protons, "2C-ions and "°0-ions, Heidelberg lon-Beam Therapy Center). Results of these studies are discussed in this

work. The results of our studies suggest the possibility of MMD application in clinical practice.
Key words: metal micro-detectors, beam profile monitoring, online dose monitoring, mini-beam radiation therapy.

Introduction. The main goal of radiotherapy is to deposit
a high dose of ionizing radiation in a tumor while keeping the
absorbed dose in the surrounding healthy tissue at a tolerant
level [1]. The monitoring of the beam position and absorbed
dose are essential. Current developments in radiation
therapy require non-destructive beam profile monitoring in
real time, as beam diagnostics provides information on the
status of the beam, monitoring of critical parameters and
alarming in case of emergency. For low intensity beams a
proper approach could be realized by using silicon micro-
strip detectors. However, radiation hardness aspect makes
this approach rather limited.

A Metal Foil Detector (MFD) technology developed at
Kiev Institute for Nuclear Research makes possible the
production of radiation hard monitoring devices that are
able to take a challenge and fulfill the needs of modern
radiotherapy.

The general physics and registration principles of the
MFD are discussed in details elsewhere [2]. Charged
particles (or photons) hitting the metal sensor-foil initiate
Secondary Electron Emission at 10-50 nm surface layers.
The charge generated in a sensor is measured by a
sensitive Charge Integrator.

MFD technology was successfully explored for the
design and production of a novel thin metal micro-strip
beam profile monitors of charge particles and synchrotron
radiation beams. Through an innovative plasma-chemistry
etching process, thin (about 1 ym) metal micro-strips are
aligned, without any other materials in the working area.
The main advantages of MMD are: low thickness of
detecting material; good position resolution (up to few pm);
low operating voltage (~ 20 V); high radiation tolerance (at
gigarads level). MMD were tested at the Minibeam
Radiation Therapy (MBRT) setup (Bio-Medical Beamline
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