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Annotation 
The technique that allows the use of direct 

execution of C++ code together with symbolic 
solving and proving instead of classical symbolic 
modeling is presented. The restrictions on incoming 
data are described and it is proved that defined 
separation of tasks does not lead to contradictions 
and corresponds to the detected constraints. 
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Introduction 

Modern software is becoming increasingly 
complex and needs to be highly reliable. Testing is 
commonly used for ensuring the reliability of 
software but it does not guarantee a detection of all 
errors in the product. Considering that the volume 
and complexity of requirements of software are 
increasing, the problem of automatic verification of 
industrial projects is actual problem. The technique 
of symbolic verification of requirement 
specifications of software systems has shown good 
results in automatic detection of reachability of 
deadlocks and violation of user-defined properties 
[1]. In previous works [1-5], symbolic models of 
systems, which are transition systems with symbolic 
states  represented  by  formulae  of  first  order  logic,  

were considered. A relation of transitions between 
the formulae is determined and marked by basic 
protocols, which are considered as actions performed 
in the system. A basic protocol is a formula of 
dynamic logic )),(),(),(( rxrxPrxx  and 
describes the local properties of a system in terms of 
pre- and postconditions  and . Both are formulae 
of first order multisorted logic interpreted on a data 
domain, P is a process, represented by means of an 
MSC diagram, and describes the reaction of a system 
triggered by the precon dition, x is a set of typed data 
variables,  and  r  is  a  set  of  environment  and  agent  
attributes. The general theory of basic protocols is 
presented in [2]. 

At  transitions  in  the  space  of  formulas,  a  
postcondition is considered as an operator. As the 
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operator  transforms one formula to another,  in  [3]  a  
term “predicate transformer” was used. Thus, to 
compute transitions between the states of such 
models, basic protocols are interpreted as predicate 
transformers: for a given symbolic state of a system 
and a given basic protocol, the direct predicate 
transformer generates the next symbolic state as its 
strongest postcondition and the backward predicate 
transformer generates the previous symbolic state as 
its weakest precondition. These concepts have been 
implemented in VRS (Verification of Requirement 
Specifications) system [4] and IMS (Insertion 
Modeling System) system [5]. 

 
Splitting formulae into concrete and symbolic 

parts 
There are two main disadvantages of “classic” 

symbolic modeling [6]: expensive proving and 
solving processing during the modeling of a system 
behavior and inability of processing concrete run-
time values, for example, when the decision 
procedure cannot handle the complex mathematical 
constraints that are generated or when code that uses 
native or external libraries shall be processed. 
Therefore, the formulae shall be split into two parts: 
concrete and symbolic. For this purpose, we split the 
formulae  of  initial  state  and  both  pre-  and  
postconditions of each basic protocol into two parts. 

 
Data types 

Before talking about splitting formulae into 
symbolic and concrete parts let us see which data 
types could be supported by our models. User can 
use the APS [7] data types in the models: 

a) simple data types: Boolean, integer, real, 
enumerated, and symbolic, 

b) structured data types: uninterpreted 
functional symbols, arrays, and lists of simple date 
types. 

Symbolic type is represented by expression in 
algebra  of  free  terms.  Enumerated  type  is  a  user-
defined one contains symbolic constants (atomic 
expressions in algebra of free terms). Parameters and 
returned value of uninterpreted functional symbols 
are simple data types only. Let denote that if we are 
talking about functional, then we mean uninterpreted 
functional symbol. Arrays are considered as 
uninterpreted functional symbols with bound 
restrictions for values of parameters. 

 
Concrete basic protocols technique 

User requirements for formula splitting into 
symbolic and concrete parts can be defined by the 
following statements: 

1. User should define a set of concrete attributes 
in project which always have concrete values in a 
model. 

2. System should analyze this user’s defined set 
of concrete attributes and split initial environment 
state and basic protocol into two parts: symbolic and 
concrete. 

3. If this splitting is impossible, then it prints 
error message and finishes its work. 

 
Set of concrete attributes 

In general, it is hard to determine automatically 
which attribute has concrete values in model. From 
other point of view, user, who has created a model, 
knows which attributes always have concrete values 
in it. So, let c be a set of attributes, which always has 
concrete values in a model. This set is defined by 
user. c is called the set of concrete attributes. 

Set c should be finite, because otherwise it is hard 
to understand what should be done for functionals 
with integer or real parameters. For example, we 
have next definition of functional: f: (int)  int, 
initial state: f(0)  = 0. So, what should we say about 
formula (f(i) = 0)  (i  0)? All of them could have 
any integer value and the last formula is unsolvable 
in terms of concrete model, because it defines 
infinite set of attributes (…, f(-2), f(-1), f(0), f(1), 
f(2),  …). Attribute of symbolic type can be handled 
as concrete if it consists only from concrete 
attributes, because, in general, it can have infinite set 
of values. Abstract lists, which have arbitrary 
number of values in their elements, cannot be used, 
because it is impossible to implement this with 
concrete values only. For example, we have a list: 
l: list of int, initial: l = (Nil;Nil), where “;” marks 
abstract part, and basic protocol 
(get_from_head(l)>0) <>1, where get_from_head 
function returns head of the list. So, let’s try to apply 
it to initial: x(x>0  l = (x,Nil;Nil))). It is wrong to 
change this formula by concrete value of x, because 
it is just a property and we don’t know any concrete 
value of x. So, attribute l can’t  be  a  concrete  
attribute. 

Finally, we can define following restrictions for 
set c: 

1) Each concrete attribute from c should always 
have one or finite number of concrete values. 

2) Symbolic concrete attribute is allowed if it 
value is constructed from other concrete attributes 
from c. 

3) Functional with integer, real or symbolic 
parameters could not be used as concrete attribute. 

4) Abstract list are forbidden in c. 
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Algorithm of splitting environment state 
formulae and basic protocols conditions into 

symbolic and concrete parts. 
Let E(r) be an environment state. Application of a 

basic protocol to an environment state looks like the 
following formula:  

)),,(),,()((
))),()()(,((

rxrxrEptx
rxrErx

 

where pt is a function of predicate transformer [3]. In 
general, a postcondition of basic protocol can be 
considered as following conjunction: 

),(),(),(),( rxCrxLrxArx  
where A(x,r) is a conjunction of assignments, L(x,r) 
is a conjunction of list operators add_to_tail, 
add_to_head, C(x,r) is a formula part of 
postcondition. 

Let cEcrE )/(  be an environment state, where 
r/c is the set of attributes, which have symbolic 
values, c is the set of concrete attributes defined by 
user, and cE  is  a  disjunction  of  conjunctions  of  
concrete values of attributes from c. Any concrete 
attribute in c has corresponded concrete value in all 
conjunctions in cE . For example, let 

))3()2()1()1((0)(
},,{},,,{

zyzyxrE
zyczyxr

 

then 

)3()2()1()1(
),0()()/(

zyzyE
xxEcrE

c
. 

User, who creates a specification, knows attributes, 
which have concrete values in a project. It means 
that it is always possible to split such environment 
into concrete and symbolic parts. From that point of 
view, the pre- and postconditions could be split in 
concrete and symbolic part too: 

))/,()/,()/,(( ccc crxcrxPcrxx  
where c  is a concrete precondition, c  is a 
concrete postcondition, )/,( crxPc  is obtained from 

),( rxP  after substitution of concrete values from 

cE . 
Therefore, the restrictions for basic protocols are 

following: 
5) cc , shouldn’t depend on parameters of basic 

protocol x. 
6) If l c and l is a concrete list, then list 

operators add_to_tail, add_to_head can contain 
constant or expression with attributes from c only. It 
is possible to use an expression with attribute from c 
for calculation of its value after substitution of 
concrete values. 

7) )()( cLcAc  can contain assignments and 
list operators only, because formula ) of 
postcondition expresses some property which should 
be true after application of basic protocol. It means 
that attributes from ) should lose their concrete 
values and should satisfy ).  In  that  case  the  
restriction 1) is broken. 

Let cEcrE )/(  be an environment state, 
))/,()/,()/(( ccc xrxcrxPcrxB  

Theorem 1. 

),())/,(),/,()/((
))/,(,)/,()/((

ccc

ccc

EptcrxcrxcrEpt
crxcrxEcrEpt

 

Proving. 
pt function builds lists ptptpt zsr ,,  from 

postcondition ccrx )/,(  and formula 

cc crxEcrE )/,()/( , where ptr  is  a  set  of  
attributes expressions from left part of assignment of 
postcondition, pts  is a set of attributes expressions 
from formula part of postcondition, ptz  is  a  set  of  
other attributes expressions from formula and 
postcondition. We know that sets of attribute 
expressions from pairs )/,()/( crxcrE  and 

ccE , )/,( crx  and c  are not intersected. It 
means that we could split each set ptptpt zsr ,,  on two 
sets ccrptccrptccrpt rzzsssrrr /// ,,  and 

ccr rr / , ccr ss / , ccr zz / , because 
ccr / .  Let’s  write  formula  which  is  built  by  

pt function. 
Let ccc EDcrxcrEcrD ),/,()/()/( , so 

),,(),,(
),,()(,(

),(

))),,(

),,(
),,(

),,((
),,(

),,(),,(
),,()(,,,(

//////

/////

//

///

//////

/////

crcrcricrcrcri

crcrcrcrcr

crcr

cccj

cccj

cccj

ccccj

crcrcri

crcrcricrcrcri

crcrcrcccrcri

zyxLzyxR
zyxDyx

srC

zyxE

zyxL
zyxR

zyxD
zyxE

zyxLzyxR
zyxDyxyxq

 

where cccrcr yxyx ,,, //  are variables which are 
obtained from cccrcr srsr ,,, //  sets accordingly, pt 
replaces attribute expressions from cccrcr srsr ,,, //  
on these variables in cDcrD ),/(  and  some  part  of  
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jjiii ERELR ,,,, . iL  is  a  symbolic  list  part  of  
postcondition, jL  is  a  concrete  list  part  of  
postcondition. 

...))),,(()),,((
),,(

///22///11

///

crcrcrcrcrcr

crcrcri

zyxtrzyxtr
zyxR

...))),,((
)),,((),,(

22

11

ccc

ccccccj

zyxtr
zyxtrzyxR

 

iR  ( jR ) is obtained from after substitution of 
variables instead of attribute expressions from 

)(/ ccr rr  in right-sides of assignments. 
To describe the construction of 

),,( /// crcrcri zyxE , we will consider the set M of all 
pairs of functional expressions of the form 

,...),(,...),,()),(),(( 2121 vvvuuuvfuf , where f(u) 
is chosen from list crr / , and f(v) – from lists 

crcr zs // , . These functional expressions must be 
equal, if their arguments were equal before 
application of basic protocol. Similarly for 

),,( cccj zyxE , ),( // crcr srC  is  a  formula  part  of  
postcondition. 1),( cc srC , because of restriction 7. 

So, 

),())/,(),/((

)()(

)()(

))/,(,)/((

/
2

/
1

/
2

/
1

cc

c
jj

crcr

c
jj

crc
jj

cr
cc

DptxrxcrDpt

qqq

qqqq

crxDcrDpt

 

Theorem is proved. 
Let cEcrE )/(  be an environment state, 

))()/,()/,(
)()/,((

ccrxcrxP
ccrxxB

cc

c

 
Lemma 1. 
If )(cE cc  satisfy restrictions 1-4 and basic 

protocol B satisfy restrictions 5-7 then new 
environment state 0))(),(( ccEpt ccc  satisfies 
restriction 1-4. 

Proving. 
Formula ))(),(( ccEpt ccc  satisfies 

restrictions 2-4 because of monotony of pt function 
[2] (if )(cE cc  satisfies restrictions 2-4 then 

))(),(( ccEpt ccc  satisfies too). If basic protocol 
B satisfies restrictions 5-7 then 

))(),(( ccEpt ccc  satisfies the restriction 1, 
because it’s impossible to make such transition that 
some attribute from c would obtain infinite number 
of concrete value without formulae part of 

postcondition, parameter of basic protocol and 
abstract lists. 

So, lemma is proved. 
This theorem and lemma mean that the 

application of a basic protocol which precondition, 
process, and postcondition are split into concrete and 
symbolic parts could be considered in the following 
way: 

1) ))(),((0)( ccEptcE cccccc , 

2) 

))(),((
)))/,(),/,()/,(((

)0))/,()/(((
)0))(),(((

ccEpt
crxcrxcrxEptx

crxcrEx
ccEpt

cccc

cccc

, 

where cpt  is  a  concrete  predicate  transformer  
function that assigns the concrete values to the 
attributes from c set  (sometimes  it  could  create  a  
disjunction of concrete values). This function could 
be easily translated into C++ language for each basic 
protocol with using of restrictions 1-7. 

 
Implementation 

In base language [2], we rely on the following 
types of functional symbols: integer, real, Boolean, 
symbolic, and a set of enumerated data types are 
defined as simple types. Functional symbols of arity 
0 correspond to simple attributes; others correspond 
to the attributes of functional types or functional 
attributes.  For  list  types,  access  functions  are  
defined, and lists can change their values by adding 
or removing elements to (from) head or tail only. 
Thus, list types exhibit the behavior of queues. 
Attributes of array type are also possible. In separate 
C++ file concrete integer attributes could be 
represented as int attributes, concrete real attributes 
could be represented as double attributes, concrete 
Boolean attributes could be represented as bool 
attributes, concrete attributes of enumerated types 
could be represented as attributes of enum type with 
possible values. Functional attributes of 
aforementioned types could be represented as STL 
vector attributes of corresponding simple type. 
Attributes of list type could be represented as STL 
stack  type.  Attributes  of  array  type  could  be  
represented as C++ array. 

For each basic protocol, a separate C++ function 
shall be created. It should be defined with the help of 
the following pseudo code: 

int apply_bp_name(CEnv *env, node_ptr &src, 
node_ptr &dst, int flag) { 

 int f = 0; 
 cv_ptr cv = fpl_get_user_data(src); 
 if (cv.IsEmpty()) 
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  return 0; 
 if (concrete_precondition) { 
  cv_ptr cv_r = cp_env_data(cv); 
  concrete_postcondition; 
  dst = fpl_mrg_or( 

fpl_make_user_data(cv_r), dst); 
  f = 1; 
 } 
 return f; 
} 
where f is returned value of status of application 

of basic protocol (1 – was applied, 0 – was not), env 
is current environment state, src is node of user data 
(concrete attributes), dst is node of user data for 
result  (by  default  it  has  value  0),  cv is current user 
data structure (a possible disjunction is unfolded 
inside applying of basic protocol function called 
apply_bp), cv.IsEmpty() is checking of pointer, 
concrete_precondition is checking precondition of 
concrete basic protocol, concrete_postcondition is 
applying postcondition of concrete basic protocol, 
name in function name is the name of basic protocol, 
the functions fpl_make_user_data, 
fpl_get_user_data, fpl_mrg_or, and cp_env_data are 
described below. 

The function fpl_make_user_data translates user 
data structure in Clew [7] tree smart pointer 
node_ptr: 

node_ptr fpl_make_user_data(cv_ptr &cv) { 
 long_ref_counter_ptr l; 
 l.Attach((my_user_data*) *cv); 
 return gfpl->make_user_data(l); 
} 
where cv is  a  smart  pointer  to  the  user  data,  l – 

counter, l.Attach is a function for attaching smart 
pointers to the existent object, gfpl is a global main 
interpreter of STG (symbolic trace generator) [1], 
function make_user_data translates smart pointer 
into tree representation. 

Function get_user_data translates a tree 
representation of user data to the smart pointer. It 
could  return  empty  object  if  an  input  node  t  is  not  
user data node: 

cv_ptr fpl_get_user_data(node_ptr &t) { 
 if (t->get_mark() != gfpl-> userdatamrk) 
  return cv_ptr(); 
 cv_ptr cv; 
 cv.Attach((ConcreteValues*) *gfpl-

>get_user_data(t)); 
 return cv; 
} 
where function get_mark returns  a  mark  of  APS  

node [7], userdatamrk is a mark for user data 
representation in the tree, cv_ptr() is an empty 

object, function get_user_data returns a smart 
pointer of long_ref_counter_ptr. 

Function fpl_mrg_or is  used  to  add  a  new  
conjunct into result in concrete_apply_bp functions: 

node_ptr fpl_mrg_or(node_ptr t1,node_ptr &t2) { 
 return mrg(gfpl, gfpl->make_or(t1, t2)); 
} 
 
where function make_or makes a disjunction of 

two nodes and calls default canonizer for disjunction 
according to default APS function, mrg function 
constructs normal form using ac_local APS name. 

The concrete_apply_bp functions should make a 
copy of current user data before making some 
changes  in  it.  It  is  required  because  few  protocols  
could be applied for one environment state and all 
next applications of basic protocols should have the 
corresponded values. The function cp_env_data 
should have the following pseudo code: 

cv_ptr cp_env_data(fpl_ptr& fpl, cv_ptr &prev) { 
 cv_ptr cv; 
 cv.New(); 
 … 
 return cv; 
} 
where fpl is the main interpreter, prev is  a  smart  

pointer of source user data, cv is  a  smart  pointer  of  
copy structure, cv.New() allocates memory for an 
object. The function should return cv object. 

The pointer for each defined concrete_apply_bp 
function should be set into internal representation of 
apply_bp function: 

void init_bp_concrete() { 
 std::map<std::string, CHashBP>& mp = 

dataLoader.get_bpMap(); 
 mp.find("MSC_name")-

>second.apply_bp_concrete = apply_bp_name; 
 … 
} 
where CHashBP is a class of loaded basic 

protocol (pre- and postcondition, parameters of basic 
protocols and its types, etc.), dataLoader is an object 
of project loader of apply_bp, mp is a hash of all 
loaded basic protocols. 

If engine tries to apply a basic protocol with 
initialized concrete_apply_bp function then apply_bp 
calls first concrete_apply_bp. If concrete_apply_bp 
is applicable then apply_bp continues an application 
of the basic protocol with symbolic part of 
environment state. If concrete_apply_bp is not 
applicable, then apply_bp returns 0. The common 
scheme is presented below: 
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Checking of applicability of 
concrete part Yes 

No, try next 
ptotocol 

Checking of applicability 
of symbolic part Yes 

No, try next 
ptotocol 

 
Fig. 1. Common scheme 

Experiments 
In this section, we present some results from our 

test suites. All projects were run on symbolic trace 
generator STG [2] and new mixed concrete-symbolic 
trace generator STG++. 

The project test1 contains functional attribute of 
symbolic type with integer parameter, simple 
enumerated and simple integer attributes. All of 
these attributes initialize with concrete values and 
have concrete values all time during trace generation 
(basic protocols do not change those to symbolic 
ones). 

The project test2 contains functional attribute of 
integer type with integer parameter, several simple 
enumerated and simple integer attributes, and 
Boolean attribute. Only functional attributes 
initialize with concrete values and have concrete 
values all time during trace generation. 

The project test3 contains one functional attribute 
of integer type with integer parameter, one functional 
attribute of Boolean type with integer parameter, one 
functional attribute of symbolic type with two 
enumerated parameters, and three simple integer 
attributes. Only two integer and two functional 
attributes initialize with concrete values and have 
concrete values all time during trace generation. 

Table 1 
Comparison of the time on STG and STG++ 

Project STG STG++ 
test1 2h 30 min 1,8 sec 
test2 332,6 sec 0,08 sec 
test3 230,1 sec 0,07 sec 

 
Conclusions 

Symbolic modeling is a powerful technique for 
the automated reachability of deadlocks and 
violations of user-defined properties. We have 
proposed the technique that helps classical symbolic 
modeling gain in power in the cases where the proof 
of the symbolic part can be translated into a direct 
C++ code. Our technique uses direct execution of 
code together with symbolic solving and proving. 

The nearest plans are investigation of dynamic 
separation formulae on concrete and symbolic parts, 
implementation of this technology for messages 
sending and receiving, timers setting, stopping, and 
expiration. Using of the technology to reduce 
interleaving in symbolic modeling and generation of 
specialized satisfiability and predicate transformer 
functions for each basic protocol.
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