УДК 514.764

Костянтин М. Зубрілін¹, к.ф.-м.н.

Сплощуючі властивості ліфтів аналітичних НР-перетворень келерових просторів.

У роботі вивчаються сплощуючі властивості інфінітезимальних перетворень дотичних розшарувань першого та другого порядків, породжені ліфтами аналітичних HPперетворень келерових просторів.

Ключові слова: сплощення, порядок сплощення, p-геодезична крива, p-геодезичне відображення, p-геодезичне інфінітезимальне перетворення.

¹Феодосійський політехнічний інститут Національного університету кораблебудування імені адмірала Макарова, вул.Радянська, 19, м. Феодосія, смт. Приморський, АР Крим

E-mail: zubrilin@rambler.ru

Статтю представив доктор фіз.-мат. наук, професор В.В.Кириченко

1 Introduction.

Generalisations of geodesic curves of a different aspect are known. In particular, A. Fialkow considers geodesics circles in Riemannian space ([1]). T. Otsuki, Y. Tashiro have introduced concept a holomorphically planar curve in Kählerian space ([2]). P. K. Rashevsky considers flattening curves of a arbitrary order in affine connected spaces, using concept of a flattening ([3]).

On the basis of these curves of generalisation of geodesic maps have been defined: concircular transformations K. Yano ([4]), holomorphically projective maps Y. Tashiro ([5]), p-geodesic maps S. G. Leiko ([6], [7]).

Their infinitesimal analogues were considered in works: for concircular transformations Riemannian spaces (S. Ishihara [8]), for holomorphic projective transformations Kählerian spaces (S. Tachibana, S. Ishihara [9]). P-geodesic infinitesimal transformations are defined S. G. Leiko in work [10].

Lifts of infinitesimal transformations were studied K. Yano and S. Ishihara ([11], [12]). By them it is established, that the complete lift X^{C} of the geodesic infinitesimal transformation X is infinitesimal geodesic transformation to a tangent bundle if and only if X is affine infinitesimal Kostyantyn M. Zubrilin¹, Ph.D.

Flattening properties of the lifts of analytic HP-transformations Kählerian manifolds.

In this paper we are study the flattening properties of the infinitesimal transformations of tangent bundles of orders 1 and 2, which generate the lifts of analytic HP-transformations of Kählerian manifold.

Key Words: flattening, the order of flattening, the p-geodesic curve, the p-geodesic map, the p-geodesic infinitesimal transformation.

¹Feodosijsky polytechnical institute of National University of Shipbuilding, 19 Soviet Str. Feodosiya, Crimea

transformation. S. G. Leiko studied lifts of infinitesimal transformations from the point of view of the theory p-geodesic (flattening) maps. He has established, that for a tangent bundle of the first order, vertical lift X^{V} of the geodesic infinitesimal transformation X is canonical 2-geodesic infinitesimal transformation, and the complete lift X^{C} is not canonical 2-geodesic infinitesimal ([10]). The case of a tangent bundle of the second order also is considered S. G. Leiko in work [10]. Lifts of infinitesimal concircular transformation in a tangent bundle of the first order were studied S. G. Leiko ([13]). The case of a tangent bundle of the second order is considered in work [14].

The given work is devoted study of flattening properties of lifts analytical HP-transformations of Kählerian spaces.

2 Elements of the theory of flattening maps.

We will consider in affine connected space (M, ∇) curve \mathscr{C} admiting parametre $t; \xi$ - a field of tangent vectors along a curve \mathscr{C} . The vector q-th curvature ξ_q is defined by a rule $\xi_q = \nabla_t \xi_{q-1}, \xi_0 = \xi$.

Definition 2.1. ([10], [13]). Arbitrarily we take a point $p \in \mathscr{C}$ on a curve \mathscr{C} . If at a point p vectors ξ , ξ_1, \ldots, ξ_{m-1} are linearly independent, and vectors

 $\xi, \xi_1, \ldots, \xi_{m-1}, \xi_m$ are linearly dependent, say, that the curve \mathscr{C} at a point p has a flattening m-th order; the number m is called the order of flattening of point p the curve \mathscr{C} .

Considering properties of an external product, a condition

$$\xi \wedge \xi_1 \wedge \dots \wedge \xi_{m-1} \wedge \xi_m = 0, \tag{1}$$

$$\xi \wedge \xi_1 \wedge \dots \wedge \xi_{m-1} \neq 0, \tag{2}$$

are necessary and sufficient that the curve $\mathscr C$ have at a point p a flattening m-th order.

Definition 2.2. ([10], [13]). The curve \mathscr{C} in affine connected space (M, ∇) is called *m*-geodesic if in each point it has *m*-th order.

That the curve \mathscr{C} is *m*-geodesic necessary and sufficient that along it conditions (1) and (2) are satisfied.

On the other hand, if a curve ${\mathscr C}$ - $m\text{-}\mathrm{geodesic}$ along it holds equality

$$\xi_m = a_0 \xi + a_1 \xi_1 + \dots + a_{m-1} \xi_{m-1}, \qquad (3)$$

where $a_0, a_1, \ldots, a_{m-1}$ - some functions are defined along a curve \mathscr{C} .

Definition 2.3. ([10], [13]). The parametre t on mgeodesic curve \mathscr{C} is called *i*-canonical $(1 \leq i \leq m)$, if $a_{m-i} = 0$ along a curve \mathscr{C} .

The parametre t on m-geodesic curve \mathscr{C} is called $\iota_1, \iota_2, \ldots, \iota_k$ - canonical $(m \ge \iota_1 > \iota_2 > \ldots > \iota_k \ge 1)$ if it is simultaneously ι_1 -canonical, ι_2 -canonical, \ldots, ι_k -canonical.

1, 2..., m-canonical the parametre t m-geodesic curve \mathscr{C} is called as absolutely canonical.

From properties of an external product follows, that a necessary and sufficient condition of ι -canonical (resp. $\iota_1, \iota_2, \ldots, \iota_k$ -canonical, absolute canonical) parametre t m-geodesic curve \mathscr{C} is the equality $\xi \wedge \xi_1 \wedge \ldots \wedge \widehat{\xi}_{m-\iota} \wedge \ldots \wedge \xi_m =$ $0, \xi \wedge \ldots \wedge \widehat{\xi}_{m-\iota_1} \wedge \ldots \wedge \widehat{\xi}_{m-\iota_k} \wedge \ldots \wedge \xi_m = 0, \xi_m = 0,$ which holds along a curve \mathscr{C} . Where the note $\widehat{\eta}$ shows, that η are not present a factor in an external product. We see that from this a condition of follows the condition (1).

Definition 2.4. ([10], [13]). Mapping $f: M \to \overline{M}$ is affine connected spaces (M, ∇) and $(\overline{M}, \overline{\nabla})$ is called *r*-geodesic if this mapping translates all geodesic curves of the first space in curves of the second space at which points the greatest order of a flattening is equal r.

The number r is called as order of a flattening of mapping f.

r-geodesic diffeomorphism $\rho \colon M \to M$ it is affine connected space (M, ∇) on itself is called r-geodesic transformation affine connected space (M, ∇) .

Geometrically r-geodesic mappings are characterised by that they geodesic curves translate in curves which on separate arcs are m-geodesic curves, and $m \leq r$, and r greatest of all numbers m.

S. G. Leiko the differential equations describing *r*-geodetic mappings are found. Let $\bar{u}^h = \bar{u}^h (u^1, u^2, ..., u^n)$ - representation of mapping $f: M \to \bar{M}$. Mapping f is *r*-geodesic necessary and sufficient that in general on a diffeomorphism local system coordinate are satisfied conditions

$$\begin{split} \delta^{[h}_{(i} \mathbf{H}^{h_{1}}_{i_{1}i_{2}} \dots \mathbf{H}^{h_{r-1}}_{j_{1}\dots j_{r}} \mathbf{H}^{h_{r}]}_{j_{1}\dots j_{r}j_{r+1})} &= 0, \\ \delta^{[h}_{(i} \mathbf{H}^{h_{1}}_{i_{1}i_{2}} \dots \mathbf{H}^{h_{r-1}]}_{j_{1}\dots j_{r})} \neq 0, \end{split}$$
(4)

where $\mathbf{H}_{ij}^{h} = \breve{\nabla}_{i}\delta_{j}^{h} = \bar{\Gamma}_{ij}^{h} - \Gamma_{ij}^{h}$ - tensor of an affine deformation of mapping f, $\mathbf{H}_{j_{1}...j_{m}j_{m+1}}^{h} = \breve{\nabla}_{(j_{m+1}}\mathbf{H}_{j_{1}...j_{m}}^{h})$, $\breve{\nabla}$ - the mixed covariant derivative in sense of the van der Waerden – Bortolotti concerning connections ∇ and $\bar{\nabla}$. Relations (4) are called as the basic equations r-geodesic mapping.

Let $\mu: M \to \overline{M}$ a diffeomorphism affine connected spaces (M, ∇) and $(\overline{M}, \overline{\nabla})$.

In case of diffeomorphisms, investigation of orders of a flattening of points of a curve-image $\bar{\mathscr{C}} = \mu(\mathscr{C})$ in manifold \bar{M} with affine connection $\bar{\nabla}$ can be reduced to study of orders of a flattening of corresponding points of a geodesic curve \mathscr{C} in manifold M with respect to special connection on manifold M - a pre-image of affine connection $\bar{\nabla}$ concerning a diffeomorphism μ . It allows us not to use a means of the mixed tensors and the mixed covariant derivative of the van der Waerden -Bortolotti (see [14], [15], [17]).

Definition 2.5. ([16]). Affine connection $\tilde{\nabla}$ on manifold M, defined by equality $\tilde{\nabla}_X Y = (\mu^{-1})_* (\bar{\nabla}_{\mu_* X} \mu_* Y)$, for arbitrary smooth fields of vectors X and Y from $\mathfrak{X}(M)$, is called as a pre-image of affine connection $\bar{\nabla}$ with respect to (under) a diffeomorphism μ . Let $\mu: M \to \overline{M}$ a diffeomorphism affine connected spaces (M, ∇) and $(\overline{M}, \overline{\nabla}), \overline{\nabla}$ - a preimage of affine connection $\overline{\nabla}$ with respect to a diffeomorphism μ .

Tensor $P(X, Y) = \tilde{\nabla}_X Y - \nabla_X Y$ we will call a tensor of an affine deformation of a diffeomorphism μ .

3 Flattening infinitesimal transformations.

Let X infinitesimal transformation, that is $X \in \mathfrak{X}(M)$ a field of vectors and $\tau_{\varepsilon} : \bar{u}^h = u^h + \varepsilon \cdot X^h$, $h = \overline{1, n}$, is infinitesimal the point-transformation is defined a field of vectors X, ε - infinitesimal parametre.

Infinitesimal transformation τ_{ε} translates a geodesic curve $\mathscr{C} \subset U$ in a curve $\overline{\mathscr{C}}_{\varepsilon}$. We now consider a field of tangent vectors $\overline{\xi}^{(\varepsilon)}$ and fields of vectors of curvature $\overline{\xi}_m^{(\varepsilon)}$, m = 1, 2... along a curve $\overline{\mathscr{C}}_{\varepsilon}$.

Definition 3.1. ([10], [13]). We say, that infinitesimal transformation X adds a geodesic curve \mathscr{C} a flattening r-th order in a point $p \in \mathscr{C}$, if

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon^r} \bar{\xi}^{(\varepsilon)}_{\tau_{\varepsilon}(p)} \wedge \bar{\xi}^{(\varepsilon)}_{1 \ \tau_{\varepsilon}(p)} \wedge \ldots \wedge \bar{\xi}^{(\varepsilon)}_{r \ \tau_{\varepsilon}(p)} = 0,$$

and number r least of the possible.

We take a pre-image $\tilde{\nabla}_{(\varepsilon)}$ affine connection ∇ concerning infinitesimal a point-transformation τ_{ε} . We build a field of tangent vectors ξ and fields of vectors of curvature $\tilde{\xi}_m^{(\varepsilon)}$, m = 1, 2... along a geodesic curve \mathscr{C} with respect to connection $\tilde{\nabla}_{(\varepsilon)}$. Definition 3.1 is equivalent to the following of

Definition 3.2. It is said that infinitesimal transformation X adds a geodesic curve \mathscr{C} a flattening r-th order at a point $p \in \mathscr{C}$, if $\lim_{\varepsilon \to 0} \frac{1}{\varepsilon^r} \xi_p \wedge \tilde{\xi}_1^{(\varepsilon)} p \wedge \ldots \wedge \tilde{\xi}_r^{(\varepsilon)} p = 0$, and number r least of the possible.

Definition 3.3. ([10], [13]). Infinitesimal transformation X is called r-geodesic infinitesimal transformation (short, r-g.i.t.) if on each geodesic curve \mathscr{C} it adds each point $p \in \mathscr{C}$ a flattening m-th order, $m \leq r$. The number m can depend as on a choice of a geodesic curve \mathscr{C} , and points on it, and number r greatest of all possible numbers m.

We denote r-g.i.t. by $\tau(r)$.

Theorem 1. Let affine connection ∇ on manifold M in a map $c = (U; \varphi; \mathbb{R}^n)$ has components Γ_{ji}^h , the derivative of Lie $\mathcal{L}_X \nabla \in \mathfrak{T}_2^1(M)$ affine connection ∇ in a map c has components $\mathcal{L}_X \Gamma_{ij}^h$. Then a tensor $P^{(\varepsilon)}$ an affine deformation infinitesimal the point-transformation τ_{ε} in a map c has components $P_{ij}^h(p) = \varepsilon \cdot \mathcal{L}_X \Gamma_{ij}^h(p) + \underline{O}(\varepsilon^2)$.

Proof. Let $\tilde{\nabla}_{(\varepsilon)}$ - a pre-image of affine connection concerning transformation τ_{ε} . Tensor $P^{(\varepsilon)}$ an affine deformation of infinitesimal transformation τ_{ε} has in a map c components P_{ij}^h . Considering expressions for representation $u^h \circ \tau_{\varepsilon} \circ \varphi^{-1}$ infinitesimal a point-transformation τ_{ε} , decomposing a difference $\Gamma_{ij}^k(\tau_{\varepsilon}(p)) - \Gamma_{ij}^k(p)$ by Taylor's formula, being limited to members not above ε^2 , we will have the necessary. The theorem is proved.

Note. Since the received result holds in each map $(U; \varphi; \mathbb{R}^n)$ the equality can be noted in the invariant form $P^{(\varepsilon)} = \varepsilon \cdot \mathcal{L}_X \nabla + \underline{O}(\varepsilon^2)$.

Everywhere next, the symmetrization operator will denote by the letter S. Besides, for a field of tensors $T \in \mathfrak{T}_m^1(M)$, fields of vectors ξ , along a curve \mathscr{C} , a field of vectors $T(\underbrace{\xi...,\xi}_m)$,

defined along a curve \mathscr{C} will denote by $T(\xi^{m})$.

Lemma 1. Let in affine connected space (M, ∇) the geodesic curve \mathscr{C} , admiting canonical parameter t, is given and X - infinitesimal transformation M. Then a vectors of curvature of a geodesic curve \mathscr{C} , with respect to a preimage $\tilde{\nabla}_{(\varepsilon)}$ affine connection ∇ under infinitesimal a point-transformation τ_{ε} , defined by a field of vectors X, have form:

$$\tilde{\xi}_{m}^{\left(\varepsilon\right)}=\varepsilon\cdot L_{mX}\left(\xi^{m+1}\right)+\underline{O}\left(\varepsilon^{2}\right)$$

(resp. $\tilde{\xi}_m^{(\varepsilon)} = \varepsilon \cdot \mathcal{L}_{mX}(\xi^{m+1}) + \underline{O}(\varepsilon^2)$), where ξ - a field of tangent vectors along a curve \mathscr{C} , and a field of tensors $L_{mX} \in \mathfrak{T}_{m+1}^1(M)$ (resp. $\mathcal{L}_{mX} \in \mathfrak{T}_{m+1}^1(M)$) it is defined recurrently by a rule

$$L_{1X} = \mathcal{L}_X \nabla, \ L_{mX} = \nabla L_{m-1X}$$

(resp. $\mathcal{L}_{1X} = S(\mathcal{L}_X \nabla), \ \mathcal{L}_{mX} = S(\nabla \mathcal{L}_{m-1X})).$

Proof. We will apply the theorem 2 (see [18]). Then $\tilde{\xi}_m^{(\varepsilon)} = P_m^{(\varepsilon)} (\xi^{m+1})$, where the tensor field $P_m^{(\varepsilon)} \in \mathfrak{T}_m^1(U)$ is defined recurrently by a rule $P_1^{(\varepsilon)} = P^{(\varepsilon)}, P_m^{(\varepsilon)} = \nabla P_{m-1}^{(\varepsilon)} + P^{(\varepsilon)} \circ$

 $\left(\delta \otimes P_{m-1}^{(\varepsilon)}\right)$. Using the previous lemma, we will receive $P_1^{(\varepsilon)} = P^{(\varepsilon)} = \varepsilon \cdot L_X \nabla + \underline{O}(\varepsilon^2) = \varepsilon \cdot L_{1X} + \underline{O}(\varepsilon^2)$. We suppose is shown, that $P_{m-1}^{(\varepsilon)} = \varepsilon \cdot L_{m-1X} + \underline{O}(\varepsilon^2) \in \mathfrak{T}_m^1(U)$. Then

2013, 1

$$P_{m}^{(\varepsilon)} = \nabla P_{m-1}^{(\varepsilon)} + P^{(\varepsilon)} \circ \left(\delta \otimes P_{m-1}^{(\varepsilon)}\right) =$$
$$= \varepsilon \cdot \nabla L_{m-1X} + \underline{O}\left(\varepsilon^{2}\right) = \varepsilon \cdot L_{mX} + \underline{O}\left(\varepsilon^{2}\right).$$

From here we will receive the necessary. Similarly for a field of tensors \mathcal{L}_m .

Take account the previous lemma, we will receive

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon^r} \xi \wedge \tilde{\xi}_1^{(\varepsilon)} \wedge \dots \wedge \tilde{\xi}_r^{(\varepsilon)} =$$

= $\delta(\xi) \wedge L_{1X}(\xi^2) \wedge \dots \wedge L_{rX}(\xi^{r+1}).$

The given equality allows to receive a necessary and sufficient condition r-g.i.t. That infinitesimal transformation X was r-g.i.t. necessary and sufficient that conditions were satisfied

$$\delta\left(\xi\right) \wedge L_{1X}\left(\xi^{2}\right) \wedge \dots \wedge L_{rX}\left(\xi^{r+1}\right) = 0$$

$$\delta\left(\xi\right) \wedge L_{1X}\left(\xi^{2}\right) \wedge \dots \wedge L_{r-1X}\left(\xi^{r}\right) \neq 0$$

For arbitrary ξ . As ξ is arbitrary, we discover

$$S\left(\delta \wedge L_{1X} \wedge \dots \wedge L_{r-1X} \wedge L_{rX}\right) = 0, \quad (5)$$

$$S\left(\delta \wedge L_{1X} \wedge \dots \wedge L_{r-1X}\right) \neq 0. \tag{6}$$

Similarly, we will receive the conditions equivalent to conditions (5) and (6)

$$S\left(\delta \wedge \mathcal{L}_{1X} \wedge \dots \wedge \mathcal{L}_{r-1X} \wedge \mathcal{L}_{rX}\right) = 0, \quad (7)$$

$$S\left(\delta \wedge \mathcal{L}_{1X} \wedge \dots \wedge \mathcal{L}_{r-1X}\right) \neq 0.$$
(8)

Conditions (7) and (8) are discovered S. G. Leiko in the coordinate form and are the equations r-g.i.t. $\tau(r)$.

If for infinitesimal transformation X the condition is satisfied $S(L_{rX}) = 0$, and as a condition (6), then X is absolutely canonical r-geodesic infinitesimal transformation.

4 HP-transformations.

By a Kählerian space (see [2], [5], [9]) we mean manifold M dimensions n = 2m > 2, with the (pseudo)Riemannian metric given on it g and complex structure F, which satisfy to conditions:

1) holds equality $F^2 = -\delta$;

2) for arbitrary field of vectorses X and Y g(F(X), Y) + g(X, F(Y)) = 0,

3) holds equality $\nabla F = 0$, where ∇ there is a connection of the Levi-Civita of a metric tensor g.

It is said that the field of vectors X is infinitesimal holomorphically projective transformation, or is simple, HP-transformation (see [9]) if it satisfies to a condition

$$\mathcal{L}_X \nabla = \beta \otimes \delta + \delta \otimes \beta - \bar{\beta} \otimes F - F \otimes \bar{\beta},$$

where β - some field of covectors on $M, \bar{\beta} = \beta \circ F$ - dual with it a field of covectors .

If $\beta = 0$, then the HP-transformation reduces to the affine. This case will be trivial.

The field of vectors X is called *analytical* if the condition (see [9]) is satisfied $\mathcal{L}_X F = 0$.

As shown in [9], that infinitesimal transformation preserved holomorphically planar curves necessary and sufficient that it was analytical HP-transformation.

Fields of covectors β and $\overline{\beta}$ analytical HPtransformations possess properties which we will use next. It is shown in [9] (see the equality (3.8)), that in a coordinate neighbourhood $(U; u^h)$ hold equalities

$$\nabla_j \beta_i = -\frac{1}{n+2} \mathcal{L}_X R_{ji},\tag{9}$$

where $R_{ji} = R^{\alpha}_{\alpha j,i}$ is a tensor of Ricci . As is known, the tensor of Ricci Riemannian spaces is symmetrical ([3]). Then the equality (9) shows, that the covariant differential $\nabla\beta$ is symmetrical a tensor field. Besides, the equality (see [9], equality (3.7)) holds

$$\nabla_j \bar{\beta}_i + \nabla_i \bar{\beta}_j = 0, \qquad (10)$$

which shows, that

$$S\left(\nabla\bar{\beta}\right) = 0. \tag{11}$$

Theorem 2. Nontrivial HP-transformation is 2g.i.t.

Proof. Let X is HP-transformation. We take an arbitrary geodesic curve \mathscr{C} in M, admiting canonical parametre t. Let ξ is a field of tangent vectors along a curve \mathscr{C} . Then

$$L_{1X}\left(\xi^{2}\right) = 2\beta\left(\xi\right)\delta\left(\xi\right) - 2\bar{\beta}\left(\xi\right)F\left(\xi\right).$$

Besides, as $\nabla \delta = 0$ and $\nabla F = 0$,

$$L_{2X}\left(\xi^{3}\right) = 2\nabla\beta\left(\xi^{2}\right)\delta\left(\xi\right) - 2\nabla\bar{\beta}\left(\xi^{2}\right)F\left(\xi\right).$$

From here $\delta(\xi) \wedge L_{1X}(\xi^2) = -2\bar{\beta}(\xi)\delta(\xi) \wedge F(\xi)$ and $\delta(\xi) \wedge L_{1X}(\xi^2) \wedge L_{2X}(\xi^3) = 0$. The last shows, that when $\beta \neq 0$, infinitesimal transformation X are 2-g.i.t.. The theorem is proved

5 The flattening properties of vertical and complete lifts of analytical HPtransformations.

Proposition 1. For an arbitrary field of vectors X with respect to connection of the complete lift ∇^{C} , holds equalities $L_{mX^{\mathrm{V}}} = (L_{mX})^{\mathrm{V}}$, $L_{mX^{\mathrm{C}}} = (L_{mX})^{\mathrm{C}}$,

Proof is deduced by an induction on m. Considering a proposition 7.6 ([11]) we will obtain

$$(L_{1X})^{\mathcal{V}} = (L_X \nabla)^{\mathcal{V}} = L_{X^{\mathcal{V}}} \nabla^{\mathcal{C}} = L_{1X^{\mathcal{V}}},$$
$$(L_{1X})^{\mathcal{C}} = (L_X \nabla)^{\mathcal{C}} = L_{X^{\mathcal{C}}} \nabla^{\mathcal{C}} = L_{1X^{\mathcal{C}}}.$$

We suppose is shown, that $L_{m-1X^{\mathrm{V}}} = (L_{m-1X})^{\mathrm{V}}$ and $L_{m-1X^{\mathrm{C}}} = (L_{m-1X})^{\mathrm{C}}$. Then applying a proposition 6.5 ([11]) $L_{mX^{\mathrm{V}}} = \nabla^{\mathrm{C}} L_{m-1X^{\mathrm{V}}} = (L_{mX})^{\mathrm{V}}$, $L_{mX^{\mathrm{C}}} = \nabla^{\mathrm{C}} L_{m-1X^{\mathrm{C}}} = (L_{mX})^{\mathrm{C}}$.

Lemma 2. Let in a point $p \in M$ holds equality

$$S\left(\bar{\beta}\otimes\nabla\beta\right)\Big|_{p} = 0, \tag{12}$$

and for arbitrary fibre coordinates $y = (y^k) \in \mathbb{R}^n$ in a point $\tilde{p} = (p, y) \in TM$ holds equality

$$S\left(\bar{\beta}\otimes\nabla\beta\right)^{\mathrm{C}}\Big|_{\tilde{p}}=0.$$
 (13)

Then is fulfilled the equality

$$\nabla\beta|_p = 0. \tag{14}$$

Proof. Case 1. Let $\bar{\beta}|_p \neq 0$. The equality (12) can be noted in a form

$$S\left(\bar{\beta}\big|_p \otimes \nabla\beta\big|_p\right) = 0. \tag{15}$$

Then applying the equality (15) to a lemma 1 (see [15]), considering symmetry a tensor field $\nabla\beta$, we will obtain equality (14).

Case 2. Let

$$\left. \bar{\beta} \right|_p = 0. \tag{16}$$

Then holds equality

$$\beta|_p = 0. \tag{17}$$

From equalities (16) and (17) follow equalities

$$\bar{\beta}^{\mathrm{V}}\big|_{\tilde{p}} = \left(\bar{\beta}_i\big|_p, 0\right) = 0, \qquad (18)$$

$$\bar{\beta}^{\mathrm{C}}\big|_{\tilde{p}} = \left(\left.\partial\bar{\beta}_{i}\right|_{\tilde{p}}, \left.\bar{\beta}_{i}\right|_{p}\right) = \left(\left.\partial\bar{\beta}_{i}\right|_{\tilde{p}}, 0\right),$$

$$\beta^{\mathcal{C}}\big|_{\tilde{p}} = \left(\left.\partial\beta_i\right|_{\tilde{p}}, \left.\beta_i\right|_p\right) = \left(\left.\partial\beta_i\right|_{\tilde{p}}, 0\right).$$
(19)

Applying a rule of a taking of the complete lift from a tensor product, from (13), considering equality (18), we will have

$$S\left(\left.\bar{\beta}^{\mathrm{C}}\right|_{\tilde{p}}\otimes\left.\left(\nabla\beta\right)^{\mathrm{V}}\right|_{\tilde{p}}\right)=0.$$
(20)

C as e 2.1. We suppose, that there is such collection of fibre coordinates $y = (y^k)$, that in a point $\tilde{p} = (p, y)$ условие The condition

$$\bar{\beta}^{\rm C}\big|_{\tilde{p}} \neq 0. \tag{21}$$

is satisfied. Applying a lemma 1 (see [15]) to equality (20), taking into account a condition (21), we come to equality $(\nabla\beta)^V\Big|_{\tilde{p}} = 0$, From which follows the equality (14).

C as e 2.2. Let for arbitrary collections of fibre coordinates $y = (y^k)$ in a point $\tilde{p} = (p, y)$ holds equality $\bar{\beta}^{C}|_{\tilde{p}} = 0$. Then holds also equality

$$\beta^{\mathcal{C}}\big|_{\tilde{p}} = 0. \tag{22}$$

On the other hand, considering expressions for lifts (19) from equality (22) and definitions of the complete lift of function $\partial \beta_i|_{\tilde{p}} = y^s \cdot \partial_s \beta_i|_p$, we obtain equalities $y^s \cdot \partial_s \beta_i|_p = 0$ for any $i = \overline{1.n}$ and arbitrary collections $y = (y^k)$. As y^s it is arbitrary, from here to find $\partial_s \beta_i|_p = 0$ for any $i = \overline{1.n}$, $s = \overline{1.n}$. Then for arbitrary $i = \overline{1.n}$ and $j = \overline{1.n}$ it is had

$$\nabla_j \beta_i \big|_p = \partial_j \beta_i \big|_p - \Gamma_{ji}^{\alpha} \big|_p \cdot \beta_{\alpha} \big|_p = \partial_j \beta_i \big|_p = 0,$$

That gives equality $\nabla \beta|_p = 0$. The lemma is proved.

Theorem 3. Let X is analytical HPtransformation of Kählerian spaces (M, g, F). Then:

- 1. lifts X^{V} and X^{C} are 1-g.i.t. if and only if $\beta = 0$ that is when X is an infinitesimal affinity;
- 2. lifts X^{V} and X^{C} are absolutely canonical 2g.i.t. if and only if the field of covectors β is absolutely parallel, that is when $\nabla \beta = 0$.
- 3. generally lifts X^{V} and X^{C} are 3-g.i.t.

Proof. We take in space M an arbitrary geodesic curve \mathscr{C} ; Let ξ - a field of tangent vectors along a curve \mathscr{C} .

1) Condition $\tilde{\delta}(\xi) \wedge L_{1X^{V}}(\xi^{2}) = 0$, to equivalently conditions $\beta^{V}(\xi) = 0$, $\bar{\beta}^{V}(\xi) = 0$. From ξ arbitrarily follows, that last conditions are equivalent to equalities

$$\beta = 0. \tag{23}$$

Similarly, condition $\tilde{\delta}(\xi) \wedge L_{1X^{C}}(\xi^{2}) = 0$ to equivalently condition $\beta^{C}(\xi) = 0$, $\bar{\beta}^{C}(\xi) = 0$, $\bar{\beta}^{V}(\xi) = 0$. From ξ arbitrarily follows, that last conditions are equivalent to equality (23). Thus, Lifts X^{V} , X^{C} are 1-g.i.t. if and only if $\beta = 0$ that is when X is an infinitesimal affinity.

2) Condition

$$\tilde{\delta}\left(\xi\right) \wedge L_{1X^{\mathrm{V}}}\left(\xi^{2}\right) \wedge L_{2X^{\mathrm{V}}}\left(\xi^{3}\right) = 0$$

to equivalently condition

$$M_{12} = \begin{vmatrix} \beta^{\mathrm{V}}(\xi) & \bar{\beta}^{\mathrm{V}}(\xi) \\ (\nabla\beta)^{\mathrm{V}}(\xi^2) & (\nabla\bar{\beta})^{\mathrm{V}}(\xi^2) \end{vmatrix} = 0,$$

that is to equality

$$\bar{\beta}^{\mathrm{V}}\left(\xi\right)\left(\nabla\beta\right)^{\mathrm{V}}\left(\xi^{2}\right) = 0.$$
(24)

Considering expression for components of lifts, we will obtain equality $\bar{\beta}_{\iota}\xi^{\iota}\nabla_{j}\beta_{i}\xi^{i}\xi^{j} = 0$, which whereas ξ is arbitrary, equivalent to equality

$$S\left(\bar{\beta}\otimes\nabla\beta\right) = 0. \tag{25}$$

Applying to equality (25) a lemma 2, we will obtain equality

$$\nabla \beta = 0. \tag{26}$$

On the other hand we see, that from equality (26) follows the equality $(\nabla \beta)^{V} = 0$. So also equality $M_{12} = 0$.

Similarly, condition

$$\tilde{\delta}\left(\xi\right) \wedge L_{1X^{C}}\left(\xi^{2}\right) \wedge L_{2X^{C}}\left(\xi^{3}\right) = 0$$

to equivalently conditions $M_{12} = 0$, $M_{13} = 0$ II $M_{23} = 0$, where M_{12} , M_{13} and M_{23} are minors of the matrix

$$\begin{pmatrix} \beta^{\mathrm{C}}(\xi) & \bar{\beta}^{\mathrm{C}}(\xi) & \bar{\beta}^{\mathrm{V}}(\xi) \\ (\nabla\beta)^{\mathrm{C}}(\xi^{2}) & (\nabla\bar{\beta})^{\mathrm{C}}(\xi^{2}) & (\nabla\bar{\beta})^{\mathrm{V}}(\xi^{2}) \end{pmatrix}.$$

Equality $M_{13} = 0$ will take the form

$$\bar{\beta}^{\mathrm{V}}\left(\xi\right)\left(\nabla\beta\right)^{\mathrm{C}}\left(\xi^{2}\right) = 0; \qquad (27)$$

from it we will obtain equality (26). Conversely, from equality (26) we will obtain equalities (27). Besides, from equality (26) follow equalities $L_{2X^{\rm V}}(\xi^3) = 0$ If $L_{2X^{\rm C}}(\xi^3) = 0$. Thus, lifts $X^{\rm V}$ and $X^{\rm C}$ generate absolutely

Thus, lifts X^{V} and X^{C} generate absolutely canonical 2-g.i.t. if and only if the covector field β is absolutely parallel.

3) Obviously

$$\tilde{\delta}(\xi) \wedge L_{1X^{\mathcal{V}}}(\xi^2) \wedge L_{2X^{\mathcal{V}}}(\xi^3) \wedge L_{3X^{\mathcal{V}}}(\xi^4) = 0$$

It is similarly shown, that

$$\tilde{\delta}(\xi) \wedge L_{1X^{\mathrm{C}}}(\xi^{2}) \wedge L_{2X^{\mathrm{C}}}(\xi^{3}) \wedge L_{3X^{\mathrm{C}}}(\xi^{4}) = \\ = 8M_{123}\tilde{\delta}(\xi) \wedge \delta^{\mathrm{V}}(\xi) \wedge F^{\mathrm{V}}(\xi) \wedge F^{\mathrm{C}}(\xi),$$

where M_{123} is a determinant

$$\begin{array}{ccc} \beta^{\mathrm{C}}(\xi) & \bar{\beta}^{\mathrm{C}}(\xi) & \bar{\beta}^{\mathrm{V}}(\xi) \\ (\nabla\beta)^{\mathrm{C}}(\xi^{2}) & (\nabla\bar{\beta})^{\mathrm{C}}(\xi^{2}) & (\nabla\bar{\beta})^{\mathrm{V}}(\xi^{2}) \\ (\nabla^{2}\beta)^{\mathrm{C}}(\xi^{3}) & (\nabla^{2}\bar{\beta})^{\mathrm{C}}(\xi^{3}) & (\nabla^{2}\bar{\beta})^{\mathrm{V}}(\xi^{3}) \end{array}$$

Considering equality (10), we will obtain

$$\nabla_k \nabla_j \bar{\beta}_i + \nabla_k \nabla_i \bar{\beta}_j = \nabla_k \left(\nabla_j \bar{\beta}_i + \nabla_i \bar{\beta}_j \right) = 0.$$
(28)

From equality (28) we find

$$M_{123} = \begin{vmatrix} \beta^{C}(\xi) & \bar{\beta}^{C}(\xi) & \bar{\beta}^{V}(\xi) \\ (\nabla \beta)^{C}(\xi^{2}) & 0 & 0 \\ (\nabla^{2} \beta)^{C}(\xi^{3}) & 0 & 0 \end{vmatrix} = 0.$$

In that case, a condition

$$\tilde{\delta}(\xi) \wedge L_{1X^{\mathcal{C}}}(\xi^2) \wedge L_{2X^{\mathcal{C}}}(\xi^3) \wedge L_{3X^{\mathcal{C}}}(\xi^4) = 0,$$

It is satisfied identically.

Thus, generally lifts X^{V} and X^{C} generate 3-g.i.t. The theorem is proved.

6 The flattening properties of 0th, I th and II th lifts of analytical HPtransformations.

Proposition 2. For an arbitrary field of vectors X with respect to connection of the II-lift ∇^{II} , holds equalities $L_{mX^0} = (L_{mX})^0$, $L_{mX^{\text{II}}} = (L_{mX})^{\text{I}}$, $L_{mX^{\text{II}}} = (L_{mX})^{\text{II}}$.

Proof to similarly proof of the proposition 1.

Lemma 3. Let in a point $p \in M$ holds equality $S(\bar{\beta} \otimes \nabla \beta)|_p = 0$, and for arbitrary fibre coordinates $y = (y^k) \in \mathbb{R}^n$, $z = (z^k) \in \mathbb{R}^n$ in a point $\tilde{p} = (p, y, z) \in T^2M$ holds equality $S(\bar{\beta} \otimes \nabla \beta)^{\mathrm{I}}|_{\tilde{p}} = 0$. Then we have $\nabla \beta|_p = 0$. **Proof** To similarly proof of a lemma 2.

Lemma 4. Let holds equality

$$S\left(\beta \otimes \nabla \beta \otimes \nabla \nabla \beta\right) = 0. \tag{29}$$

Then we have equality

$$S\left(\nabla\nabla\beta\right) = 0. \tag{30}$$

Proof. We will establish equality

$$\nabla\beta \otimes S\left(\nabla\nabla\beta\right) = 0. \tag{31}$$

For this it verify in each point $p \in M$. The equality (29), according to a lemma 3 (see [18]), will take the form

$$S\left(S\left(\bar{\beta}\otimes\nabla\beta\right)\otimes S\left(\nabla\nabla\beta\right)\right)=0.$$
 (32)

Case 1. Let in a point $p \in M$ the condition $S(\bar{\beta} \otimes \nabla \beta)|_p \neq 0$ is satisfied. Then taking account a lemma 1 (see [15]), applying the given condition, from equality (32) we will obtain equality of

$$S\left(\nabla\nabla\beta\right)|_{p} = 0. \tag{33}$$

From here we will obtain equality of

$$\nabla\beta|_{n} \otimes S\left(\nabla\nabla\beta\right)|_{n} = 0. \tag{34}$$

Case 2. Let holds equality of

$$S\left(\bar{\beta}\otimes\nabla\beta\right)\big|_{p}=0.$$
(35)

We take the I-lift from a tensor product, and from equality (32), taking account equalities (35) and 0-lift definitions, we will have equality of

$$S\left(S\left(\bar{\beta}\otimes\nabla\beta\right)^{\mathrm{I}}\Big|_{\tilde{p}}\otimes S\left(\nabla\nabla\beta\right)^{0}\Big|_{\tilde{p}}\right)=0.$$
 (36)

C as e 2.1. Let there will be such collections of fibre coordinates $y = (y^k)$, $z = (z^k)$, that in a point $\tilde{p} = (p, y, z)$ the condition of $S(\bar{\beta} \otimes \nabla \beta)^{\mathrm{I}}\Big|_{\tilde{p}} \neq 0$. is satisfied. Then to equality (36) we can apply a lemma 1 (see [15]). From this we will obtain equality of $S(\nabla \nabla \beta)^0\Big|_{\tilde{p}} = 0$, from which the equality (33), and from here and equality (34) follows.

C as e 2.2. Let for arbitrary collections of fibre coordinates $y = (y^k)$, $z = (z^k)$ in a point $\tilde{p} = (p, y, z)$ holds equality of

$$S\left(\bar{\beta}\otimes\nabla\beta\right)^{\mathrm{I}}\Big|_{\tilde{p}}=0.$$
 (37)

Equalities (35) and (37) allow to apply a lemma 3 from which we will obtain equality of

$$\nabla \beta|_p = 0. \tag{38}$$

From here we will obtain equality (34).

Now we will prove equalities (30). For this purpose we will show, that in each point $p \in M$ holds equality (33). In the given point the equality (31) takes the form (34).

Case 1. Let $\nabla \beta|_p \neq 0$. Then from equality (34) we will obtain (33).

C as e 2. Let the equality (38) holds. We take the I-lift from equality (31) and we assume, that collections of fibre coordinates $y = (y^k)$, $z = (z^k)$ are arbitrary in a point $\tilde{p} = (p, y, z)$. Then we will obtain

$$(\nabla\beta)|_{\tilde{p}}^{\mathbf{I}} \otimes S (\nabla\nabla\beta)|_{\tilde{p}}^{\mathbf{0}} = 0.$$
(39)

C as e 2.1. Let for some collection of fibre coordinates $y = (y^k)$, $z = (z^k)$ in a point $\tilde{p} = (p, y, z)$ the condition of $(\nabla\beta)|_{\tilde{p}}^{\mathrm{I}} \neq 0$. is satisfied. Then from equality (39) we will obtain $S(\nabla\nabla\beta)|_{\tilde{p}}^{0} = 0$, that implies equality (33).

Case 2.2. Let now for any collections of fibre coordinates $y = (y^k)$, $z = (z^k)$ in a point $\tilde{p} = (p, y, z)$ the condition of

$$(\nabla\beta)|_{\tilde{p}}^{\mathrm{I}} = 0. \tag{40}$$

is satisfied. Taking account I-lift definition, equality (40), which is true for any collections $y = (y^k) \in \mathbb{R}^n$, we will obtain $\partial_s (\nabla_j \beta_i)|_p = 0$, for arbitrary $s, i, j = \overline{1, n}$. From this, we find $\nabla \nabla \beta|_p = 0$, It reduces to equality (33). The lemma is proved.

Theorem 4. Let X is analytical HPtransformation Kählerian spaces (M, g, F). Then:

- 1. lifts X^0 , X^{I} , X^{II} are 1-g.i.t. if and only if $\beta = 0$ that is when X is an infinitesimal affinity;
- 2. lifts X^0 , X^I , X^{II} are absolutely canonical 2g.i.t. if and only if the covector field β is absolutely parallel, that is when $\nabla \beta = 0$.
- 3. в общем случае лифт X^0 является 3г.и.п.; lifts $X^{\rm I}$, $X^{\rm II}$ are absolutely canonical 3-g.i.t. if and only if the covector field β is not absolutely parallel and satisfies to equality of $S(\nabla^2\beta) = 0$;
- 4. generally lifts X^{I} , X^{II} are 4-g.i.t.

Proof. We take in space M an arbitrary geodesic curve \mathscr{C} ; Let ξ - a field of tangent vectors along a curve \mathscr{C} . Taking account properties of lifts, we will obtain.

1) Obviously conditions of $\tilde{\delta}(\xi) \wedge L_{1X^0}(\xi^2) = 0$, $\tilde{\delta}(\xi) \wedge L_{1X^{\mathrm{I}}}(\xi^2) = 0$, $\tilde{\delta}(\xi) \wedge L_{1X^{\mathrm{II}}}(\xi^2) = 0$, are equivalent respectively to conditions of $\beta^0(\xi) = 0$, $\bar{\beta}^0(\xi) = 0$, $\beta^{\mathrm{I}}(\xi) = 0$, $\beta^{\mathrm{I}}(\xi) = 0$, $\beta^{\mathrm{I}}(\xi) = 0$, $\beta^{\mathrm{I}}(\xi) = 0$, $\bar{\beta}^{\mathrm{I}}(\xi) = 0$, $\bar{\beta}^{\mathrm{I}(\xi) = 0$, $\bar{\beta}^$

Thus, lifts X^0 , X^{I} , X^{II} are 1-g.i.t. if and only if $\beta = 0$ that is when X is an infinitesimal affinity. 2) Obviously

$$\tilde{\delta}(\xi) \wedge L_{1X^0}(\xi^2) \wedge L_{2X^0}(\xi^3) =$$

$$= -4M_{12}^0 \tilde{\delta}(\xi) \wedge \delta^0(\xi) \wedge F^0(\xi), \qquad (41)$$

where $M_{12}^{0} = \begin{vmatrix} \beta^{0}(\xi) & \bar{\beta}^{0}(\xi) \\ (\nabla\beta)^{0}(\xi^{2}) & (\nabla\bar{\beta})^{0}(\xi^{2}) \end{vmatrix}$. From equality (11) we will obtain equalities of

$$S\left(\nabla\bar{\beta}\right)^{0} = 0, \ S\left(\nabla\bar{\beta}\right)^{\mathrm{I}} = 0, \ S\left(\nabla\bar{\beta}\right)^{\mathrm{II}} = 0.$$
 (42)

Condition of $\tilde{\delta}(\xi) \wedge L_{1X^0}(\xi^2) \wedge L_{2X^0}(\xi^3) = 0$, to equivalently equality of

$$\begin{vmatrix} \beta^{0}(\xi) & \bar{\beta}^{0}(\xi) \\ (\nabla\beta)^{0}(\xi^{2}) & 0 \end{vmatrix} = 0,$$
(43)

which is equivalent to equality of

$$\bar{\beta}^{0}\left(\xi\right)\left(\nabla\beta\right)^{0}\left(\xi^{2}\right)=0.$$

Taking account expressions for lifts, and ξ is arbitrary, we come to equality (25). Applying to equality (25) a lemma 3, we will have (26). On the other hand, from equality (26) the equality (43) follows.

Condition $\tilde{\delta}(\xi) \wedge L_{1X^{\mathrm{I}}}(\xi^2) \wedge L_{2X^{\mathrm{I}}}(\xi^3) = 0$ to equivalently equalities of

$$M_{12}^{\rm I} = 0, \ M_{13}^{\rm I} = 0, \ M_{14}^{\rm I} = 0, M_{23}^{\rm I} = 0, \ M_{24}^{\rm I} = 0,$$
(44)

where $M_{12}^{\rm I}, M_{13}^{\rm I}, M_{14}^{\rm I}, M_{23}^{\rm I}, M_{24}^{\rm I}, M_{34}^{\rm I}$ minors of a matrix of

$$\begin{pmatrix} \beta^{\mathrm{I}}(\xi) & \beta^{0}(\xi) & \bar{\beta}^{\mathrm{I}}(\xi) & \bar{\beta}^{0}(\xi) \\ (\nabla\beta)^{\mathrm{I}}(\xi^{2}) & (\nabla\beta)^{0}(\xi^{2}) & (\nabla\bar{\beta})^{\mathrm{I}}(\xi^{2}) & (\nabla\bar{\beta})^{0}(\xi^{2}) \end{pmatrix}$$

The equality $M_{24}^{I} = 0$, taking into account equalities (42), is (43) from which the equality (26) follows; On the other hand, equalities (26) imply equalities (44).

Condition

 $\tilde{\delta}(\xi) \wedge L_{1X^{\text{II}}}(\xi^2) \wedge L_{2X^{\text{II}}}(\xi^3) = 0$ to equivalently equalities of

where M_{12}^{II} , M_{13}^{II} , M_{14}^{II} , M_{15}^{II} , M_{23}^{II} , M_{24}^{II} , M_{25}^{II} , M_{34}^{II} , M_{35}^{II} , M_{45}^{II} minors of a matrix of

$$\begin{pmatrix} \beta^{\mathrm{II}}(\xi) & \beta^{\mathrm{I}}(\xi) & \bar{\beta}^{\mathrm{II}}(\xi) & \bar{\beta}^{\mathrm{I}}(\xi) \\ (\nabla\beta)^{\mathrm{II}}(\xi^{2}) & (\nabla\beta)^{\mathrm{I}}(\xi^{2}) & (\nabla\bar{\beta})^{\mathrm{II}}(\xi^{2}) & (\nabla\bar{\beta})^{\mathrm{I}}(\xi^{2}) & (\nabla\bar{\beta})^{0}(\xi^{2}) \end{pmatrix}$$

From equality $M_{25}^{\text{II}} = 0$, taking account equalities (42), we will obtain equality (26). On the other hand, the equality (26) reduces to equalities (45) and to equalities $L_{2X^0}(\xi^3) = 0$, $L_{2X^{\text{II}}}(\xi^3) = 0$ and $L_{2X^{\text{II}}}(\xi^3) = 0$.

Thus, lifts X^0 , X^{I} , X^{II} are absolute canonical 2-g.i.t. if and only if the covector field β is absolute parallel.

3) Obviously

$$\tilde{\delta}\left(\xi\right) \wedge L_{1X^{0}}\left(\xi^{2}\right) \wedge L_{2X^{0}}\left(\xi^{3}\right) \wedge L_{3X^{0}}\left(\xi^{4}\right) = 0$$

So generally, the lift X^0 generates 3-g.i.t. It is similarly shown, that a condition of

$$\tilde{\delta}\left(\xi\right) \wedge L_{1X^{\mathrm{I}}}\left(\xi^{2}\right) \wedge L_{2X^{\mathrm{I}}}\left(\xi^{3}\right) \wedge L_{3X^{\mathrm{I}}}\left(\xi^{4}\right) = 0$$

to equivalently conditions of

$$M_{123}^{\rm I} = 0, \ M_{124}^{\rm I} = 0, \ M_{134}^{\rm I} = 0, \ M_{234}^{\rm I} = 0, \ (46)$$

where $M_{123}^{I}, M_{124}^{I}, M_{134}^{I}, M_{234}^{I}$ minors of a matrix of

$$\begin{pmatrix} \beta^{\mathrm{I}}(\xi) & \beta^{0}(\xi) & \bar{\beta}^{\mathrm{I}}(\xi) & \bar{\beta}^{0}(\xi) \\ (\nabla\beta)^{\mathrm{I}}(\xi^{2}) & (\nabla\beta)^{0}(\xi^{2}) & (\nabla\bar{\beta})^{\mathrm{I}}(\xi^{2}) & (\nabla\bar{\beta})^{0}(\xi^{2}) \\ (\nabla^{2}\beta)^{\mathrm{I}}(\xi^{3}) & (\nabla^{2}\beta)^{0}(\xi^{3}) & (\nabla^{2}\bar{\beta})^{\mathrm{I}}(\xi^{3}) & (\nabla^{2}\bar{\beta})^{0}(\xi^{3}) \end{pmatrix}$$

$$(47)$$

Taking account expressions for lifts, from equality (28) it is had

Taking account equalities (42) and (48) in (46), we will obtain

$$\bar{\beta}^{0}(\xi) \left((\nabla\beta)^{\mathrm{I}}(\xi^{2}) (\nabla^{2}\beta)^{0}(\xi^{3}) - (\nabla\beta)^{0}(\xi^{2}) (\nabla^{2}\beta)^{\mathrm{I}}(\xi^{3}) \right) = 0.$$

From here we will obtain

$$S\left(\beta \otimes \nabla \beta \otimes \nabla \nabla \beta\right) = 0. \tag{49}$$

From a lemma 4 the equality of

$$S\left(\nabla\nabla\beta\right) = 0. \tag{50}$$

2013, 1

follows. Conversely, let the equality (50) is true. Then it is obvious $S(\nabla \nabla \beta)^0 = 0$, $S(\nabla \nabla \beta)^{I} = 0$. In that case the matrix (47) will take the form of

$$\left(\begin{array}{ccc} \beta^{\mathrm{I}}(\xi) & \beta^{0}(\xi) & \bar{\beta}^{\mathrm{I}}(\xi) & \bar{\beta}^{0}(\xi) \\ (\nabla\beta)^{\mathrm{I}}(\xi^{2}) & (\nabla\beta)^{0}(\xi^{2}) & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right),$$

From here conditions (46) follow. Besides, the equality (50) implies equality $L_{3\chi^{I}}(\xi^{4}) = 0$.

Thus, the lift X^{I} is absolutely canonical 3g.i.t. if and only if the covector field β is not absolute parallel and satisfies to equality (50).

It is easy to show, that a condition of

$$\tilde{\delta}\left(\xi\right) \wedge L_{1X^{\mathrm{II}}}\left(\xi^{2}\right) \wedge L_{2X^{\mathrm{II}}}\left(\xi^{3}\right) \wedge L_{3X^{\mathrm{II}}}\left(\xi^{4}\right) = 0$$

to equivalently condition of

$$\begin{split} M_{123}^{\rm II} &= 0, M_{124}^{\rm II} = 0, M_{125}^{\rm II} = 0, M_{134}^{\rm II} = 0, \\ M_{135}^{\rm II} &= 0, M_{145}^{\rm II} = 0, M_{234}^{\rm II} = 0, M_{235}^{\rm II} = 0, \\ M_{245}^{\rm II} &= 0, M_{345}^{\rm II} = 0, \end{split}$$

where M_{123}^{II} , M_{124}^{II} , M_{125}^{II} , M_{134}^{II} , M_{135}^{II} , M_{145}^{II} , M_{234}^{II} , M_{235}^{II} , M_{245}^{II} , M_{345}^{II} are minors of a matrix of

$$\begin{pmatrix} \beta^{\mathrm{II}}(\xi) & \beta^{\mathrm{I}}(\xi) & \bar{\beta}^{\mathrm{II}}(\xi) & \bar{\beta}^{\mathrm{I}}(\xi) & \bar{\beta}^{0}(\xi) \\ (\nabla\beta)^{\mathrm{II}}(\xi^{2}) & (\nabla\beta)^{\mathrm{I}}(\xi^{2}) & 0 & 0 & 0 \\ (\nabla^{2}\beta)^{\mathrm{II}}(\xi^{3}) & (\nabla^{2}\beta)^{\mathrm{I}}(\xi^{3}) & 0 & 0 & 0 \end{pmatrix}$$
(52)

The equality $M_{125}^{\text{II}} = 0$ will take the form of

$$\bar{\beta}^{0}(\xi) \left((\nabla \beta)^{\mathrm{II}}(\xi^{2}) (\nabla^{2} \beta)^{\mathrm{I}}(\xi^{3}) - (\nabla \beta)^{\mathrm{I}}(\xi^{2}) (\nabla^{2} \beta)^{\mathrm{II}}(\xi^{3}) \right) = 0.$$

From here we will obtain

$$\bar{\beta}_{\alpha}\xi^{\alpha}\nabla_{\beta}\beta_{\iota}\xi^{\iota}\xi^{\beta}\nabla_{k}\nabla_{j}\beta_{i}\xi^{i}\xi^{j}\xi^{k}=0.$$

As last equality is satisfied for arbitrary ξ we will obtain equality (49) which taking account a lemma 4, implies equality (50).

Conversely, if the equality (50) is valid the matrix (52) will take the form of

$$\begin{pmatrix} \beta^{\mathrm{II}}(\xi) & \beta^{\mathrm{I}}(\xi) & \bar{\beta}^{\mathrm{II}}(\xi) & \bar{\beta}^{\mathrm{I}}(\xi) & \bar{\beta}^{0}(\xi) \\ (\nabla\beta)^{\mathrm{II}}(\xi^{2}) & (\nabla\beta)^{\mathrm{I}}(\xi^{2}) & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

National University of Kyiv Series: Physics & Mathematics

that implies conditions (51) are satisfied. Besides, the equality (50) reduces to equality $L_{3X^{II}}(\xi^4)$.

Thus, the lift X^{II} is 3-g.i.t. if and only if the covector field β is not absolute parallel and satisfies to equality (50).

4) We take from equality (28) a covariant differential; we will obtain

It is easy to show, that a condition of

$$\tilde{\delta}(\xi) \wedge L_{1X^{\mathrm{I}}}(\xi^{2}) \wedge L_{2X^{\mathrm{I}}}(\xi^{3}) \wedge \\ \wedge L_{3X^{\mathrm{I}}}(\xi^{4}) \wedge L_{4X^{\mathrm{I}}}(\xi^{5}) = 0$$

to equivalently condition $M_{1234}^{I} = 0$, where

$$M_{1234}^{\mathrm{I}} = \begin{vmatrix} \beta^{\mathrm{I}}(\xi) & \beta^{\mathrm{0}}(\xi) & \bar{\beta}^{\mathrm{I}}(\xi) & \bar{\beta}^{\mathrm{0}}(\xi) \\ (\nabla\beta)^{\mathrm{I}}(\xi^{2}) & (\nabla\beta)^{\mathrm{0}}(\xi^{2}) & 0 & 0 \\ (\nabla^{2}\beta)^{\mathrm{I}}(\xi^{3}) & (\nabla^{2}\beta)^{\mathrm{0}}(\xi^{3}) & 0 & 0 \\ (\nabla^{3}\beta)^{\mathrm{I}}(\xi^{4}) & (\nabla^{3}\beta)^{\mathrm{0}}(\xi^{4}) & 0 & 0 \end{vmatrix} = 0$$

That it is easy to obtain application of the theorem of Laplace about determinant expansion on columns 3, 4; All minors of the second order arranged in columns 3 and 4 vanish. Means, the given condition is satisfied identically. Thus, generally the lift X^{I} is 4-g.i.t. It is easy to show, that a condition of

$$\tilde{\delta}(\xi) \wedge L_{1X^{\text{II}}}(\xi^2) \wedge L_{2X^{\text{II}}}(\xi^3) \wedge \wedge L_{3X^{\text{II}}}(\xi^4) \wedge L_{4X^{\text{II}}}(\xi^5) = 0$$

to equivalently condition of

$$M_{1234}^{\rm II} = 0, \ M_{1235}^{\rm II} = 0, M_{1345}^{\rm II} = 0, \ M_{2345}^{\rm II} = 0,$$
(53)

where M_{1234}^{II} , M_{1235}^{II} , M_{1345}^{II} , M_{2345}^{II} minors of a matrix of

$$\begin{pmatrix} \beta^{\mathrm{II}}(\xi) & \beta^{\mathrm{I}}(\xi) & \bar{\beta}^{\mathrm{II}}(\xi) & \bar{\beta}^{\mathrm{II}}(\xi) & \bar{\beta}^{0}(\xi) \\ (\nabla\beta)^{\mathrm{II}}(\xi^{2}) & (\nabla\beta)^{\mathrm{I}}(\xi^{2}) & 0 & 0 & 0 \\ (\nabla^{2}\beta)^{\mathrm{II}}(\xi^{3}) & (\nabla^{2}\beta)^{\mathrm{I}}(\xi^{3}) & 0 & 0 & 0 \\ (\nabla^{3}\beta)^{\mathrm{II}}(\xi^{4}) & (\nabla^{3}\beta)^{\mathrm{I}}(\xi^{4}) & 0 & 0 & 0 \end{pmatrix}$$

Each of minors $M_{1234}^{\text{II}}, M_{1235}^{\text{II}}, M_{1345}^{\text{II}}, M_{2345}^{\text{II}}$ has two columns arranged in which all minors of the second order vanish; Under the theorem of Laplace from here follows, that conditions (53) are satisfied identically.

Thus, generally the lift X^{II} is 4-g.i.t. The theorem is proved.

Література

- A. Fialkow Conformal geodesics // Trans. Amer. Math. Soc. - 1939. - 45. - P. 443-473.
- T. Otsuki, Y. Tashiro On curves in Kählerian spaces // Math. J. PlaceNameplaceOkayama PlaceTypeUniv. 1954. – Vol. 4, No. 1. – P. 57-78.
- P. K. Rashevsky Riemannian geometry and the tensor analysis - M: Nauka, 1967 - 664 p. (Russian)
- K. Yano Concircular geometry I IV // Proc. Imp. Acad. Tokyo. – 1940. – 16. – P. 195-200; 354-360; 442-448; 505-511.
- Y. Tashiro On holomorphically projective correspondences in an almost complex space // Math. J. PlaceNameplaceOkayama PlaceTypeUniv. – 1957. – Vol. 6, No. 2. – P. 147-152.
- S. G. Leiko Linear r-geodetic diffeomorphisms of tangent bundles of the higher orders and the higher degrees//Third. Geometrical. seminar. - Kazan, 1982. - Vol. 14. - P 34-46. (Russian)
- S. G. Leiko *R*-geodetic cuts of a tangent bundle//Mathematics. - 1994. - №3. - P 32-42. - (Izv. vuzov) (Russian)
- S. Ishihara On infinitesimal concircular transformations // Kodai Math. Sem. Rep. – 1960. – Vol. 12, No. 2. – P. 45-56.
- 9. S. Tachibana, S. Ishihara On infinitesimal holomorphically projective transformations in Kählerian manifolds // Tohoku Math. J. – 1960. – Vol. 12, No. 1. – P. 77-101.
- S. G. Leiko R-geodetic transformations and their groups to the tangent bundles, induced by geodesic transformations of basis manifold//Mathematics. - 1992. - № 2. - P 62-71.
 - (Izv. vuzov) (Russian)

- 11. K. Yano, S. Ishihara Tangent and cotangent bundles. Differential geometry

 StateplaceNew York: Marcel Dekker, 1973
 434 p.
- K. Yano, S. Ishihara Differential geometry of tangent bundles of order 2 // Kodai Math. Semin. Repts. - 1968. - Vol. 20, No. 3. -P. 318-354.
- S. G. Leiko R-geodetic transformations and their groups to the tangent bundles, induced by concircular transformations of basis manifold // Mathematics. - 1998. - № 6. - P. 35-45. -(Izv. vuzov) (Russian)
- 14. K. M. Zubrilin P geodesic transformations and their groups to tangent bundles of the second order, induced by concircular transformations of bases // Ukrainian mathematical journal. 2009. Vol 61, Nº 3.
 P. 346-364. (Russian)
- 15. K. M. Zubrilin r-geodetic diffeomorphisms of tangent bundles induced by holomorphicprojective diffeomorphisms of Kählerian spaces // Zbirnik pracy Institute mathematics NAN Ukrain. - 2006. - Vol 3, № 3. - P. 132-162. (Russian)
- 16. S. G. Leiko *Riemannian geometry: [manual]* Odesa: Astroprint, 2000. 212 c. (Ukrainian)
- K. M. Zubrilin P geodesic diffeomorphisms of tangent bundles with connection of the horizontal lift, induced geodesic (projective) diffeomorphisms of bases // Prikladnie problemi Mechanics and mathematics. – 2008. – Vol. 6. – P. 48-60. (Ukrainian)
- 18. K. M. Zubrilin Flattening properties of diffeomorphisms of tangent bundles of the second order, induced holomorphically projective diffeomorphisms of bases // Matematichni methodi ta Phisiko-mehanicni polya. - 2011. - Vol 54, № 4. - P. 20-35. (Ukrainian)

Надійшла до редколегії 19.06.2012