

2013, 2 Bulletin of Taras Shevchenko
National University of Kyiv

Series Physics & Mathematics

 519.7

. .1, .,
. .2, ,

. ., 3

,

++
.

,

,
.

: ,

, ,
.

1 , 73000,
. , . 40 , 27,
-mail: vladimirius@gmail.com

2
, 100,

03680, . , . 40,
-mail: antonguba@ukr.net

3 « »,
03680, . , . 15,
-mail: costa@iss.org.ua

Peschanenko V. S.1, PhD, associate professor,
Guba . .2, PhD student,
Shushpanov C. I.3, software developer

Mixed concrete-symbolic predicate
transformer

Annotation
The technique that allows the use of direct

execution of C++ code together with symbolic
solving and proving instead of classical symbolic
modeling is presented. The restrictions on incoming
data are described and it is proved that defined
separation of tasks does not lead to contradictions
and corresponds to the detected constraints.

Key Words: verification, symbolic modeling,
insertion modeling, test case generation.

1 Kherson state university, 73000 Ukraine, Kherson,
40 Rokiv Zovtna street, 27,
-mail: vladimirius@gmail.com

2 Department 100 of Glushkov Institute of
cybernetics NAS Ukraine, 03680, Kyiv, Glushkova
ave., 40,
-mail: antonguba@ukr.net

3 LLC «Information software systems», 03680,
Kyiv, str. Bozhenko 15,
-mail: costa@iss.org.ua

.- ., . . (TAAPSD’2012)

Introduction

Modern software is becoming increasingly
complex and needs to be highly reliable. Testing is
commonly used for ensuring the reliability of
software but it does not guarantee a detection of all
errors in the product. Considering that the volume
and complexity of requirements of software are
increasing, the problem of automatic verification of
industrial projects is actual problem. The technique
of symbolic verification of requirement
specifications of software systems has shown good
results in automatic detection of reachability of
deadlocks and violation of user-defined properties
[1]. In previous works [1-5], symbolic models of
systems, which are transition systems with symbolic
states represented by formulae of first order logic,

were considered. A relation of transitions between
the formulae is determined and marked by basic
protocols, which are considered as actions performed
in the system. A basic protocol is a formula of
dynamic logic)),(),(),((rxrxPrxx and
describes the local properties of a system in terms of
pre- and postconditions and . Both are formulae
of first order multisorted logic interpreted on a data
domain, P is a process, represented by means of an
MSC diagram, and describes the reaction of a system
triggered by the precon dition, x is a set of typed data
variables, and r is a set of environment and agent
attributes. The general theory of basic protocols is
presented in [2].

At transitions in the space of formulas, a
postcondition is considered as an operator. As the

© V.S. Peschanenko, A.A. Guba,
C.I. Shushpanov, 2013

89

2013, 2 Bulletin of Taras Shevchenko
National University of Kyiv

Series Physics & Mathematics

operator transforms one formula to another, in [3] a
term “predicate transformer” was used. Thus, to
compute transitions between the states of such
models, basic protocols are interpreted as predicate
transformers: for a given symbolic state of a system
and a given basic protocol, the direct predicate
transformer generates the next symbolic state as its
strongest postcondition and the backward predicate
transformer generates the previous symbolic state as
its weakest precondition. These concepts have been
implemented in VRS (Verification of Requirement
Specifications) system [4] and IMS (Insertion
Modeling System) system [5].

Splitting formulae into concrete and symbolic

parts
There are two main disadvantages of “classic”

symbolic modeling [6]: expensive proving and
solving processing during the modeling of a system
behavior and inability of processing concrete run-
time values, for example, when the decision
procedure cannot handle the complex mathematical
constraints that are generated or when code that uses
native or external libraries shall be processed.
Therefore, the formulae shall be split into two parts:
concrete and symbolic. For this purpose, we split the
formulae of initial state and both pre- and
postconditions of each basic protocol into two parts.

Data types

Before talking about splitting formulae into
symbolic and concrete parts let us see which data
types could be supported by our models. User can
use the APS [7] data types in the models:

a) simple data types: Boolean, integer, real,
enumerated, and symbolic,

b) structured data types: uninterpreted
functional symbols, arrays, and lists of simple date
types.

Symbolic type is represented by expression in
algebra of free terms. Enumerated type is a user-
defined one contains symbolic constants (atomic
expressions in algebra of free terms). Parameters and
returned value of uninterpreted functional symbols
are simple data types only. Let denote that if we are
talking about functional, then we mean uninterpreted
functional symbol. Arrays are considered as
uninterpreted functional symbols with bound
restrictions for values of parameters.

Concrete basic protocols technique

User requirements for formula splitting into
symbolic and concrete parts can be defined by the
following statements:

1. User should define a set of concrete attributes
in project which always have concrete values in a
model.

2. System should analyze this user’s defined set
of concrete attributes and split initial environment
state and basic protocol into two parts: symbolic and
concrete.

3. If this splitting is impossible, then it prints
error message and finishes its work.

Set of concrete attributes

In general, it is hard to determine automatically
which attribute has concrete values in model. From
other point of view, user, who has created a model,
knows which attributes always have concrete values
in it. So, let c be a set of attributes, which always has
concrete values in a model. This set is defined by
user. c is called the set of concrete attributes.

Set c should be finite, because otherwise it is hard
to understand what should be done for functionals
with integer or real parameters. For example, we
have next definition of functional: f: (int) int,
initial state: f(0) = 0. So, what should we say about
formula (f(i) = 0) (i 0)? All of them could have
any integer value and the last formula is unsolvable
in terms of concrete model, because it defines
infinite set of attributes (…, f(-2), f(-1), f(0), f(1),
f(2), …). Attribute of symbolic type can be handled
as concrete if it consists only from concrete
attributes, because, in general, it can have infinite set
of values. Abstract lists, which have arbitrary
number of values in their elements, cannot be used,
because it is impossible to implement this with
concrete values only. For example, we have a list:
l: list of int, initial: l = (Nil;Nil), where “;” marks
abstract part, and basic protocol
(get_from_head(l)>0) <>1, where get_from_head
function returns head of the list. So, let’s try to apply
it to initial: x(x>0 l = (x,Nil;Nil))). It is wrong to
change this formula by concrete value of x, because
it is just a property and we don’t know any concrete
value of x. So, attribute l can’t be a concrete
attribute.

Finally, we can define following restrictions for
set c:

1) Each concrete attribute from c should always
have one or finite number of concrete values.

2) Symbolic concrete attribute is allowed if it
value is constructed from other concrete attributes
from c.

3) Functional with integer, real or symbolic
parameters could not be used as concrete attribute.

4) Abstract list are forbidden in c.

90

2013, 2 Bulletin of Taras Shevchenko
National University of Kyiv

Series Physics & Mathematics

Algorithm of splitting environment state
formulae and basic protocols conditions into

symbolic and concrete parts.
Let E(r) be an environment state. Application of a

basic protocol to an environment state looks like the
following formula:

)),,(),,()((
))),()()(,((

rxrxrEptx
rxrErx

where pt is a function of predicate transformer [3]. In
general, a postcondition of basic protocol can be
considered as following conjunction:

),(),(),(),(rxCrxLrxArx
where A(x,r) is a conjunction of assignments, L(x,r)
is a conjunction of list operators add_to_tail,
add_to_head, C(x,r) is a formula part of
postcondition.

Let cEcrE)/(be an environment state, where
r/c is the set of attributes, which have symbolic
values, c is the set of concrete attributes defined by
user, and cE is a disjunction of conjunctions of
concrete values of attributes from c. Any concrete
attribute in c has corresponded concrete value in all
conjunctions in cE . For example, let

))3()2()1()1((0)(
},,{},,,{

zyzyxrE
zyczyxr

then

)3()2()1()1(
),0()()/(

zyzyE
xxEcrE

c
.

User, who creates a specification, knows attributes,
which have concrete values in a project. It means
that it is always possible to split such environment
into concrete and symbolic parts. From that point of
view, the pre- and postconditions could be split in
concrete and symbolic part too:

))/,()/,()/,((ccc crxcrxPcrxx
where c is a concrete precondition, c is a
concrete postcondition,)/,(crxPc is obtained from

),(rxP after substitution of concrete values from

cE .
Therefore, the restrictions for basic protocols are

following:
5) cc , shouldn’t depend on parameters of basic

protocol x.
6) If l c and l is a concrete list, then list

operators add_to_tail, add_to_head can contain
constant or expression with attributes from c only. It
is possible to use an expression with attribute from c
for calculation of its value after substitution of
concrete values.

7))()(cLcAc can contain assignments and
list operators only, because formula) of
postcondition expresses some property which should
be true after application of basic protocol. It means
that attributes from) should lose their concrete
values and should satisfy). In that case the
restriction 1) is broken.

Let cEcrE)/(be an environment state,
))/,()/,()/((ccc xrxcrxPcrxB

Theorem 1.

),())/,(),/,()/((
))/,(,)/,()/((

ccc

ccc

EptcrxcrxcrEpt
crxcrxEcrEpt

Proving.
pt function builds lists ptptpt zsr ,, from

postcondition ccrx)/,(and formula

cc crxEcrE)/,()/(, where ptr is a set of
attributes expressions from left part of assignment of
postcondition, pts is a set of attributes expressions
from formula part of postcondition, ptz is a set of
other attributes expressions from formula and
postcondition. We know that sets of attribute
expressions from pairs)/,()/(crxcrE and

ccE ,)/,(crx and c are not intersected. It
means that we could split each set ptptpt zsr ,, on two
sets ccrptccrptccrpt rzzsssrrr /// ,, and

ccr rr / , ccr ss / , ccr zz / , because
ccr / . Let’s write formula which is built by

pt function.
Let ccc EDcrxcrEcrD),/,()/()/(, so

),,(),,(
),,()(,(

),(

))),,(

),,(
),,(

),,((
),,(

),,(),,(
),,()(,,,(

//////

/////

//

///

//////

/////

crcrcricrcrcri

crcrcrcrcr

crcr

cccj

cccj

cccj

ccccj

crcrcri

crcrcricrcrcri

crcrcrcccrcri

zyxLzyxR
zyxDyx

srC

zyxE

zyxL
zyxR

zyxD
zyxE

zyxLzyxR
zyxDyxyxq

where cccrcr yxyx ,,, // are variables which are
obtained from cccrcr srsr ,,, // sets accordingly, pt
replaces attribute expressions from cccrcr srsr ,,, //
on these variables in cDcrD),/(and some part of

91

2013, 2 Bulletin of Taras Shevchenko
National University of Kyiv

Series Physics & Mathematics

jjiii ERELR ,,,, . iL is a symbolic list part of
postcondition, jL is a concrete list part of
postcondition.

...))),,(()),,((
),,(

///22///11

///

crcrcrcrcrcr

crcrcri

zyxtrzyxtr
zyxR

...))),,((
)),,((),,(

22

11

ccc

ccccccj

zyxtr
zyxtrzyxR

iR (jR) is obtained from after substitution of
variables instead of attribute expressions from

)(/ ccr rr in right-sides of assignments.
To describe the construction of

),,(/// crcrcri zyxE , we will consider the set M of all
pairs of functional expressions of the form

,...),(,...),,()),(),((2121 vvvuuuvfuf , where f(u)
is chosen from list crr / , and f(v) – from lists

crcr zs // , . These functional expressions must be
equal, if their arguments were equal before
application of basic protocol. Similarly for

),,(cccj zyxE ,),(// crcr srC is a formula part of
postcondition. 1),(cc srC , because of restriction 7.

So,

),())/,(),/((

)()(

)()(

))/,(,)/((

/
2

/
1

/
2

/
1

cc

c
jj

crcr

c
jj

crc
jj

cr
cc

DptxrxcrDpt

qqq

qqqq

crxDcrDpt

Theorem is proved.
Let cEcrE)/(be an environment state,

))()/,()/,(
)()/,((

ccrxcrxP
ccrxxB

cc

c

Lemma 1.
If)(cE cc satisfy restrictions 1-4 and basic

protocol B satisfy restrictions 5-7 then new
environment state 0))(),((ccEpt ccc satisfies
restriction 1-4.

Proving.
Formula))(),((ccEpt ccc satisfies

restrictions 2-4 because of monotony of pt function
[2] (if)(cE cc satisfies restrictions 2-4 then

))(),((ccEpt ccc satisfies too). If basic protocol
B satisfies restrictions 5-7 then

))(),((ccEpt ccc satisfies the restriction 1,
because it’s impossible to make such transition that
some attribute from c would obtain infinite number
of concrete value without formulae part of

postcondition, parameter of basic protocol and
abstract lists.

So, lemma is proved.
This theorem and lemma mean that the

application of a basic protocol which precondition,
process, and postcondition are split into concrete and
symbolic parts could be considered in the following
way:

1)))(),((0)(ccEptcE cccccc ,

2)

))(),((
)))/,(),/,()/,(((

)0))/,()/(((
)0))(),(((

ccEpt
crxcrxcrxEptx

crxcrEx
ccEpt

cccc

cccc

,

where cpt is a concrete predicate transformer
function that assigns the concrete values to the
attributes from c set (sometimes it could create a
disjunction of concrete values). This function could
be easily translated into C++ language for each basic
protocol with using of restrictions 1-7.

Implementation

In base language [2], we rely on the following
types of functional symbols: integer, real, Boolean,
symbolic, and a set of enumerated data types are
defined as simple types. Functional symbols of arity
0 correspond to simple attributes; others correspond
to the attributes of functional types or functional
attributes. For list types, access functions are
defined, and lists can change their values by adding
or removing elements to (from) head or tail only.
Thus, list types exhibit the behavior of queues.
Attributes of array type are also possible. In separate
C++ file concrete integer attributes could be
represented as int attributes, concrete real attributes
could be represented as double attributes, concrete
Boolean attributes could be represented as bool
attributes, concrete attributes of enumerated types
could be represented as attributes of enum type with
possible values. Functional attributes of
aforementioned types could be represented as STL
vector attributes of corresponding simple type.
Attributes of list type could be represented as STL
stack type. Attributes of array type could be
represented as C++ array.

For each basic protocol, a separate C++ function
shall be created. It should be defined with the help of
the following pseudo code:

int apply_bp_name(CEnv *env, node_ptr &src,
node_ptr &dst, int flag) {

 int f = 0;
 cv_ptr cv = fpl_get_user_data(src);
 if (cv.IsEmpty())

92

2013, 2 Bulletin of Taras Shevchenko
National University of Kyiv

Series Physics & Mathematics

 return 0;
 if (concrete_precondition) {
 cv_ptr cv_r = cp_env_data(cv);
 concrete_postcondition;
 dst = fpl_mrg_or(

fpl_make_user_data(cv_r), dst);
 f = 1;
 }
 return f;
}
where f is returned value of status of application

of basic protocol (1 – was applied, 0 – was not), env
is current environment state, src is node of user data
(concrete attributes), dst is node of user data for
result (by default it has value 0), cv is current user
data structure (a possible disjunction is unfolded
inside applying of basic protocol function called
apply_bp), cv.IsEmpty() is checking of pointer,
concrete_precondition is checking precondition of
concrete basic protocol, concrete_postcondition is
applying postcondition of concrete basic protocol,
name in function name is the name of basic protocol,
the functions fpl_make_user_data,
fpl_get_user_data, fpl_mrg_or, and cp_env_data are
described below.

The function fpl_make_user_data translates user
data structure in Clew [7] tree smart pointer
node_ptr:

node_ptr fpl_make_user_data(cv_ptr &cv) {
 long_ref_counter_ptr l;
 l.Attach((my_user_data*) *cv);
 return gfpl->make_user_data(l);
}
where cv is a smart pointer to the user data, l –

counter, l.Attach is a function for attaching smart
pointers to the existent object, gfpl is a global main
interpreter of STG (symbolic trace generator) [1],
function make_user_data translates smart pointer
into tree representation.

Function get_user_data translates a tree
representation of user data to the smart pointer. It
could return empty object if an input node t is not
user data node:

cv_ptr fpl_get_user_data(node_ptr &t) {
 if (t->get_mark() != gfpl-> userdatamrk)
 return cv_ptr();
 cv_ptr cv;
 cv.Attach((ConcreteValues*) *gfpl-

>get_user_data(t));
 return cv;
}
where function get_mark returns a mark of APS

node [7], userdatamrk is a mark for user data
representation in the tree, cv_ptr() is an empty

object, function get_user_data returns a smart
pointer of long_ref_counter_ptr.

Function fpl_mrg_or is used to add a new
conjunct into result in concrete_apply_bp functions:

node_ptr fpl_mrg_or(node_ptr t1,node_ptr &t2) {
 return mrg(gfpl, gfpl->make_or(t1, t2));
}

where function make_or makes a disjunction of

two nodes and calls default canonizer for disjunction
according to default APS function, mrg function
constructs normal form using ac_local APS name.

The concrete_apply_bp functions should make a
copy of current user data before making some
changes in it. It is required because few protocols
could be applied for one environment state and all
next applications of basic protocols should have the
corresponded values. The function cp_env_data
should have the following pseudo code:

cv_ptr cp_env_data(fpl_ptr& fpl, cv_ptr &prev) {
 cv_ptr cv;
 cv.New();
 …
 return cv;
}
where fpl is the main interpreter, prev is a smart

pointer of source user data, cv is a smart pointer of
copy structure, cv.New() allocates memory for an
object. The function should return cv object.

The pointer for each defined concrete_apply_bp
function should be set into internal representation of
apply_bp function:

void init_bp_concrete() {
 std::map<std::string, CHashBP>& mp =

dataLoader.get_bpMap();
 mp.find("MSC_name")-

>second.apply_bp_concrete = apply_bp_name;
 …
}
where CHashBP is a class of loaded basic

protocol (pre- and postcondition, parameters of basic
protocols and its types, etc.), dataLoader is an object
of project loader of apply_bp, mp is a hash of all
loaded basic protocols.

If engine tries to apply a basic protocol with
initialized concrete_apply_bp function then apply_bp
calls first concrete_apply_bp. If concrete_apply_bp
is applicable then apply_bp continues an application
of the basic protocol with symbolic part of
environment state. If concrete_apply_bp is not
applicable, then apply_bp returns 0. The common
scheme is presented below:

93

Checking of applicability of
concrete part Yes

No, try next
ptotocol

Checking of applicability
of symbolic part Yes

No, try next
ptotocol

Fig. 1. Common scheme

Experiments
In this section, we present some results from our

test suites. All projects were run on symbolic trace
generator STG [2] and new mixed concrete-symbolic
trace generator STG++.

The project test1 contains functional attribute of
symbolic type with integer parameter, simple
enumerated and simple integer attributes. All of
these attributes initialize with concrete values and
have concrete values all time during trace generation
(basic protocols do not change those to symbolic
ones).

The project test2 contains functional attribute of
integer type with integer parameter, several simple
enumerated and simple integer attributes, and
Boolean attribute. Only functional attributes
initialize with concrete values and have concrete
values all time during trace generation.

The project test3 contains one functional attribute
of integer type with integer parameter, one functional
attribute of Boolean type with integer parameter, one
functional attribute of symbolic type with two
enumerated parameters, and three simple integer
attributes. Only two integer and two functional
attributes initialize with concrete values and have
concrete values all time during trace generation.

Table 1
Comparison of the time on STG and STG++

Project STG STG++
test1 2h 30 min 1,8 sec
test2 332,6 sec 0,08 sec
test3 230,1 sec 0,07 sec

Conclusions

Symbolic modeling is a powerful technique for
the automated reachability of deadlocks and
violations of user-defined properties. We have
proposed the technique that helps classical symbolic
modeling gain in power in the cases where the proof
of the symbolic part can be translated into a direct
C++ code. Our technique uses direct execution of
code together with symbolic solving and proving.

The nearest plans are investigation of dynamic
separation formulae on concrete and symbolic parts,
implementation of this technology for messages
sending and receiving, timers setting, stopping, and
expiration. Using of the technology to reduce
interleaving in symbolic modeling and generation of
specialized satisfiability and predicate transformer
functions for each basic protocol.

References
1. A. Letichevsky, J. Kapitonova, A. Letichevsky Jr.,

V. Volkov, S. Baranov, V. Kotlyarov, T. Weigert.
Basic Protocols, Message Sequence Charts, and
the Verification of Requirements Specifications
// Computer Networks. – 2005. – Vol. 47. – P.
662-675.

2. A. Letichevsky, J. Kapitonova, V. Volkov, A.
Letichevsky Jr., S. Baranov, V. Kotlyarov, T.
Weigert. System Specification with Basic
Protocols // Cybernetics and System Analyses. –
2005. – Vol. 4. – P. 3-21.

3. Letichevsky A. A., Godlevsky A. B., Letichevsky
A. A. Jr., Potienko S. V., Peschanenko V. S.
Properties of Predicate Transformer of VRS

System // Cybernetics and System Analyses. –
2010. – Vol. 4. – P. 3-16.

4. Verification for Requirement Specification
(VRS): http://iss.org.ua/ISS_VRS_tool.htm.

5. A. A. Letichevsky, O. A. Letychevskyi, V. S.
Peschanenko. Insertion Modeling System // PSI
2011, Lecture Notes in Computer Science. –
2011. – Vol. 7162. – P. 262-274.

6. Symbolic modeling,
http://en.wikipedia.org/wiki/Model_checking

7. A. A. Letichevsky, O. A. Letychevskyi, V. S.
Peschanenko. APS and Tools // Bulletin of
Kharkiv National University V.N. Karazin. –
2010. – N. 890. – P. 145-153.

 03.12.2012.

94

	Algebra_tutyl.pdf
	Algebra.pdf
	BoundNoFin_J.pdf

