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Introduction

The fundamental problem of the theory of
automaton groups is the connection between the
combinatorial structure of an automaton and the
algebraic properties of the group it generates.
Most of the algorithmic problems for automaton
groups are open (and probably undecidable). In
particular, it is not known how to check whether
a group generated by a finite automaton is finite.
One can hope for a positive result dealing with
certain classes of automaton groups.

Studying cyclic structure of automata, S. Si-
dki in [7] introduced several classes of automata,
and one of the most important of them are
bounded automata. Interestingly, most of the
studied automaton groups are generated by
bounded automata, in particular, the famous
Grigorchuk group. Moreover, bounded automata
naturally appear in connection with fractal
geometry [1]: An automaton group has post-
critically finite limit space if and only if the
generating automaton is bounded.

In this paper we study groups generated by
bounded automata without non-trivial finitary
states. This class happens to be more amenable
to investigation and still contains many interesti-
ng groups like the Basilica group [4], Hanoi
Towers group on three pegs [3], groups studied
by P. Neumann [6], iterated monodromy groups
of quadratic polynomials with periodic kneading
sequence [5], etc. We give an algorithmic method
to check when a group generated by a bounded
automaton without non-trivial finitary states is fi-

nite.

1 Automorphisms of regular rooted trees

Let X be a finite alphabet with at least
two letters. Let X∗ be the free monoid freely
generated by X. The elements of X∗ are finite
words x1x2 . . . xn over X together with the empty
word. We consider the set X∗ as a rooted |X|-ary
tree, where the empty word is the root of the tree
and every vertex v ∈ X∗ is connected by an edge
to vx for each x ∈ X.

Every automorphism g ∈ Aut(X∗) induces an
automorphism g|v ∈ Aut(X∗) for every v ∈ X∗ by
the rule

g|v(x) = y if g(vx) = g(v)y for all x, y ∈ X∗.

This automorphism is called the state of g at v.
The states of the product are computed as

(g · h)|v = g|v · h|g(v)

(we are using right actions: gh(v) = h(g(v))).
The permutation πg ∈ Sym(X) induced by

g on X and the states of g at the letters x ∈ X
uniquely determine g by the relation

g(xv) = πg(x)g|x(v) for x ∈ X and v ∈ X∗.

Therefore one can represent automorphisms in the
form: If X = {x1, x2, . . . , xd} then

g = (g|x1 , g|x2 , . . . , g|xd
)πg,

which is the usual representation of elements of
the permutational wreath product Aut(X∗) ∼=
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Aut(X∗) o Sym(X). The multiplication of
automorphisms written in this form is performed
as follows

gh = (g|x1h|πg(x1), . . . , g|xd
h|πg(xd))πgπh.

An automorphism g ∈ Aut(X∗) is called
finite-state if the set of its states S(g) = {g|v :
v ∈ X∗} is finite. Every finite-state automorphi-
sm g can be represented by a finite input-output
automaton A(g) over the alphabet X. The state
set of A(g) is the set S(g) and there is an arrow
g|v → g|vx labeled by x|g(x) for every x ∈ X and
v ∈ X∗. Starting at the state g, the automaton
A(g) transforms a word x1x2 . . . xn into the word
g(x1x2 . . . xn).

2 Bounded automorphisms

For an automorphism g ∈ Aut(X∗) define the
numerical sequence

θk(g) = |{v ∈ Xk : g|v 6= e}| for k ∈ N.

A finite-state automorphism g is called bounded
if the sequence θk(g) is bounded. The set of
all bounded automorphisms forms a subgroup of
Aut(X∗) called the group of bounded automata.
Groups generated by bounded automata are preci-
sely groups generated by all states of a finite
collection of bounded automorphisms.

Bounded automorphisms can be characterized
by the cyclic structure of corresponding automata
as shown by S.Sidki [7]: A finite-state automorphi-
sm g is bounded if and only if any two different
cycles in the automaton A(g) are disjoint and not
connected by a directed path except for loops at
the trivial state (bounded automaton).

This description can be used to describe the
structure of bounded automorphisms more preci-
sely as follows. First, we need the notion of a
finitary automorphism. An automorphism g ∈
Aut(X∗) is called finitary if the sequence θk(g) is
eventually zero; in other words, there exists k ∈ N
such that g|v = e for all v ∈ Xk. A bounded
automorphism g ∈ Aut(X∗) is circuit if there exi-
sts a non-empty word v ∈ X∗ such that g|v = g,
i.e., g lies on a cycle in A(g). Now, for any bounded
automorphism g there exists n ∈ N such that for
every v ∈ Xn the state g|v is either circuit or fi-
nitary. Moreover, if g is a circuit automorphism
then there exists m ∈ N such that g|v = g for a
unique word v ∈ Xm and g|u is finitary for every

u ∈ Xm, u 6= v. Working with a finite collection of
bounded automorphisms one can always assume
that n = m = 1 by passing to a power of the
alphabet.

In this paper we study the finiteness of groups
generated by bounded automata without non-
trivial finitary states. First, we make the following
observation that reduces the problem to groups
generated by all states of circuit automorphisms.

Lema 1. Let S ⊂ Aut(X∗) be a finite collecti-
on of bounded automorphisms and Sc be all circuit
states of automorphisms from S. Then the group
generated by all states of elements from S is fini-
te if and only the group generated by all states of
elements from Sc is finite.

Proof. Since the set S is finite, there exists n ∈ N
such that for every s ∈ S and v ∈ Xn the state
s|v is a state of an automorphisms from Sc. The
statement follows.

If a circuit automorphism g does not have non-
trivial finitary states, then there exist n ∈ N and
a word u ∈ Xn such that

g|u = g and g|v = e for all v ∈ Xn, v 6= u.

Passing to a power of the alphabet X ← Xn, g
can be represented in the form

g = (e, . . . , e, g, e, . . . , e)π, (1)

where π = πg ∈ Sym(X) and the tuple on the ri-
ght has precisely one non-trivial component equal
to g.

Automorphisms of the form (1) we call loop
automorphisms. More precisely, an automorphism
g ∈ Aut(X∗) is a loop automorphism if there exists
a letter x = xg ∈ X such that g|x = g and g|y = e
for all y ∈ X, y 6= x. Every loop automorphism g
is uniquely determined by the pair (xg, πg) using
the rule: g acts on X as the permutation πg and
has states g|xg = g and g|y = e for y ∈ X, y 6= xg.

Remark 1. A group generated by all states of
a finite collection of circuit automorphisms wi-
thout non-trivial finitary states is isomorphic to
a group generated by a finite collection of loop
automorphisms (possibly over larger alphabet).
Together with Lemma 1 this reduces the studi-
ed finiteness problem to groups generated by loop
automorphisms.
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The inverse of a loop automorphism is a
loop automorphism, but the product of loop
automorphisms may be not a loop automorphism,
and therefore loop automorphisms do not form a
group. Moreover, the product of loop automorphi-
sms may be finitary.

Example 1. Consider the loop automorphisms

a = (e, e, e, a, e)(1, 2) b = (e, e, e, e, b)(1, 3).

Then the product abab is finitary:

abab = (e, e, e, e, e)(1, 3, 2).

The following examples demonstrate that
many interesting groups are generated by loop
automorphisms.

Example 2. The automorphism a = (e, a)(0, 1)
over the alphabet X = {0, 1} is called the addi-
ng machine. The action of a on words over X
corresponds to the addition of one in binary
number system.

Example 3. The group over X = {1, 2, 3, 4}
generated by two automorphisms

a = (e, e, e, a)(1, 3)(2, 4) b = (e, e, e, b)(3, 4)

is isomorphic to the Basilica group [4]. This group
was the first example of an amenable but not
subexponentially amenable group.

Example 4. The group over X = {1, 2, 3}
generated by automorphisms

a = (a, e, e)(2, 3)
b = (e, b, e)(1, 3)
c = (e, e, c)(1, 2)

is called the Hanoi Towers group on three pegs.
This group models the classical Hanoi Towers
game [3].

Example 5. Let P < Sym(X) be a transitive
permutation group. For every x ∈ X and π ∈ P
with π(x) = x define the loop automorphism
associated to the pair (x, π):

g(x,π) = (e, . . . , e, g(x,π), e, . . . , e)π.

The group generated by all such g(x,π) was studi-
ed by P.Neumann in [6] for the case when P is
perfect.

3 Finiteness of groups generated by loop
automorphisms

The next theorem gives an algorithmic
method to check whether a group generated by
loop automorphisms is finite.

Theorem 1. Let S ⊂ Aut(X∗) be a finite set
of loop automorphisms. The group 〈S〉 is finite if
and only if for every non-empty subset U ⊂ S the
letters {xs : s ∈ U} do not belong to the same
non-trivial orbit of the action of 〈πs : s ∈ U〉 on
X.

Proof. The proof goes by induction on n = |S|.
In order to show the basis of induction (n = 1)

we need to prove that a loop automorphism s has
finite order if and only if xs does not belong to a
non-trivial orbit of πs, i.e., πs(xs) = xs. Indeed, if
πs(xs) = xs then

sk = (e, . . . , e, sk, e, . . . , e)πk
s

for all k ∈ N and the order of s is equal to the
order of πs. For the converse, let πs(xs) 6= xs and
k > 2 be the length of the orbit of xs. Then

sk|xs = s and sk(xs) = xs,

which imply that s has infinite order by standard
inductive arguments. The case n = 1 is proved.

Suppose the statement holds for every system
with n − 1 loop automorphisms and we consider
a system S with n loop automorphisms. We can
assume that every proper subset U ⊂ S generates
a finite subgroup; in particular, s(xs) = xs for
every s ∈ S. We need to prove that the group
G = 〈S〉 is finite if and only if {xs : s ∈ S}
does not belong to the same non-trivial orbit for
〈πs : s ∈ S〉.

If all letters xs for s ∈ S belong to the trivial
orbit {x}, then x = xs and πs(x) = x for all s ∈ S.
Then the group G is finite as for the case n = 1
above.

Suppose {xs : s ∈ S} does not belong to the
same orbit. Let y be any of xs, s ∈ S, and let Y be
the orbit of y. Then for every x ∈ Y and g ∈ G the
state g|x is a product of generators s ∈ S and their
inverses such that xs ∈ Y . The group generated by
such generators is finite by our assumption. By the
same reasons, every state g|x for x ∈ X\Y belongs
to a finite group. Hence the group G is finite. The
claim is proved in one direction.

For the converse, assume that {xs : s ∈ S}
belongs to the same non-trivial orbit and let us
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prove that G is infinite. Fix any letter x1 ∈ {xs :
s ∈ S}. We will prove that for every generator
s ∈ S there exists h ∈ G such that

h|x1 = s and h(x1) = x1.

This property holds for every generator s ∈ S
such that xs = x1 (just take h = s and recall
our assumption). There exists a letter x2 ∈ {xs :
s ∈ S} \ {x1} and an element π = πk1

s1
πk2

s2
. . . πkm

sm
,

si ∈ S, such that π(x1) = x2 and π′(x1) 6∈ {xs :
s ∈ S} for every prefix π′ = πk1

s1
πk2

s2
. . . πkl

sl
, l < m.

Construct the element g = sk1
1 sk2

2 . . . skm
m and noti-

ce that

g|x1 = sk1
1 |x1s

k2
2 |sk1

1 (x1)
. . . skm

m |
s
k1
1 ...s

km−1
m−1 (x1)

= e.

Then for every generator s ∈ S with xs = x2 we
have

(gsg−1)|x1 = s|x2 = s and (gsg−1)(x1) = x1.

In particular, for every g ∈ 〈s : s ∈ S and xs ∈
{x1, x2}〉 there exists h ∈ G such that h|x1 = g
and h(x1) = x1.

Further, there exists a letter x3 ∈ {xs : s ∈
S} \ {x1, x2} and an element π = πk1

s1
πk2

s2
. . . πkm

sm
,

si ∈ S, such that π(x1) = x3 and π′(x1) 6∈ {xs :
s ∈ S} \ {x2} for every prefix π′ = πk1

s1
πk2

s2
. . . πkl

sl
,

l < m. Construct the element g = sk1
1 sk2

2 . . . skm
m

and notice that g|x1 is a product of generators s
with xs = x2 and their inverses. Take an element
h ∈ G such that h|x1 = (g|x1)

−1 and h(x1) = x1.
Then for every generator s ∈ S with xs = x3 we
have

(h−1gsg−1h)|x1 = s|x3 = s and
(h−1gsg−1h)(x1) = x1.

In the same way we process all letters. As a
result, we get that for every g ∈ G = 〈S〉 there
exists h ∈ G such that h|x1 = g and h(x1) = x1.
This means that the homomorphism

StG(x1) → G, g 7→ g|x1 (2)

is surjective. Since StG(x1) is a proper subgroup
of G (the orbit of x1 is non-trivial), the group G
is infinite. The statement is proved.

Remark 2. If for a group G the homomorphism in
(2) is surjective, the group is called self-replicating
or recurrent (one usually assumes transitive acti-
on on X). We proved in the theorem that every
infinite group generated by loop automorphisms
is self-replicating.

Problem 1. Does the class of groups generated
by loop automorphisms contain infinite periodic
groups?

Problem 2. Does the class of groups generated by
loop automorphisms contain groups of intermedi-
ate growth?

Problem 3. Is it true that a group generated by
loop automorphisms has exponential growth if and
only if it contains a free subsemigroup on two
generators?
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