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1 Introduction.

Generalisations of geodesic curves of a different
aspect are known. In particular, A. Fialkow consi-
ders geodesics circles in Riemannian space ([1]).
T. Otsuki, Y. Tashiro have introduced concept a
holomorphically planar curve in Kählerian space
([2]). P. K. Rashevsky considers flattening curves
of a arbitrary order in affine connected spaces, usi-
ng concept of a flattening ([3]).

On the basis of these curves of generalisati-
on of geodesic maps have been defined: conci-
rcular transformations K. Yano ([4]), holomorphi-
cally projective maps Y. Tashiro ([5]), p-geodesic
maps S. G. Leiko ([6], [7]).

Their infinitesimal analogues were consi-
dered in works: for concircular transformati-
ons Riemannian spaces (S. Ishihara [8]), for
holomorphic projective transformations Kählerian
spaces (S. Tachibana, S. Ishihara [9]). P-geodesic
infinitesimal transformations are defined S. G. Lei-
ko in work [10].

Lifts of infinitesimal transformations were
studied K. Yano and S. Ishihara ([11], [12]). By
them it is established, that the complete lift XC

of the geodesic infinitesimal transformation X is
infinitesimal geodesic transformation to a tangent
bundle if and only if X is affine infinitesimal

transformation. S. G. Leiko studied lifts of infi-
nitesimal transformations from the point of view
of the theory р-geodesic (flattening) maps. He has
established, that for a tangent bundle of the first
order, vertical lift XV of the geodesic infinitesimal
transformation X is canonical 2-geodesic infini-
tesimal transformation, and the complete lift XC

is not canonical 2-geodesic infinitesimal ([10]). The
case of a tangent bundle of the second order also
is considered S. G. Leiko in work [10]. Lifts of infi-
nitesimal concircular transformation in a tangent
bundle of the first order were studied S. G. Leiko
([13]). The case of a tangent bundle of the second
order is considered in work [14].

The given work is devoted study of flattening
properties of lifts analytical НР-transformations of
Kählerian spaces.

2 Elements of the theory of flattening
maps.

We will consider in affine connected space (M,∇)
curve C admiting parametre t; ξ - a field of tangent
vectors along a curve C . The vector q-th curvature
ξq is defined by a rule ξq = ∇tξq−1, ξ0 = ξ.

Definition 2.1. ([10], [13]). Arbitrarily we take a
point p ∈ C on a curve C . If at a point p vectors ξ,
ξ1, . . . , ξm−1 are linearly independent, and vectors
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ξ, ξ1, . . . , ξm−1, ξm are linearly dependent, say,
that the curve C at a point p has a flattening m-th
order; the number m is called the order of flatteni-
ng of point p the curve C .

Considering properties of an external product,
a condition

ξ ∧ ξ1 ∧ ... ∧ ξm−1 ∧ ξm = 0, (1)
ξ ∧ ξ1 ∧ ... ∧ ξm−1 6= 0, (2)

are necessary and sufficient that the curve C have
at a point p a flattening m-th order.

Definition 2.2. ([10], [13]). The curve C in affine
connected space (M,∇) is called m-geodesic if in
each point it has m-th order.

That the curve C is m-geodesic necessary and
sufficient that along it conditions (1) and (2) are
satisfied.

On the other hand, if a curve C - m-geodesic
along it holds equality

ξm = a0ξ + a1ξ1 + ... + am−1ξm−1, (3)

where a0, a1, . . . , am−1 - some functions are defi-
ned along a curve C .

Definition 2.3. ([10], [13]). The parametre t on m-
geodesic curve C is called ι-canonical (16 ι 6 m),
if am−ι = 0 along a curve C .

The parametre t on m-geodesic curve C is
called ι1, ι2, . . . , ιk - canonical (m > ι1 > ι2 >
. . .> ιk > 1) if it is simultaneously ι1-canonical,
ι2-canonical, . . . , ιk-canonical.

1, 2...,m-canonical the parametre t m-
geodesic curve C is called as absolutely canonical.

From properties of an external product
follows, that a necessary and sufficient conditi-
on of ι-canonical (resp. ι1, ι2, . . . , ιk-canonical,
absolute canonical) parametre t m-geodesic curve

C is the equality ξ ∧ ξ1 ∧ ...∧
_
ξ m−ι ∧... ∧ ξm =

0, ξ∧...∧
_
ξ m−ι1 ∧...∧

_
ξ m−ιk

∧...∧ξm = 0, ξm = 0,
which holds along a curve C . Where the note
_
η shows, that η are not present a factor in an
external product. We see that from this a conditi-
on of follows the condition (1).

Definition 2.4. ([10], [13]). Mapping f : M → M̄
is affine connected spaces (M,∇) and

(
M̄, ∇̄)

is
called r-geodesic if this mapping translates all
geodesic curves of the first space in curves of the
second space at which points the greatest order of
a flattening is equal r.

The number r is called as order of a flattening
of mapping f .

r-geodesic diffeomorphism ρ : M → M it is
affine connected space (M,∇) on itself is called
r-geodesic transformation affine connected space
(M,∇).

Geometrically r-geodesic mappings are
characterised by that they geodesic curves
translate in curves which on separate arcs are
m-geodesic curves, and m 6 r, and r greatest of
all numbers m.

S. G. Leiko the differential equations descri-
bing r-geodetic mappings are found. Let ūh =
ūh

(
u1, u2..., un

)
- representation of mapping

f : M → M̄ . Mapping f is r-geodesic necessary
and sufficient that in general on a diffeomorphism
local system coordinate are satisfied conditions

δ
[h
(i Hh1

i1i2
...Hhr−1

j1...jr
Hhr]

j1...jrjr+1)
= 0,

δ
[h
(i Hh1

i1i2
...Hhr−1]

j1...jr) 6= 0,
(4)

where Hh
ij = ∇̆iδ

h
j = Γ̄h

ij − Γh
ij - tensor of an

affine deformation of mapping f , Hh
j1...jmjm+1

=
∇̆(jm+1

Hh
j1...jm), ∇̆ – the mixed covariant derivati-

ve in sense of the van der Waerden – Bortolotti
concerning connections∇ and ∇̄. Relations (4) are
called as the basic equations r-geodesic mapping.

Let µ : M → M̄ a diffeomorphism affine
connected spaces (M,∇) and

(
M̄, ∇̄)

.

In case of diffeomorphisms, investigation of
orders of a flattening of points of a curve-image
C̄ = µ (C ) in manifold M̄ with affine connection
∇̄ can be reduced to study of orders of a flatteni-
ng of corresponding points of a geodesic curve C
in manifold M with respect to special connection
on manifold M - a pre-image of affine connection
∇̄ concerning a diffeomorphism µ. It allows us not
to use a means of the mixed tensors and the mi-
xed covariant derivative of the van der Waerden -
Bortolotti (see [14], [15], [17]).

Definition 2.5. ([16]). Affine connection ∇̃ on
manifold M , defined by equality ∇̃XY =(
µ−1

)
∗
(∇̄µ∗Xµ∗Y

)
, for arbitrary smooth fields

of vectors X and Y from X (M), is called as a
pre-image of affine connection ∇̄ with respect to
(under) a diffeomorphism µ.
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Let µ : M → M̄ a diffeomorphism affine
connected spaces (M,∇) and

(
M̄, ∇̄)

, ∇̃ - a pre-
image of affine connection ∇̄ with respect to a di-
ffeomorphism µ.

Tensor P (X, Y ) = ∇̃XY −∇XY we will call a
tensor of an affine deformation of a diffeomorphi-
sm µ.

3 Flattening infinitesimal transformati-
ons.

Let X infinitesimal transformation, that is X ∈
X (M) a field of vectors and τε : ūh = uh + ε ·Xh,
h = 1, n, is infinitesimal the point-transformation
is defined a field of vectors X, ε - infinitesimal
parametre.

Infinitesimal transformation τε translates a
geodesic curve C ⊂ U in a curve C̄ε. We now
consider a field of tangent vectors ξ̄(ε) and fields of
vectors of curvature ξ̄

(ε)
m , m = 1, 2... along a curve

C̄ε.

Definition 3.1. ([10], [13]). We say, that infinitesi-
mal transformation X adds a geodesic curve C a
flattening r-th order in a point p ∈ C , if

lim
ε→0

1
εr

ξ̄
(ε)
τε(p) ∧ ξ̄

(ε)
1 τε(p) ∧ ... ∧ ξ̄(ε)

r τε(p) = 0,

and number r least of the possible.

We take a pre-image ∇̃(ε) affine connection ∇
concerning infinitesimal a point-transformation τε.
We build a field of tangent vectors ξ and fields
of vectors of curvature ξ̃

(ε)
m , m = 1, 2... along a

geodesic curve C with respect to connection ∇̃(ε).
Definition 3.1 is equivalent to the following of

Definition 3.2. It is said that infinitesimal
transformation X adds a geodesic curve C a
flattening r-th order at a point p ∈ C , if lim

ε→0

1
εr ξp∧

ξ̃
(ε)
1 p ∧ ... ∧ ξ̃

(ε)
r p = 0, and number r least of the

possible.

Definition 3.3. ([10], [13]). Infinitesimal
transformation X is called r-geodesic infinitesimal
transformation (short, r-g.i.t.) if on each geodesic
curve C it adds each point p ∈ C a flattening
m-th order, m ≤ r. The number m can depend as
on a choice of a geodesic curve C , and points on
it, and number r greatest of all possible numbers
m.

We denote r-g.i.t. by τ (r).

Theorem 1. Let affine connection ∇ on mani-
fold M in a map c = (U ;ϕ; Rn) has components
Γh

ji, the derivative of Lie LX∇ ∈ T1
2 (M) affine

connection ∇ in a map c has components LXΓh
ij.

Then a tensor P (ε) an affine deformation infini-
tesimal the point-transformation τε in a map c has
components P h

ij(p) = ε · LXΓh
ij (p) + O

(
ε2

)
.

Proof. Let ∇̃(ε) - a pre-image of affine connecti-
on concerning transformation τε. Tensor P (ε) an
affine deformation of infinitesimal transformation
τε has in a map c components P h

ij . Considering
expressions for representation uh ◦ τε ◦ ϕ−1 infini-
tesimal a point-transformation τε, decomposing a
difference Γk

ij (τε(p))− Γk
ij(p) by Taylor’s formula,

being limited to members not above ε2, we will
have the necessary. The theorem is proved.
N o t e . Since the received result holds in each
map (U ;ϕ; Rn) the equality can be noted in the
invariant form P (ε) = ε · LX∇+ O

(
ε2

)
.

Everywhere next, the symmetrization
operator will denote by the letter S. Besides, for
a field of tensors T ∈ T1

m (M), fields of vectors
ξ, along a curve C , a field of vectors T (ξ..., ξ)︸ ︷︷ ︸

m

,

defined along a curve C will denote by T (ξm).

Lemma 1. Let in affine connected space
(M,∇) the geodesic curve C , admiting canoni-
cal parametre t, is given and X - infinitesimal
transformation M . Then a vectors of curvature
of a geodesic curve C , with respect to a pre-
image ∇̃(ε) affine connection ∇ under infinitesi-
mal a point-transformation τε, defined by a field
of vectors X, have form:

ξ̃(ε)
m = ε · LmX

(
ξm+1

)
+ O

(
ε2

)

(resp. ξ̃
(ε)
m = ε · LmX

(
ξm+1

)
+ O

(
ε2

)
), where

ξ - a field of tangent vectors along a curve C ,
and a field of tensors LmX ∈ T1

m+1 (M) (resp.
LmX ∈ T1

m+1 (M)) it is defined recurrently by a
rule

L1X = LX∇, LmX = ∇Lm−1X

(resp. L1X = S (LX∇), LmX = S (∇Lm−1X)).

Proof. We will apply the theorem 2 (see [18]).
Then ξ̃

(ε)
m = P

(ε)
m

(
ξm+1

)
, where the tensor fi-

eld P
(ε)
m ∈ T1

m (U) is defined recurrently by a
rule P1

(ε) = P (ε), Pm
(ε) = ∇Pm−1

(ε) + P (ε) ◦
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(
δ ⊗ Pm−1

(ε)
)
. Using the previous lemma, we wi-

ll receive P
(ε)
1 = P (ε) = ε · LX∇ + O

(
ε2

)
=

ε·L1X+O
(
ε2

)
. We suppose is shown, that P

(ε)
m−1 =

ε · Lm−1X + O
(
ε2

) ∈ T1
m (U). Then

P (ε)
m = ∇P

(ε)
m−1 + P (ε) ◦

(
δ ⊗ P

(ε)
m−1

)
=

= ε · ∇Lm−1X + O
(
ε2

)
= ε · LmX + O

(
ε2

)
.

From here we will receive the necessary. Similarly
for a field of tensors Lm.

Take account the previous lemma, we will
receive

lim
ε→0

1
εr

ξ ∧ ξ̃
(ε)
1 ∧ ... ∧ ξ̃(ε)

r =

= δ (ξ) ∧ L1X

(
ξ2

) ∧ ... ∧ LrX

(
ξr+1

)
.

The given equality allows to receive a necessary
and sufficient condition r-g.i.t. That infinitesimal
transformation X was r-g.i.t. necessary and suffi-
cient that conditions were satisfied

δ (ξ) ∧ L1X

(
ξ2

) ∧ ... ∧ LrX

(
ξr+1

)
= 0

δ (ξ) ∧ L1X

(
ξ2

) ∧ ... ∧ Lr−1X (ξr) 6= 0

For arbitrary ξ. As ξ is arbitrary, we discover

S (δ ∧ L1X ∧ ... ∧ Lr−1X ∧ LrX) = 0, (5)
S (δ ∧ L1X ∧ ... ∧ Lr−1X) 6= 0. (6)

Similarly, we will receive the conditions equivalent
to conditions (5) and (6)

S (δ ∧ L1X ∧ ... ∧ Lr−1X ∧ LrX) = 0, (7)
S (δ ∧ L1X ∧ ... ∧ Lr−1X) 6= 0. (8)

Conditions (7) and (8) are discovered S. G. Lei-
ko in the coordinate form and are the equations
r-g.i.t. τ (r).

If for infinitesimal transformation X the
condition is satisfied S (LrX) = 0, and as a condi-
tion (6), then X is absolutely canonical r-geodesic
infinitesimal transformation.

4 HP-transformations.

By a Kählerian space (see [2], [5], [9]) we mean
manifold M dimensions n = 2m > 2, with the
(pseudo)Riemannian metric given on it g and
complex structure F , which satisfy to conditions:

1) holds equality F 2 = −δ;
2) for arbitrary field of vectorses X and Y

g (F (X) , Y ) + g (X,F (Y )) = 0,

3) holds equality ∇F = 0, where ∇ there is a
connection of the Levi-Civita of a metric tensor g.

It is said that the field of vectors X is infi-
nitesimal holomorphically projective transformati-
on, or is simple, HP-transformation (see [9]) if it
satisfies to a condition

LX∇ = β ⊗ δ + δ ⊗ β − β̄ ⊗ F − F ⊗ β̄,

where β - some field of covectors on M , β̄ = β ◦F
- dual with it a field of covectors .

If β = 0, then the HP-transformation reduces
to the affine. This case will be trivial.

The field of vectors X is called analytical if
the condition (see [9]) is satisfied LXF = 0.

As shown in [9], that infinitesimal
transformation preserved holomorphically planar
curves necessary and sufficient that it was analyti-
cal HP-transformation.

Fields of covectors β and β̄ analytical HP-
transformations possess properties which we will
use next. It is shown in [9] (see the equality (3.8)),
that in a coordinate neighbourhood

(
U ; uh

)
hold

equalities

∇jβi = − 1
n + 2

LXRji, (9)

where Rji = Rα
αj,i is a tensor of Ricci . As is

known, the tensor of Ricci Riemannian spaces is
symmetrical ([3]). Then the equality (9) shows,
that the covariant differential ∇β is symmetrical a
tensor field. Besides, the equality (see [9], equality
(3.7)) holds

∇j β̄i +∇iβ̄j = 0, (10)

which shows, that

S
(∇β̄

)
= 0. (11)

Theorem 2. Nontrivial HP-transformation is 2-
g.i.t.

Proof. Let X is HP-transformation. We take an
arbitrary geodesic curve C in M , admiting canoni-
cal parametre t. Let ξ is a field of tangent vectors
along a curve C . Then

L1X

(
ξ2

)
= 2β (ξ) δ (ξ)− 2β̄ (ξ) F (ξ) .

Besides, as ∇δ = 0 and ∇F = 0,

L2X

(
ξ3

)
= 2∇β

(
ξ2

)
δ (ξ)− 2∇β̄

(
ξ2

)
F (ξ) .

From here δ (ξ) ∧ L1X

(
ξ2

)
= −2β̄ (ξ) δ (ξ) ∧

F (ξ) and δ (ξ) ∧ L1X

(
ξ2

) ∧ L2X

(
ξ3

)
= 0.

The last shows, that when β 6= 0, infinitesi-
mal transformation X are 2-g.i.t.. The theorem
is proved
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5 The flattening properties of vertical
and complete lifts of analytical HP-
transformations.

Proposition 1. For an arbitrary field of vectors
X with respect to connection of the complete lift
∇C, holds equalities LmXV = (LmX)V, LmXC =
(LmX)C,

Proof is deduced by an induction on m. Consi-
dering a proposition 7.6 ([11]) we will obtain

(L1X)V = (LX∇)V = LXV∇C = L1XV ,

(L1X)C = (LX∇)C = LXC∇C = L1XC .

We suppose is shown, that Lm−1XV = (Lm−1X)V

and Lm−1XC = (Lm−1X)C. Then applying a
proposition 6.5 ([11]) LmXV = ∇CLm−1XV =
(LmX)V, LmXC = ∇CLm−1XC = (LmX)C.

Lemma 2. Let in a point p ∈ M holds equality

S
(
β̄ ⊗∇β

)∣∣
p

= 0, (12)

and for arbitrary fibre coordinates y =
(
yk

) ∈ Rn

in a point p̃ = (p, y) ∈ TM holds equality

S
(
β̄ ⊗∇β

)C
∣∣∣
p̃

= 0. (13)

Then is fulfilled the equality

∇β|p = 0. (14)

Proof. C a s e 1. Let β̄
∣∣
p
6= 0. The equality (12)

can be noted in a form

S
(

β̄
∣∣
p
⊗ ∇β|p

)
= 0. (15)

Then applying the equality (15) to a lemma 1 (see
[15]), considering symmetry a tensor field ∇β, we
will obtain equality (14).
C a s e 2. Let

β̄
∣∣
p

= 0. (16)

Then holds equality

β|p = 0. (17)

From equalities (16) and (17) follow equalities

β̄V
∣∣
p̃

=
(

β̄i

∣∣
p
, 0

)
= 0, (18)

β̄C
∣∣
p̃

=
(

∂β̄i

∣∣
p̃
, β̄i

∣∣
p

)
=

(
∂β̄i

∣∣
p̃
, 0

)
,

βC
∣∣
p̃

=
(

∂βi|p̃ , βi|p
)

=
(

∂βi|p̃ , 0
)

. (19)

Applying a rule of a taking of the complete li-
ft from a tensor product, from (13), considering
equality (18), we will have

S

(
β̄C

∣∣
p̃
⊗ (∇β)V

∣∣∣
p̃

)
= 0. (20)

C a s e 2.1. We suppose, that there is such collecti-
on of fibre coordinates y =

(
yk

)
, that in a point

p̃ = (p, y) условие The condition

β̄C
∣∣
p̃
6= 0. (21)

is satisfied. Applying a lemma 1 (see [15]) to
equality (20), taking into account a condition (21),
we come to equality (∇β)V

∣∣∣
p̃

= 0, From which

follows the equality (14).
C a s e 2.2. Let for arbitrary collections of fibre
coordinates y =

(
yk

)
in a point p̃ = (p, y) holds

equality β̄C
∣∣
p̃

= 0. Then holds also equality

βC
∣∣
p̃

= 0. (22)

On the other hand, considering expressions for li-
fts (19) from equality (22) and definitions of the
complete lift of function ∂βi|p̃ = ys · ∂sβi|p, we
obtain equalities ys · ∂sβi|p = 0 for any i = 1.n

and arbitrary collections y =
(
yk

)
. As ys it is arbi-

trary, from here to find ∂sβi|p = 0 for any i = 1.n,
s = 1.n. Then for arbitrary i = 1.n and j = 1.n it
is had

∇jβi|p = ∂jβi|p − Γα
ji

∣∣
p
· βα|p = ∂jβi|p = 0,

That gives equality ∇β|p = 0. The lemma is
proved.

Theorem 3. Let X is analytical HP-
transformation of Kählerian spaces (M, g, F ).
Then:

1. lifts XV and XC are 1-g.i.t. if and only if
β = 0 that is when X is an infinitesimal
affinity;

2. lifts XV and XC are absolutely canonical 2-
g.i.t. if and only if the field of covectors β is
absolutely parallel, that is when ∇β = 0.

3. generally lifts XV and XC are 3-g.i.t.
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Proof. We take in space M an arbitrary geodesic
curve C ; Let ξ - a field of tangent vectors along a
curve C .

1) Condition δ̃ (ξ) ∧ L1XV

(
ξ2

)
= 0, to equi-

valently conditions βV (ξ) = 0, β̄V (ξ) = 0. From
ξ arbitrarily follows, that last conditions are equi-
valent to equalities

β = 0. (23)

Similarly, condition δ̃ (ξ) ∧ L1XC

(
ξ2

)
= 0 to

equivalently condition βC (ξ) = 0, β̄C (ξ) = 0,
β̄V (ξ) = 0. From ξ arbitrarily follows, that last
conditions are equivalent to equality (23). Thus,
Lifts XV, XC are 1-g.i.t. if and only if β = 0 that
is when X is an infinitesimal affinity.

2) Condition

δ̃ (ξ) ∧ L1XV

(
ξ2

) ∧ L2XV

(
ξ3

)
= 0

to equivalently condition

M12 =
∣∣∣∣

βV(ξ) β̄V(ξ)

(∇β)V(ξ2) (∇β̄)V(ξ2)

∣∣∣∣ = 0,

that is to equality

β̄V (ξ) (∇β)V
(
ξ2

)
= 0. (24)

Considering expression for components of lifts,
we will obtain equality β̄ιξ

ι∇jβiξ
iξj = 0, which

whereas ξ is arbitrary, equivalent to equality

S
(
β̄ ⊗∇β

)
= 0. (25)

Applying to equality (25) a lemma 2, we will
obtain equality

∇β = 0. (26)

On the other hand we see, that from equality (26)
follows the equality (∇β)V = 0. So also equality
M12 = 0.

Similarly, condition

δ̃ (ξ) ∧ L1XC

(
ξ2

) ∧ L2XC

(
ξ3

)
= 0

to equivalently conditions M12 = 0, M13 = 0 и
M23 = 0, where M12, M13 and M23 are minors of
the matrix

(
βC(ξ) β̄C(ξ) β̄V(ξ)

(∇β)C(ξ2) (∇β̄)C(ξ2) (∇β̄)V(ξ2)

)
.

Equality M13 = 0 will take the form

β̄V (ξ) (∇β)C
(
ξ2

)
= 0; (27)

from it we will obtain equality (26). Conversely,
from equality (26) we will obtain equalities
(27). Besides, from equality (26) follow equaliti-
es L2XV

(
ξ3

)
= 0 и L2XC

(
ξ3

)
= 0.

Thus, lifts XV and XC generate absolutely
canonical 2-g.i.t. if and only if the covector field β
is absolutely parallel.

3) Obviously

δ̃ (ξ) ∧ L1XV

(
ξ2

) ∧ L2XV

(
ξ3

) ∧ L3XV

(
ξ4

)
= 0

It is similarly shown, that

δ̃ (ξ)∧L1XC

(
ξ2

) ∧ L2XC

(
ξ3

) ∧ L3XC

(
ξ4

)
=

= 8M123δ̃ (ξ) ∧ δV (ξ) ∧ FV (ξ) ∧ FC (ξ) ,

where M123 is a determinant
∣∣∣∣∣∣

βC(ξ) β̄C(ξ) β̄V(ξ)

(∇β)C(ξ2) (∇β̄)C(ξ2) (∇β̄)V(ξ2)
(∇2β)C(ξ3) (∇2β̄)C(ξ3) (∇2β̄)V(ξ3)

∣∣∣∣∣∣

Considering equality (10), we will obtain

∇k∇j β̄i +∇k∇iβ̄j = ∇k

(∇j β̄i +∇iβ̄j

)
= 0.

(28)
From equality (28) we find

M123 =

∣∣∣∣∣
βC(ξ) β̄C(ξ) β̄V(ξ)

(∇β)C(ξ2) 0 0

(∇2β)C(ξ3) 0 0

∣∣∣∣∣ = 0.

In that case, a condition

δ̃ (ξ) ∧ L1XC

(
ξ2

) ∧ L2XC

(
ξ3

) ∧ L3XC

(
ξ4

)
= 0,

It is satisfied identically.
Thus, generally lifts XV and XC generate 3-

g.i.t. The theorem is proved.

6 The flattening properties of 0th, I
th and II th lifts of analytical HP-
transformations.

Proposition 2. For an arbitrary field of vectors
X with respect to connection of the II-lift ∇II,
holds equalities LmX0 = (LmX)0, LmXI =
(LmX)I, LmXII = (LmX)II.

Proof to similarly proof of the proposition 1.

Lemma 3. Let in a point p ∈ M holds equali-
ty S

(
β̄ ⊗∇β

)∣∣
p

= 0, and for arbitrary fibre
coordinates y =

(
yk

) ∈ Rn, z =
(
zk

) ∈ Rn

in a point p̃ = (p, y, z) ∈ T 2M holds equality
S

(
β̄ ⊗∇β

)I
∣∣∣
p̃

= 0. Then we have ∇β|p = 0.
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Proof To similarly proof of a lemma 2.

Lemma 4. Let holds equality

S
(
β̄ ⊗∇β ⊗∇∇β

)
= 0. (29)

Then we have equality

S (∇∇β) = 0. (30)

Proof. We will establish equality

∇β ⊗ S (∇∇β) = 0. (31)

For this it verify in each point p ∈ M . The equality
(29), according to a lemma 3 (see [18]), will take
the form

S
(
S

(
β̄ ⊗∇β

)⊗ S (∇∇β)
)

= 0. (32)

C a s e 1. Let in a point p ∈ M the conditi-
on S

(
β̄ ⊗∇β

)∣∣
p
6= 0 is satisfied. Then taking

account a lemma 1 (see [15]), applying the given
condition, from equality (32) we will obtain equali-
ty of

S (∇∇β)|p = 0. (33)

From here we will obtain equality of

∇β|p ⊗ S (∇∇β)|p = 0. (34)

C a s e 2. Let holds equality of

S
(
β̄ ⊗∇β

)∣∣
p

= 0. (35)

We take the I-lift from a tensor product, and from
equality (32), taking account equalities (35) and
0-lift definitions, we will have equality of

S

(
S

(
β̄ ⊗∇β

)I
∣∣∣
p̃
⊗ S (∇∇β)0

∣∣∣
p̃

)
= 0. (36)

C a s e 2.1. Let there will be such collections of fi-
bre coordinates y =

(
yk

)
, z =

(
zk

)
, that in a point

p̃ = (p, y, z) the condition of S
(
β̄ ⊗∇β

)I
∣∣∣
p̃
6= 0.

is satisfied. Then to equality (36) we can apply a
lemma 1 (see [15]). From this we will obtain equali-
ty of S (∇∇β)0

∣∣∣
p̃

= 0, , from which the equality

(33), and from here and equality (34) follows.
C a s e 2.2. Let for arbitrary collections of fi-
bre coordinates y =

(
yk

)
, z =

(
zk

)
in a point

p̃ = (p, y, z) holds equality of

S
(
β̄ ⊗∇β

)I
∣∣∣
p̃

= 0. (37)

Equalities (35) and (37) allow to apply a lemma 3
from which we will obtain equality of

∇β|p = 0. (38)

From here we will obtain equality (34).
Now we will prove equalities (30). For this

purpose we will show, that in each point p ∈ M
holds equality (33). In the given point the equality
(31) takes the form (34).
C a s e 1. Let ∇β|p 6= 0. Then from equality (34)
we will obtain (33).
C a s e 2. Let the equality (38) holds. We take
the I-lift from equality (31) and we assume, that
collections of fibre coordinates y =

(
yk

)
, z =

(
zk

)
are arbitrary in a point p̃ = (p, y, z). Then we will
obtain

(∇β)|Ip̃ ⊗ S (∇∇β)|0p̃ = 0. (39)

C a s e 2.1. Let for some collection of fibre coordi-
nates y =

(
yk

)
, z =

(
zk

)
in a point p̃ = (p, y, z)

the condition of (∇β)|Ip̃ 6= 0. is satisfied. Then
from equality (39) we will obtain S (∇∇β)|0p̃ = 0,
that implies equality (33).
C a s e 2.2. Let now for any collections of fi-
bre coordinates y =

(
yk

)
, z =

(
zk

)
in a point

p̃ = (p, y, z) the condition of

(∇β)|Ip̃ = 0. (40)

is satisfied. Taking account I-lift definition, equali-
ty (40), which is true for any collections y =(
yk

) ∈ Rn, we will obtain ∂s (∇jβi)|p = 0,
for arbitrary s, i, j = 1, n. From this, we find
∇∇β|p = 0, It reduces to equality (33). The
lemma is proved.

Theorem 4. Let X is analytical HP-
transformation Kählerian spaces (M, g, F ). Then:

1. lifts X0, XI, XII are 1-g.i.t. if and only if
β = 0 that is when X is an infinitesimal
affinity;

2. lifts X0, XI, XII are absolutely canonical 2-
g.i.t. if and only if the covector field β is
absolutely parallel, that is when ∇β = 0.

3. в общем случае лифт X0 является 3-
г.и.п.; lifts XI, XII are absolutely canonical
3-g.i.t. if and only if the covector field β is
not absolutely parallel and satisfies to equali-
ty of S

(∇2β
)

= 0;

4. generally lifts XI, XII are 4-g.i.t.
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Proof. We take in space M an arbitrary geodesic
curve C ; Let ξ - a field of tangent vectors along
a curve C . Taking account properties of lifts, we
will obtain.

1) Obviously conditions of δ̃ (ξ)∧L1X0

(
ξ2

)
=

0, δ̃ (ξ)∧L1XI

(
ξ2

)
= 0, δ̃ (ξ)∧L1XII

(
ξ2

)
= 0, are

equivalent respectively to conditions of β0 (ξ) = 0,
β̄0 (ξ) = 0, βI (ξ) = 0, β0 (ξ) = 0, β̄0 (ξ) = 0,
β̄I (ξ) = 0, βII (ξ) = 0, βI (ξ) = 0, β̄II (ξ) = 0,
β̄I (ξ) = 0, β̄0 (ξ) = 0. It is equivalent to a condi-
tion β = 0 as ξ is arbitrary.

Thus, lifts X0, XI, XII are 1-g.i.t. if and only
if β = 0 that is when X is an infinitesimal affinity.

2) Obviously

δ̃ (ξ)∧L1X0

(
ξ2

) ∧ L2X0

(
ξ3

)
=

= −4M0
12δ̃ (ξ) ∧ δ0 (ξ) ∧ F 0 (ξ) ,

(41)

where M0
12 =

∣∣∣∣
β0(ξ) β̄0(ξ)

(∇β)0(ξ2) (∇β̄)0(ξ2)

∣∣∣∣. From equality

(11) we will obtain equalities of

S
(∇β̄

)0 = 0, S
(∇β̄

)I = 0, S
(∇β̄

)II = 0. (42)

Condition of δ̃ (ξ)∧L1X0

(
ξ2

)∧L2X0

(
ξ3

)
= 0,

to equivalently equality of
∣∣∣ β0(ξ) β̄0(ξ)

(∇β)0(ξ2) 0

∣∣∣ = 0, (43)

which is equivalent to equality of

β̄0 (ξ) (∇β)0
(
ξ2

)
= 0.

Taking account expressions for lifts, and ξ is
arbitrary, we come to equality (25). Applying to
equality (25) a lemma 3, we will have (26). On the
other hand, from equality (26) the equality (43)
follows.

Condition δ̃ (ξ)∧L1XI

(
ξ2

)∧L2XI

(
ξ3

)
= 0 to

equivalently equalities of

M I
12 = 0, M I

13 = 0, M I
14 = 0,

M I
23 = 0, M I

24 = 0,
(44)

where M I
12, M I

13, M I
14, M I

23, M I
24, M I

34 minors of a
matrix of

(
βI(ξ) β0(ξ) β̄I(ξ) β̄0(ξ)

(∇β)I(ξ2) (∇β)0(ξ2) (∇β̄)I(ξ2) (∇β̄)0(ξ2)

)

The equality M I
24 = 0, taking into account

equalities (42), is (43) from which the equality (26)
follows; On the other hand, equalities (26) imply
equalities (44).

Condition
δ̃ (ξ) ∧ L1XII

(
ξ2

) ∧ L2XII

(
ξ3

)
= 0 to equi-

valently equalities of

M II
12 = 0, M II

13 = 0, M II
14 = 0, M II

15 = 0,
M II

23 = 0, M II
24 = 0, M II

25 = 0,
(45)

where M II
12, M II

13, M II
14, M II

15, M II
23, M II

24, M II
25, M II

34,
M II

35, M II
45 minors of a matrix of

(
βII(ξ) βI(ξ) β̄II(ξ) β̄I(ξ) β̄0(ξ)

(∇β)II(ξ2) (∇β)I(ξ2) (∇β̄)II(ξ2) (∇β̄)I(ξ2) (∇β̄)0(ξ2)

)

From equality M II
25 = 0, taking account equalities

(42), we will obtain equality (26). On the other
hand, the equality (26) reduces to equalities (45)
and to equalities L2X0

(
ξ3

)
= 0, L2XI

(
ξ3

)
= 0

and L2XII

(
ξ3

)
= 0.

Thus, lifts X0, XI, XII are absolute canonical
2-g.i.t. if and only if the covector field β is absolute
parallel.

3) Obviously

δ̃ (ξ) ∧ L1X0

(
ξ2

) ∧ L2X0

(
ξ3

) ∧ L3X0

(
ξ4

)
= 0

So generally, the lift X0 generates 3-g.i.t. It is si-
milarly shown, that a condition of

δ̃ (ξ) ∧ L1XI

(
ξ2

) ∧ L2XI

(
ξ3

) ∧ L3XI

(
ξ4

)
= 0

to equivalently conditions of

M I
123 = 0, M I

124 = 0, M I
134 = 0, M I

234 = 0, (46)

where M I
123, M I

124, M I
134, M I

234 minors of a matrix
of




βI(ξ) β0(ξ) β̄I(ξ) β̄0(ξ)

(∇β)I(ξ2) (∇β)0(ξ2) (∇β̄)I(ξ2) (∇β̄)0(ξ2)
(∇2β)I(ξ3) (∇2β)0(ξ3) (∇2β̄)I(ξ3) (∇2β̄)0(ξ3)




(47)
Taking account expressions for lifts, from equality
(28) it is had

(∇2β̄
)0 (

ξ3
)

= 0,
(∇2β̄

)I (
ξ3

)
= 0,(∇2β̄

)II (
ξ3

)
= 0

(48)

Taking account equalities (42) and (48) in (46), we
will obtain

β̄0 (ξ)
(
(∇β)I

(
ξ2

) (∇2β
)0 (

ξ3
) −

− (∇β)0
(
ξ2

) (∇2β
)I (

ξ3
))

= 0.
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From here we will obtain

S
(
β̄ ⊗∇β ⊗∇∇β

)
= 0. (49)

From a lemma 4 the equality of

S (∇∇β) = 0. (50)

follows. Conversely, let the equality (50) is true.
Then it is obvious S (∇∇β)0 = 0, S (∇∇β)I = 0.
In that case the matrix (47) will take the form of

(
βI(ξ) β0(ξ) β̄I(ξ) β̄0(ξ)

(∇β)I(ξ2) (∇β)0(ξ2) 0 0

0 0 0 0

)
,

From here conditions (46) follow. Besides, the
equality (50) implies equality L3XI

(
ξ4

)
= 0.

Thus, the lift XI is absolutely canonical 3-
g.i.t. if and only if the covector field β is not
absolute parallel and satisfies to equality (50).

It is easy to show, that a condition of

δ̃ (ξ) ∧ L1XII

(
ξ2

) ∧ L2XII

(
ξ3

) ∧ L3XII

(
ξ4

)
= 0

to equivalently condition of

M II
123 = 0,M II

124 = 0, M II
125 = 0,M II

134 = 0,
M II

135 = 0,M II
145 = 0, M II

234 = 0,M II
235 = 0,

M II
245 = 0,M II

345 = 0,
(51)

where M II
123, M II

124, M II
125, M II

134, M II
135, M II

145, M II
234,

M II
235, M II

245, M II
345 are minors of a matrix of

(
βII(ξ) βI(ξ) β̄II(ξ) β̄I(ξ) β̄0(ξ)

(∇β)II(ξ2) (∇β)I(ξ2) 0 0 0

(∇2β)II(ξ3) (∇2β)I(ξ3) 0 0 0

)
(52)

The equality M II
125 = 0 will take the form of

β̄0 (ξ)
(
(∇β)II

(
ξ2

) (∇2β
)I (

ξ3
) −

− (∇β)I
(
ξ2

) (∇2β
)II (

ξ3
))

= 0.

From here we will obtain

β̄αξα∇ββιξ
ιξβ∇k∇jβiξ

iξjξk = 0.

As last equality is satisfied for arbitrary ξ we will
obtain equality (49) which taking account a lemma
4, implies equality (50).

Conversely, if the equality (50) is valid the
matrix (52) will take the form of

(
βII(ξ) βI(ξ) β̄II(ξ) β̄I(ξ) β̄0(ξ)

(∇β)II(ξ2) (∇β)I(ξ2) 0 0 0

0 0 0 0 0

)

that implies conditions (51) are satisfied. Besides,
the equality (50) reduces to equality L3XII

(
ξ4

)
.

Thus, the lift XII is 3-g.i.t. if and only if the
covector field β is not absolute parallel and sati-
sfies to equality (50).

4) We take from equality (28) a covariant di-
fferential; we will obtain

(∇3β̄
)0 (

ξ4
)

= 0,
(∇3β̄

)I (
ξ4

)
= 0,(∇3β̄

)II (
ξ4

)
= 0.

It is easy to show, that a condition of

δ̃ (ξ) ∧ L1XI

(
ξ2

) ∧ L2XI

(
ξ3

)∧
∧ L3XI

(
ξ4

) ∧ L4XI

(
ξ5

)
= 0

to equivalently condition M I
1234 = 0, where

M I
1234 =

∣∣∣∣∣∣∣

βI(ξ) β0(ξ) β̄I(ξ) β̄0(ξ)

(∇β)I(ξ2) (∇β)0(ξ2) 0 0

(∇2β)I(ξ3) (∇2β)0(ξ3) 0 0

(∇3β)I(ξ4) (∇3β)0(ξ4) 0 0

∣∣∣∣∣∣∣
= 0

That it is easy to obtain application of the
theorem of Laplace about determinant expansi-
on on columns 3, 4; All minors of the second
order arranged in columns 3 and 4 vanish. Means,
the given condition is satisfied identically. Thus,
generally the lift XI is 4-g.i.t. It is easy to show,
that a condition of

δ̃ (ξ) ∧ L1XII

(
ξ2

) ∧ L2XII

(
ξ3

)∧
∧ L3XII

(
ξ4

) ∧ L4XII

(
ξ5

)
= 0

to equivalently condition of

M II
1234 = 0, M II

1235 = 0,

M II
1345 = 0, M II

2345 = 0,
(53)

where M II
1234, M II

1235, M II
1345, M II

2345 minors of a
matrix of




βII(ξ) βI(ξ) β̄II(ξ) β̄I(ξ) β̄0(ξ)

(∇β)II(ξ2) (∇β)I(ξ2) 0 0 0

(∇2β)II(ξ3) (∇2β)I(ξ3) 0 0 0

(∇3β)II(ξ4) (∇3β)I(ξ4) 0 0 0




Each of minors M II
1234, M II

1235, M II
1345, M II

2345 has
two columns arranged in which all minors of the
second order vanish; Under the theorem of Laplace
from here follows, that conditions (53) are satisfied
identically.

Thus, generally the lift XII is 4-g.i.t. The
theorem is proved.
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