
Вісник Київського національного університету  
імені Тараса Шевченка 
Серія фізико-математичні науки  

2013,2 Bulletin of Taras Shevchenko  
National University of Kyiv  

Series Physics & Mathematics 
 
УДК 512.552+519.95 

 
V. V. Skobelev, Cand. Phys.-Math. Sci 
 
Satisfiability modulo linear arithmetic over a 
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There are developed mathematical methods 

intended for resolving the problem of analysis of 
satisfiability modular linear arithmetic over any 
finite associative (not necessary commutative) ring 
with non-zero multiplication. General schemes for 
solvers intended for analysis of satisfiability of 
formulae presented via any system of linear 
equations or linear disequalities are proposed. 
Time complexity of proposed solvers is estimated 
for finite fields and rings of residues. 
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Виконання формул лінійної арифметики 
над скінченним кільцем 

 
Розроблено математичний апарат, який 

призначено для розв’язання задачі дослідження 
виконання формул лінійної арифметики над 
скінченним асоціативним (не обов’язково 
комутативним) кільцем з операцією ненульового 
множення. Запропоновано загальні схеми, які 
призначено для дослідження виконання формул, 
які представлено системою лінійних рівнянь, 
або лінійних нерівностей. Досліджено часову 
складність запропонованих схем у випадках 
скінченого поля та кільця лишків. 
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Introduction. 

Satisfiability modulo theory (SMT) is an NP-
complete problem intended for deciding satisfiability 
of a first-order formula (usually presented via 
conjunction of literals) in some decidable first-order 
theory T  ( )(TSMT ). 

At present the lazy approach [1] (also referred as 
)(TDPLL  [2]) is predominant for construction of 

)(TSMT . It is based on integration of some Boolean 
satisfiability (SAT) solver with some procedure 
intended to handle basic atomic constraints of the 
theory T . Elaboration of the last procedure is the 
basic step for construction of )(TSMT  under the 
lazy approach. 

It is worth to note the following aspects of 
architecture of modern SMT solvers. 

Firstly, besides output sat or unsat some formulae 
valid in the theory T  (i.e. some lemmas of the 
theory T ) can be produced (if output is sat they are 
called theory-deduction clauses, while if output is 
unsat they are called theory-conflict clauses). 

Secondly, layering technique [3] is used, i.e. it is 
implemented some hierarchy 

nSS ,,1   
of solvers of increasing expressivities and 
complexity, such that iS  )1,,1( −= ni   is intended 
to decide some sub-theory iT  )( 1+⊂ ii TT , while nS  
is intended to decide full theory T . 

Thirdly, the splitting-on-demand-technique [4] is 
used, i.e. it can be produced the output unknown with 
some list of T -lemmas containing new T -atoms, 
which will be taken into account in the DPLL search. 

The most well studied case of )(TSMT  is linear 
rational arithmetic [1,5,6], i.e. )(QLA=T  and atoms 
are of the form 

0
1

◊+∑
=

bxa
n

i
ii   }),,,,,{( >≥=≠<≤∈◊ . 

Some efficient support for linear integer 
arithmetic )(ZLA  under condition },{ =≤∈◊  was 
developed in [7]. 

But situation is much more complicated for linear 
arithmetic over any finite ring ),,( ⋅+= KK  (i.e. if 

)(KLA=T ), since any finite ring as an algebraic 
system differs essentially from the ring of integers. 
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It is worth to note that there are important 
applications of )(KLA  (K  is a finite ring) in 
cryptography [8]. Thus, satisfiability of formulae of 
linear arithmetic over a finite ring is actual problem 
from theoretic and applied point of view, both. 

Investigation of )(TSMT  for )(KLA=T , where 
K  is any associative finite ring is the main aim of 
the given paper. 

1. Typical structure of )(ZLA -solvers. 
Typical modern )(ZLA -solver intended for 

analysis of atoms of the form 

0
1

◊+∑
=

bxa
n

i
ii   }),{( ≤=∈◊ . 

is proposed in [7]. This solver is organized in the 
following way. 

Firstly, the rational relaxation of the problem is 
analyzed by Simplex-based )(QLA -solver. If its 
output is unsat (i.e. some conflict is detected), then 

)(ZLA -solver also returns unsat and halts. If its 
output is sat (i.e. no conflict is detected), then it is 
checked, whether all assigned values for variables 
are integers. If this happens, then )(ZLA -solver also 
returns sat and halts. 

Otherwise, module intended to analyze system of 
linear Diophantine equations is activated. 
Corresponding algorithm runs in polynomial time, 
and is based on integration of procedure intended for 
checking consistency for analyzed system of 
equations with procedure intended for reducing this 
system of equations to triangular form, i.e. to the 
form 

∑
≠

+=
ji

jijij cxax   ),( Z∈jji ca , 

where variable jx  does not occur in the right part of 
any equation. 

The first procedure is based on the factor that if it 
is obtained equation 

0=+∑ h
i

ihi bxa , 

such that GCD of hia ’s does not divide hb  then 
analyzed system of linear Diophantine equations is 
inconsistent. 

The second procedure is organized in the 
following way. Let 

0=+∑ h
i

ihi bxa  

is analyzed equation and hka  be the non-zero 
coefficient with the smallest absolute value. 

If 1 || =hka  then analyzed equation is rewritten in 
the form 

hhk
ki

ihihkk bxax αα −−= ∑
≠

  )||( 1−= hkhkhk aaα . 

This substitution is then applied to all the other 
equations. 

If 1 || >hka  then analyzed equation is rewritten in 
the form 

0)( )()()()( =++++ ∑∑
≠≠

r
h

ki
i

r
hi

q
h

ki
i

q
hikhk bxabxaxa , 

where )(q
hia  and )(r

hia  (similarly, )(q
hb  and )(r

hb ) are 
the quotient and the remainder of the division of hia  
by hka  (similarly, of hb  by hka ). Substitution 

)()( q
h

ki
i

q
hiht bxaxx ++= ∑

≠
 

where tx  is some fresh variable is applied to all 
equations and then this equation is included in 
analyzed system of linear Diophantine equations. 

If output of considered module is unsat, then 
)(ZLA -solver also returns unsat and halts. 

Otherwise, resulted system of linear Diophantine 
equations is used for substitutions 

∑
≠

+=
ji

jijij cxax  

of variables into all analyzed inequalities. 
Then module intended to analyze system of linear 

inequalities is activated. 
Firstly, it tighten every inequality 0≤+∑ bxa

i
ii , 

such that GCD g  of ia ’s does not divide b , by 
transforming it to inequality 

+∑ −

i
ii xga 1 bg-1 0≤ . 

Then )(QLA -solver is activated. If its output is 
unsat (i.e. some conflict is detected), then )(ZLA -
solver also returns unsat and halts. If its output is sat 
(i.e. no conflict is detected), then it is checked, 
whether all assigned values for variables are integers. 
If this happens, then )(ZLA -solver also returns sat 
and halts. 

Otherwise, the branch-and-bound module is 
activated. This module recursively divides analyzed 
problem in two sub-problems by adding to original 
formula additional constraint in the following way. 
Let )(QLA -solver has assigned to variable kx  some 
non-integer value kα . For the first sub-problem 
additional constraint is −kx  kα  0≤ , while for the 
second one it is +− kx  kα  0≤ . Then )(QLA -
solver is activated for analyzed sub-problem. 

These computations are produced until either 
)(ZLA -solver returns sat, or it would be established 

that all sub-problems are unsatisfiable ones and, 
thus, )(ZLA -solver returns unsat. 
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2. Preliminary analysis. 
If we compare the ring ),,( ⋅+= ZZ  of integers 

with any finite ring K , considering them as algebraic 
systems, then the following essential distinctions can 
be detected, at least: 

1. In a ring K  operation of multiplication can be 
non-commutative [9]. In this case it is necessary to 
consider terms ab  and ba  as different ones. 

2. There is no natural relation ≤  of total 
ordering in any finite ring K . Thus, only atoms of 
the form 

0
1

◊+′′′∑
=

baxa i

n

i
ii   }),{( ≠=∈◊  

can be considered in any linear arithmetic )(KLA . 
3. Any finite ring K  is not an algebraic sub-

system of the ring Z  of integers (and, thus, of the 
ring ),,( ⋅+= QQ  of rational numbers). This implies 
that any )(QLA -solver and any module intended to 
analyze system of linear Diophantine equations, 
both, cannot be applied in any linear arithmetic 

)(KLA , in principle. 
4. Division in a ring K  can be partial operation. 

If this happens, then in the process of analysis of 
linear equations it is necessary to consider separately 
two essentially different situations: when selected 
coefficient is an invertible element and when it is a 
non-invertible one. 

5. There can be zero divisors for non-zero 
elements of a ring K . If this happens, then in the 
process of analysis of linear equations these divisors 
can be considered in details. 

Taking all these factors into account, we analyze 
basic modules of )(KLA -solver under supposition 
that K  is any associative finite ring with non-zero 
multiplication, i.e. there exist Kba ∈,  such that 

0≠ab  or 0≠ba . 
R e ma r k  1 .  Arithmetic in any ring ),,( ⋅+= KK  

with zero multiplication can be directly reduced to 
arithmetic in the abelian group ),( +K . 

3. Some backgrounds of the ring theory. 
By supposition, for any considered ring 

),,( ⋅+= KK  inequality 2 || ≥K  holds.  
If 2 || =K  then K  is finite field )2(GF . 
If 3 || ≥K  then the following two lemmas hold. 
Lemma 1. Let ),,( ⋅+= KK  be any ring such that 

3 || ≥K . For any Ka∈  if there exist Kb∈  such 
that bax =  for all }0{\Kx∈  then 0=b . 

Proof. Let bax =  for all }0{\Kx∈ . 
If 0=a  then 0=b . 

Let 0≠a . Since 3 || ≥K  there exist two different 
elements }0{\, 21 Kxx ∈  such that bax =1  and 

bax =2 . Thus, 0)( 21 =− xxa . 
Since 21 xx ≠ , i.e. 021 ≠− xx  we get 0=b . 
Q.E.D. 
Lemma 2. Let ),,( ⋅+= KK  be any ring such that 

3 || ≥K . For any Ka∈  if there exist Kb∈  such 
that bxa =  for all }0{\Kx∈  then 0=b . 

Proof is similar to proof of lemma 1. 
Lemma 3. Let ),,( ⋅+= KK  be any ring such that 

3 || ≥K . For any Kaa ∈21,  if there exist Kb∈  
such that bxaa =21  for all }0{\Kx∈  then 0=b . 

Proof is similar to proof of lemma 1. 
For any considered ring ),,( ⋅+= KK  we set 

)}0})(0{\(|}0{\{ =∈∀∈=− axKxKaK zerol , 
)}0})(0{\(|}0{\{ =∈∀∈=− xaKxKaK zeror . 

Taking into account the notion of “division” we 
can extract the following three non-empty sets of 
considered finite rings ),,( ⋅+= KK : 

1. The set lD  of all rings ),,( ⋅+= KK  with left 
division, i.e. lD∈K  if and only if for any 

}0{\Ka∈  and any Kb∈  the set of solutions of 
equation bax =  is non-empty. 

2. The set rD  of all rings ),,( ⋅+= KK  with 
right division, i.e. rD∈K  if and only if for any 

}0{\Ka∈  and any Kb∈  the set of solutions of 
equation bxa =  is non-empty. 

3. The set rl DDD ∩=  of all rings with two-
sided division. 

Taking into account the notion of “unit” we can 
partition all considered rings into the following six 
non-empty sets: 

1. The set 1C  of all commutative rings 
),,( ⋅+= KK  with the unit, i.e. with such element 

K∈1  that xxx == 11  for all Kx∈ . 
2. The set 2C  of all commutative rings without 

the unit. 
3. The set 3C  of all non-commutative rings 

),,( ⋅+= KK  with the unit K∈1 . 
4. The set 4C  of all non-commutative rings 

),,( ⋅+= KK  with some left unit Kl ∈1  (i.e. xxl =1  
for all Kx∈ ) and without any right unit (i.e. without 
any such element Kr ∈1  that xx r =1  for all Kx∈ ). 
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5. The set 5C  of all non-commutative rings 
),,( ⋅+= KK  with some right unit Kr ∈1  and without 

any left unit Kl ∈1 . 
6. The set 6C  of all non-commutative rings 

),,( ⋅+= KK  without any left unit Kl ∈1  and without 
any right unit Kr ∈1 , both. 

Lemma 4. There hold identities 
DCCDCC ∩∪=∩∪ )()( 2121

α  }),{( rl∈α .   (1) 
Proof. Since lDD ⊂  and rDD ⊂  there hold 

inclusions 
DCCDCC ∩∪⊆∩∪ )()( 2121

l ,          (2) 
DCCDCC ∩∪⊆∩∪ )()( 2121

r .          (3) 
For any ring lDCC ∩∪∈ )( 21K  the set of 

solutions of any equation bax =  )},0{\( KbKa ∈∈  
is non-empty. 

Since for any ring 21 CC ∪∈K  equations bax =  
and bxa =  are equivalent to each other, then for any 
ring lDCC ∩∪∈ )( 21K  the set of solutions of any 
equation bxa =  )},0{\( KbKa ∈∈  is also non-
empty. 

This implies that DCC ∩∪∈ )( 21K . Thus, it 
holds inclusion 

lDCCDCC ∩∪⊆∩∪ )()( 2121 .          (4) 
Inclusion 

rDCCDCC ∩∪⊆∩∪ )()( 2121           (5) 
can be proved similarly. 

Inclusions (2)-(5) imply that identities (1) hold. 
Q.E.D. 
Lemma 4 implies that the following corollary 

holds. 
Corollary 1. There hold identities 

DCCDCC \)(\)( 2121 ∪=∪ α  }),{( rl∈α . 
R e ma r k  2 .  There can be several one-sided 

units elements in a ring 54 CC ∪∈K . 
The simplest ring 4C∈K  with two distinct left 

units contains four elements and its operations are 
determined in the following way 

+  0  a  b  c  · 0  a  b  c  
0  0  a  b  c  0  0  0  0  0  
a  a  0  c  b  a  0  a  b  c  
b  b  c  0  a  b  0  a  b  c  
c  c  b  a  0  c  0  0  0  0  

To get the simplest ring 5C∈K  with two distinct 
right units it is sufficient to transpose the matrix that 
determines multiplication. 

We would use the following denotation for 
considered ring ),,( ⋅+= KK : 

1. If 1C∈K , then invK  is the set of all invertible 
elements of the ring K . Thus, ),( ⋅invK  is the 
multiplicative (commutative) group of the ring K . 

2. If 3C∈K , then 
)}1)((|{ =∈∃∈=− vuKvKuK invl  

is the set of all left-invertible elements of the ring K , 
and 

)}1)((|{ =∈∃∈=− uwKwKuK invr  
is the set of all right-invertible elements of the ring 
K . 

Thus, ),( ⋅∩ −− invrinvl KK  is the multiplicative (not 
necessary commutative) group of the ring K . 

3. If 4C∈K , then for any left unit Kl ∈1  
)}1)((|{)1( ll

invl vuKvKuK =∈∃∈=−  
is the set of all elements of the ring K , left invertible 
relatively to the left unit l1 . 

4. If 5C∈K , then for any right unit Kr ∈1  

)}1)((|{)1( rr
invr uvKvKuK =∈∃∈=−  

is the set of all elements of the ring K , right 
invertible relatively to the right unit r1 . 

Let 1),,( C∈⋅+= KK . Subsets xKx inv=><   
)( Kx∈  are called classes of associated elements of 

the ring K . It is well known that }0{ 0 =>< , 
invK=><  α  )( invK∈α  and 

><=><∗>< xyyx    
for all Kyx ∈, . 

The following generalization of the notion 
‘associated elements’ was investigated in [10] for 
rings 3),,( C∈⋅+= KK . 

Let invrinvlinv KKK −− ∩= . Subsets xKx inv
l =><  

)( Kx∈  are called classes of l -associated elements 
and subsets xKx inv

r =><  )( Kx∈  are called classes 
of r -associated elements. Thus, to determine any 
specific element lxy >∈<  })0{\( Kx∈ , as well as 
any specific element rxz >∈<  })0{\( Kx∈  it is 
sufficiently to determine corresponding element of 
the set invK . 

It is evident that: 
1) }0{}00 ==<>< rl ; 
2) inv

rl K=>=<>< αα  for any invK∈α ; 
3) rl xx >=<><  for any cntrKx∈ , where cntrK  

is the center of the ring K ; 
4) rl xxx ><∩>∈<  for any Kx∈ . 
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For any subsets A  and B  of the set K  we set 
},|{ BbAaabBA ∈∈=∗ . 

R e ma r k  3 .  For any ring 3C∈K  if cntrinv KK ⊆  
then identities 

>=<>=<>< xxx rl   )( Kx∈  
hold. Moreover, in this case in a ring K  identities 

><=><∗>< xyyx     ),( Kyx ∈  
also hold. 

It was established in [10] that the following 
theorems hold. 

Theorem 1. For any ring 3C∈K  

lll yxxy ><∗>⊆<>< , 

rrr yxxy ><∗>⊆<><  
for all Kyx ∈, . 

Theorem 2. For any ring 3C∈K  

r
invinv

lrl xyKKxyyx ><∗=∗>=<><∗>< , 

lr yxxy ><∗>∈<  
for all Kyx ∈, . 

4. Analysis of satisfiability of the simplest atoms. 
In any associative finite ring ),,( ⋅+= KK  with 

non-zero multiplication the simplest atoms are bax◊ , 
bxa◊  and bxaa ◊21 , where Kbaaa ∈,,, 21  are fixed 

elements and },{ ≠=∈◊ . 
R e ma r k  4 .  In any commutative ring atoms 
bax◊ , bxa◊  and bxaa ◊21  are indistinguishable. 

Thus, when K  is commutative ring only the simplest 
atoms bax◊  }),{( ≠=∈◊  can be analyzed. 

Let us consider architecture of )(KLA -solver 
)1(

)(KSLA  intended for analysis of satisfiability of atoms 
bax = ,                               (6) 
bxa =                                 (7) 

and 
bxaa =21 ,                             (8) 

where Kbaaa ∈,,, 21  are fixed elements. 
This solver can be designed on the base of 

layering technique with the following hierarchy 
)1(

3
)1(

2
)1(

1 ,, MMM  of modules. 
Firstly, the module )1(

1M  is activated. It produces 
the following computations. 

If some atom (6) or (7) is analyzed it is checked, 
if 0=a , while if some atom (8) is analyzed it is 
checked, if 01 =a  or 02 =a . 

Let 0=a  for an atom (6) or (7) (correspondingly, 
01 =a  or 02 =a  for an atom (8)). It is checked, if 

0=b . If this happens, )1(
1M  returns sat and halts 

(thus, )1(
)(KSLA  also returns sat and halts). Otherwise, 

)1(
1M  returns unsat and halts (thus, )1(

)(KSLA  also 
returns unsat and halts). 

Let 0≠a  for an atom (6) or (7) (correspondingly, 
01 ≠a  and 02 ≠a  for an atom (8)). 

R e ma r k  5 .  Let it is analyzed some atom (8) 
under supposition that 01 ≠a  and 02 ≠a . If 

rl DD \∈K  then (8) can be transformed into (7), 
while if  lr DD \∈K  then (8) can be transformed 
into (6). 

The following two situations can take the place: 
1. Let lD∈K  and some atom (6) is analyzed, or 

rD∈K  and some atom (7) is analyzed, or D∈K  and 
some atom (8) is analyzed. 

The module )1(
1M  returns sat and halts (thus, 

)1(
)(KSLA  also returns sat and halts). 

2. Let lD∉K  and some atom (6) is analyzed, or 
rD∉K  and some atom (7) is analyzed, or 

rl DD ∪∉K  and some atom (8) is analyzed. 
If 5431 CCCC ∪∪∪∈K  then the module )1(

2M  
is activated, while if 62 CC ∪∈K  then the module 

)1(
3M  is activated. 
The module )1(

2M  produces some computations in 
the following four cases (in all other cases )1(

2M  
directly activates )1(

3M ). 
1. Let DC \1∈K  (taking into account remark 4, 

we can restrict ourselves with atoms (6) only). 
The module )1(

2M  checks if invKa∈ . If this 
happens, )1(

2M  returns sat and halts (thus, )1(
)(KSLA  

also returns sat and halts). Otherwise, the module 
)1(

3M  is activated. 
2. Let 3C∈K  (we emphasize that if some atom 

(6) is analyzed then lDC \3∈K , if some atom (7) is 
analyzed then rDC \3∈K , and if some atom (8) is 
analyzed then (see remark 5) )(\3

rl DDC ∪∈K ). 
The module )1(

2M  produces the following 
computations. 

For any atom (6) it is checked, if invlKa −∈ . For 
any atom (7) it is checked, if invrKa −∈ . For any 
atom (8) it is checked, if invlKa −∈1  and invrKa −∈2 . 
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If this happens, )1(
2M  returns sat and halts (thus, 

)1(
)(KSLA  also returns sat and halts). Otherwise, the 

module )1(
3M  is activated. 

3. Let lDC \4∈K  The module )1(
2M  produces 

the following computations. 
For any atom (6) it is checked, if there exists 

some left unit Kl ∈1  such that )1( l
invlKa −∈ . If this 

happens, )1(
2M  returns sat and halts (thus, )1(

)(KSLA  
also returns sat and halts). Otherwise, the module 

)1(
3M  is activated. 
For any atom (7) the module )1(

3M  is activated. 
For any atom (8) it is checked, if there exists 

some left unit Kl ∈1  such that )1(1 l
invlKa −∈ . If this 

happens, then (8) is transformed into (7). The 
module )1(

3M  is activated. 
4. Let rDC \5∈K  The module )1(

2M  produces 
the following computations. 

For any atom (7) it is checked, if there exists 
some right unit Kr ∈1  such that )1( r

invrKa −∈ . If 
this happens, )1(

2M  returns sat and halts (thus, )1(
)(KSLA  

also returns sat and halts). Otherwise, the module 
)1(

3M  is activated. 
For any atom (6) the module )1(

3M  is activated. 
For any atom (8) it is checked, if there exists 

some right unit Kr ∈1  such that )1(2 r
invrKa −∈ . If 

this happens, then (8) is transformed into (6). The 
module )1(

3M  is then activated. 
Architecture of the module )1(

3M  depends 
essentially on the structure of considered ring K . 

The simplest case is when 31 CC ∪∈K . The 
following two approaches are possible, at least. 

The first approach is based on direct checking 
satisfiability of atoms (possibly, by exploring these 
or the others algebraic properties of the structure of 
the ring K ). 

The second approach is based on exploring notion 
of ‘associated elements’ considered in the previous 
section and lies in the following. 

Let DC \1∈K  (taking into account remark 4, we 
can restrict ourselves with atoms (6) only). 

Satisfiability of (6) is reduced to satisfiability of 
the atom ><=><∗>< bxa    in the semigroup 

)},| ({ ∗∈>< Kxx . 

If the last atom is satisfiable then )1(
3M  returns sat 

and halts (thus, )1(
)(KSLA  also returns sat and halts). 

Otherwise, )1(
3M  returns unsat and halts (thus, 

)1(
)(KSLA  also returns unsat and halts). 

It is well known that cardinality of the set of 
classes of associated elements can be sufficiently 
less than cardinality of the set K . In this case 
considered approach seems to be promising. 

Let 3C∈K . Satisfiability of (6) is reduced to 
satisfiability of the formula lr xab ><∗>∈< , 
satisfiability of (7) is reduced to satisfiability of the 
formula lr axb ><∗>∈< , and satisfiability (8) is 
reduced to satisfiability of the formula 

lrr axab ><∗><∗>∈< 21 . 
If analyzed formula is satisfiable then )1(

3M  
returns sat and halts (thus, )1(

)(KSLA  also returns sat 

and halts). Otherwise, )1(
3M  returns unsat and halts 

(thus, )1(
)(KSLA  also returns unsat and halts). 

Cardinality of the set of classes of l -associated 
elements as well as cardinality of the set of classes of 
r -associated elements can be sufficiently less than 
cardinality of the set K . In this case considered 
approach seems to be promising. 

If 6542 CCCC ∪∪∪∈K  (especially in the 
absence of effective technique intended for solving 
factorization problem in a ring K ) the module )1(

3M  
executes exhaustive searching over some subset 

KS ⊆  which cardinality can be comparable with 
cardinality of the set K . 

Since all considered rings could be partitioned 
into the sets iC  )6,,1( =i , we get that the 
following theorem holds. 

Theorem 3. )(KLA -solver )1(
)(KSLA  is complete 

and consistent. 
Let us consider architecture of )(KLA -solver 
)2(

)(KSLA  intended for analysis of satisfiability of atoms 
bax ≠ ,                                (9) 
bxa ≠ ,                              (10) 

and 
bxaa ≠21 ,                          (11) 

where Kbaaa ∈,,, 21  are fixed elements. 
R e ma r k  6 .  Taking into account remark 4, we 

emphasize that when K  is commutative ring only an 
atom (9) can be considered. 

100



Вісник Київського національного університету  
імені Тараса Шевченка 
Серія фізико-математичні науки  

2013,2 Bulletin of Taras Shevchenko  
National University of Kyiv  

Series Physics & Mathematics 
 

)(KLA -solver )2(
)(KSLA  can be designed on the base 

of layering technique with the following hierarchy 
)2(

3
)2(

2
)2(

1 ,, MMM  of modules. 
Firstly, the module )2(

1M  is activated. It produces 
the following computations. 

If some atom (9) or (10) is analyzed it is checked, 
if 0=a , while if some atom (11) is analyzed it is 
checked, if 01 =a  or 02 =a . 

Let 0=a  if an atom (9) or (10) is analyzed 
(correspondingly, 01 =a  or 02 =a  if an atom (11) is 
analyzed). 

It is checked, if 0=b . If this happens, )2(
1M  

returns unsat and halts (thus, )2(
)(KSLA  also returns 

unsat and halts). Otherwise, )2(
1M  returns sat and 

halts (thus, )2(
)(KSLA  also returns sat and halts). 

Let 0≠a  if an atom (9) or (10) is analyzed 
(correspondingly, 01 ≠a  and 02 ≠a  if an atom (11) 
is analyzed). 

The module )2(
2M  is activated. It checks, if 0=b . 

If this happens, )2(
2M  returns sat and halts (thus, 

)2(
)(KSLA  also returns sat and halts). Otherwise, the 

module )2(
3M  is activated. 

Computations produced by the module )2(
3M  

depend on the following three situations: 
1. Some atom (9) is analyzed. The module 

)2(
3M  checks, if zerolKa −∈ . If this happens, )2(

3M  
returns unsat and halts (thus, )2(

)(KSLA  also returns 

unsat and halts). Otherwise, )2(
3M  returns sat and 

halts (thus, )2(
)(KSLA  also returns sat and halts). 

2. Some atom (10) is analyzed. The module 
)2(

3M  checks, if zerorKa −∈ . If this happens, )2(
3M  

returns unsat and halts (thus, )2(
)(KSLA  also returns 

unsat and halts). Otherwise, )2(
3M  returns sat and 

halts (thus, )2(
)(KSLA  also returns sat and halts). 

3. Some atom (11) is analyzed. The module 
)2(

3M  checks, if zerolKa −∈1  or zerorKa −∈2 . If this 
happens, )2(

3M  returns unsat and halts (thus, )2(
)(KSLA  

also returns unsat and halts). Otherwise, )2(
3M  

returns sat and halts (thus, )2(
)(KSLA  also returns sat 

and halts). 

Since all considered rings could be partitioned 
into the sets iC  )6,,1( =i , we get that the 
following theorem holds. 

Theorem 4. )(KLA -solver )2(
)(KSLA  is complete 

and consistent. 
4. Analysis of satisfiability of a system of linear 

equations. 
Let us consider architecture of )(KLA -solver 
)3(

)(KSLA  intended for analysis of satisfiability of atoms 
presented via systems of linear equations 

inini bxaxa =++11   ),,1( mi = ,        (12) 

iinni baxax =++11   ),,1( mi =          (13) 
and 

iini buu =++1   ),,1( mi = ,            (14) 
where iju  );( nm ji NN ∈∈  is jij xa , ijjax  or ijjij axa ′′′  
and at least two of these three types of terms are 
presented. 

R e ma r k  7 .  Taking into account remark 4, we 
emphasize that when K  is commutative ring only 
atom (12) can be considered. 

)(KLA -solver )3(
)(KSLA  can be designed on the base 

of layering technique with the following hierarchy 
)3(

3
)3(

2
)3(

1 ,, MMM  of modules. 
Firstly, the module )3(

1M  is activated. This 
module is based on usual Gauss method and it is 
intended to transform: 

1) system (12) into equivalent diagonal form 
∑

∈
+=

},1{\ riinj
hijjhihihi dxcxe

N
  )( rh N∈ ,  (15) 

where 0≠hie  )( rh N∈ ; 
2) system (13) into equivalent diagonal form 

∑
∈

+=
},1{\ riinj

hijhijhihi dcxex
N

  )( rh N∈ ,  (16) 

where 0≠hie  )( rh N∈ ; 
3) system (14) into equivalent diagonal form 

∑
∈

+′′′=′′′
},1{\ riinj

hijhijjhihihihi dcxcexe
N

 )( rh N∈ ,  (17) 

where }0{\, Kee hihi ∈′′′  )( rh N∈ . 

If some inconsistency is checked then )3(
1M  

returns unsat and halts (thus, )3(
)(KSLA  also returns 

unsat and halts). If transformation of analyzed 
system of linear equations into corresponding 
equivalent diagonal form is successful then the 
module )3(

2M  is activated. Otherwise, the module 
)3(

3M  is activated. 
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R e ma r k  8 . Any of equivalent diagonal forms 
(15)-(17) can be considered as a system of linear 
equations with parameters jx  }),,{\( 1 riij N∈ . 

The module )3(
2M  is intended to check 

satisfiability of corresponding equivalent diagonal 
form. 

This module is based on sequential analysis of 
equations of equivalent diagonal form by applying 
corresponding )(KLA -solver )1(

)(KSLA . 
Besides, if it is necessary, it is executed some 

analysis of non-emptiness of the set of admissible 
parameters jx  }),,{\( 1 riij N∈ . This analysis is 
based on these or the others algebraic properties of 
the structure of the ring K . 

R e ma r k  9 . It is evident that if the set of 
admissible of parameters jx  }),,{\( 1 riij N∈  is 
empty then corresponding initial system of equations 
is unsatisfiabe. Thus, if it is checked that set of 
admissible of parameters jx  }),,{\( 1 riij N∈  is 

empty then )3(
2M  immediately returns unsat and 

halts (thus, )3(
)(KSLA  also returns unsat and halts). 

If )3(
2M  establishes that corresponding equivalent 

diagonal form is consistent it returns sat and halts 
(thus, )3(

)(KSLA  also returns sat and halts). If )3(
2M  

establishes that corresponding equivalent diagonal 
form is inconsistent it returns unsat and halts (thus, 

)3(
)(KSLA  also returns unsat and halts). Otherwise the 

module )3(
3M  is activated. 

The module )3(
3M  is intended to check if is non-

empty the set of solutions of initial system of 
equations (correspondingly, of equivalent diagonal 
form). This module is based on searching (possibly 
restricted by exploring these or the others algebraic 
properties of the structure of the ring K ). 

If it is checked that the set of solutions of initial 
system of equations (correspondingly, of equivalent 
diagonal form) is non-empty then )3(

3M  returns sat 
and halts (thus, )3(

)(KSLA  also returns sat and halts). 

Otherwise, )3(
3M  returns unsat and halts (thus, 

)3(
)(KSLA  also returns unsat and halts). 

Taking into account theorem 3, we get that the 
following theorem holds. 

Theorem 5. )(KLA -solver )3(
)(KSLA  is complete 

and consistent. 

5. Analysis of satisfiability of a system of linear 
disequalities. 

Let us consider architecture of )(KLA -solver 
)4(

)(KSLA  intended for analysis of satisfiability of atoms 
presented via systems of linear disequalities 

inini bxaxa ≠++11   ),,1( mi = ,        (18) 

iinni baxax ≠++11   ),,1( mi = ,        (19) 
and 

iini buu ≠++1   ),,1( mi = ,            (20) 
where iju  );( nm ji NN ∈∈  is jij xa , ijjax  or ijjij axa ′′′  
and at least two of these three types of terms are 
presented. 

We associate with analyzed system of 
disequalities (18), (20) and (21), correspondingly, 
the system of linear equations 

iinini bxaxa α+=++11   ),,1( mi = ,     (21) 

iiinni baxax α+=++11   ),,1( mi =       (22) 
and 

iiini buu α+=++1   ),,1( mi = ,         (23) 
where }0{\,,1 Km ∈αα   are parameters. 

It is evident that:  
1) system of disequalities (18) is satisfiable if 

and only if associated system of equations (21) is 
satisfiable; 

2) system of disequalities (19) is satisfiable if 
and only if associated system of equations (22) is 
satisfiable; 

3) system of disequalities (20) is satisfiable if 
and only if associated system of equations (23) is 
satisfiable. 

This factor implies that )(KLA -solver )4(
)(KSLA  can 

be designed on the base of layering technique with 
the following hierarchy )4(

3
)4(

2
)4(

1 ,, MMM  of 
modules. 

Firstly, the module )4(
1M  is activated. It 

transforms analyzed system of disequalities into 
corresponding associated system of linear equations. 
Then the module )4(

2M  is activated. 
The module )4(

2M  is based on applying )(KLA -
solver )3(

)(KSLA  to corresponding associated system of 
linear equations. 

Besides, if it is necessary, it is executed some 
analysis of non-emptiness of the set of admissible 
parameters }0{\,,1 Km ∈αα  . This analysis is 
based on these or the others algebraic properties of 
the structure of the ring K . 
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R e ma r k  10 . It is evident that if the set of 
admissible parameters }0{\,,1 Km ∈αα   is empty 
then corresponding initial system of disequalities is 
unsatisfiabe. Thus, if it is checked that set of 
admissible of parameters }0{\,,1 Km ∈αα   is 
empty then )4(

2M  immediately returns unsat and 
halts (thus, )4(

)(KSLA  also returns unsat and halts). 

If )4(
2M  establishes that corresponding associated 

system of linear equations is consistent it returns sat 
and halts (thus, )4(

)(KSLA  also returns sat and halts). If 
)4(

2M  establishes that corresponding associated 
system of linear equations is inconsistent it returns 
unsat and halts (thus, )4(

)(KSLA  also returns unsat and 

halts). Otherwise the module )4(
3M  is activated. 

The module )4(
3M  is intended to check if is non-

empty the set of solutions of initial system of 
disequalities and is based on searching (possibly 
restricted by exploring these or the others algebraic 
properties of the structure of the ring K ) and 
applying corresponding )(KLA -solver )2(

)(KSLA , when 
it is necessary. 

If it is checked that the set of solutions of initial 
system of disequalities is non-empty then )4(

3M  
returns sat and halts (thus, )4(

)(KSLA  also returns sat 

and halts). Otherwise, )4(
3M  returns unsat and halts 

(thus, )4(
)(KSLA  also returns unsat and halts). 

Taking into account theorems 4 and 5, we get that 
the following theorem holds. 

Theorem 6. )(KLA -solver )4(
)(KSLA  is complete 

and consistent. 
6. Time complexity of )(KLA -solvers. 
We would analyze time complexity of proposed 

)(KLA -solvers in terms of logarithmic weight [11]. 
Time complexity of )(KLA -solver )1(

)(KSLA  can be 
characterized in the following way. 

Theorem 7. For any finite field )(GF kp  ( N∈p  
is prime integer and N∈k ) time complexity of 

))(GF( kpLA -solver )1(
))(GF( kpLA

S  is 









∞→∞→
∞→

∞→
=

   and  if ),log(
      fixed is  and  if ),(

 fixed is  and  if ),(log

kppkO
pkkO

kppO
T .     (24) 

Proof. For any finite field )(GF kp  ( N∈p  is 
prime integer and N∈k ) the modules )1(

2M  and 
)1(

3M  are not needed at all. 
For any finite field )(GF kp  ( N∈p  is prime 

integer and N∈k ) time complexity of the module 
)1(

1M  is determined by formula (24). 
Thus, time complexity of ))(GF( kpLA -solver 
)1(

))(GF( kpLA
S  is also determined by formula (24). 

Q.E.D. 

The simplest finite rings )(\1
rl DDC ∪∈K  are 

rings of residues ),,( ⋅+= kpkp
ZZ , where N∈p  is 

prime integer and 2≥k . 
Theorem 8. For any ring of residues 

),,( ⋅+= kpkp
ZZ  ( N∈p  is prime integer and 2≥k ) 

time complexity of )( kp
LA Z -solver )1(

)( kp
LA ZS  is 









∞→∞→
∞→
∞→

=
   and  if ),(log
 fixed is  and  if ),(log
 fixed is  and  if ),(log

kppkO
pkkO
kppO

T .    (25) 

Proof. Any non-zero element of a ring kp
Z  

( N∈p  is prime integer and 2≥k ) can be presented 
in the form ipα , where 1−∈ pNα  and pi Z∈ , while 

zero of the ring kp
Z  can be presented as 00 p . 

Thus, checking if 0=ipα  is reduced to checking 
if 0=α  and 0=i . Thus, time complexity of the 
module )1(

1M  is 









∞→∞→
∞→
∞→

=
   and  if ),(log
 fixed is  and  if ),(log
 fixed is  and  if ),(log

1

kppkO
pkkO
kppO

T .    (26) 

Checking if inv
kp

ip Z∈α  is reduced to checking if 

0≠α  and 0=i . Thus, time complexity of the 
module )1(

2M  is 









∞→∞→
∞→
∞→

=
   and  if ),(log
 fixed is  and  if ),(log
 fixed is  and  if ),(log

2

kppkO
pkkO
kppO

T .    (27) 

Classes of associated elements of the ring kp
Z  

( N∈p  is prime integer and 2≥k ) are }0{0 >=< , 

11 −= pC N  and }|{ 11 −+ ∈= p
i

i pC Nαα  )( 1−∈ ki N . 
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Any atom bax = , where iCa∈  )( ki N∈  and 

jCb∈  )( kj N∈  can be transformed into the atom 

ji CxC    =><∗ . Satisfiability of the last atom is 
reduced to checking if ji ≤ . Thus, time complexity 
of the module )1(

3M  is 





∞→
=

kkO
kO

T
 if ),(log

  fixed is  if ),1(
3 .                  (28). 

Since 321 TTTT ++= , formulae (26)-(28) imply 
that the formula (25) holds. 

Q.E.D. 
Let 6542 CCCC ∪∪∪∈K  under condition that 

there is no effective technique intended for solving 
factorization problem in the ring K . In this case the 
module )1(

3M  executes exhaustive searching over 
some subset KS ⊆  which cardinality can be 
comparable with cardinality of the set K . 

Thus, in this case time complexity of )(KLA -
solver )1(

)(KSLA  is some sub-exponent, at least. 

Time complexity of )(KLA -solver )2(
)(KSLA  can be 

characterized in the following way. 

Theorem 9. For any finite field )(GF kp  ( N∈p  
is prime integer and N∈k ) time complexity of 

))(GF( kpLA -solver )2(
))(GF( kpLAS  is determined by 

formula (24). 
Proof. For any finite field )(GF kp  time 

complexity of each of the modules )2(
1M  and )2(

2M  
is determined by formula (24). 

For any finite field )(GF kp  time complexity of 
the module )2(

3M  is some constant, since 
∅== −− zerorzerol KK . 

Thus, time complexity of ))(GF( kpLA -solver 
)2(

))(GF( kpLAS  is determined by formula (24). 

Q.E.D. 
Theorem 10. For any ring of residues 

),,( ⋅+= kpkp
ZZ  ( N∈p  is prime integer and 2≥k ) 

time complexity of )( kp
LA Z -solver )2(

)( kp
LA ZS  is 

determined by formula (26). 
Proof is similar to proof of theorem 9. 

Time complexity of )(KLA -solver )2(
)(KSLA  could 

depend essentially on time complexity of the module 

)2(
3M . Time complexity of checking, if X∈α  

}),{( zerorzerol KKX −−∈  do not exceed 
|)|log|}||,(max{| KKKOT zerorzerol −−=  )|| ( ∞→K . 

This estimation is upper bound for time 
complexity of )(KLA -solver )2(

)(KSLA . 

Time complexity of )(KLA -solver )3(
)(KSLA  can be 

characterized in the following way. 
Theorem 11. For any finite field )(GF kp  ( N∈p  

is prime integer and N∈k ) time complexity of 
))(GF( kpLA -solver )3(

))(GF( kpLA
S  is 

))}(,(min{( 2
2

1 tmntnmOT +=  )( ∞→kp ,    (29) 
where 1t  is time complexity of computing of inverse 
element and 2t  is time complexity of multiplication 
in the field )(GF kp . 

Proof. For any finite field )(GF kp  the module 
)3(

3M  is not needed at all. 
The module )3(

1M  tries to transform initial system 
of equations into equivalent diagonal form 

∑
∈

+=
},1{\ riinj

hijjhihi dxcx
N

  )( rh N∈ .  (30) 

Transformation of any equation 
ininjjijij bxaxaxa =+++ ++ 11,  

into equation 
ininjjij bxaxax ′=′++′+ ++ 11,  

needs one operation of computing of inverse element 
1−

ija  and jn −  operations of multiplication. Thus, 
time complexity of this step is 

))(()( 211 tjntOjT −+=′  )( ∞→kp .    (31) 
Deleting of variable jx  from any other equation 

of analyzed system needs jn −  operations of 
multiplication and jn −  operations of addition. 
Since time complexity of addition is much more less 
then time complexity of multiplication we can ignore 
time complexity of addition. 

Thus, time complexity of this step is also 
determined by formula 

))(()( 21 tjnOjT −=′′  )( ∞→kp . 
This implies that time complexity of deleting of 

variable jx  from all the others equation of analyzed 
system is 

))(()( 21 tjnmOjT −=′′′  )( ∞→kp .        (32) 
Time complexity of module )3(

1M  is 
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∑
=

′′′+′=
},min{

1
211 ))()((

nm

j
jTjTT . 

Taking into account formulae (31) and (32), we get 
))}(,(min{ 2

2
11 tmntnmOT +=  )( ∞→kp . 

If some inconsistency is checked then )3(
1M  

returns unsat and halts (thus, )3(
)(KSLA  also returns 

unsat and halts). 
Otherwise, the module )3(

2M  directly returns sat 
and halts (thus, )3(

)(KSLA  also returns sat and halts), i.e. 

time complexity of the module )2(
1M  is 

)1(2 OT =  )( ∞→kp . 
Since 21 TTT += , we get that formula (29) holds. 
Q.E.D. 
The situation differs essentially for any ring of 

residues ),,( ⋅+= kpkp
ZZ  ( N∈p  is prime integer 

and 2≥k ). In this case the module )3(
3M  also is not 

needed. 
The module )3(

1M  tries to transform initial system 
of equations into equivalent diagonal form 

∑
∈

+=
hiSj

hl
hij

jhiw
jhihi

hv
hi pxpxp γβα  )( rh N∈ ,  (33) 

where },,{\ 1 rnhi iiS N⊆ , inv
kpjhihi Z∈βα , , and 

0=hjγ  or inv
kphi Z∈γ ,. 

Dealing as in proof of theorem 11, we establish 
that time complexity of the module )3(

1M  is 
determined by formula 

))}(,(min{ 2
2

11 tmntnmOT +=  )( ∞→kp ,    (34) 
where 1t  is time complexity of computing of inverse 
element and 2t  is time complexity of multiplication 
in the ring kp

Z . 

If some inconsistency is checked then )3(
1M  

returns unsat and halts (thus, )3(
)(KSLA  also returns 

unsat and halts). Otherwise, the module )3(
2M  is 

activated. 
The module )3(

2M  executes sequential analysis of 
equations of equivalent diagonal form (33) in 
accordance with the following scheme. 

Step 1. nKU =: , 1:=h . 
Step 2. If 0=hiγ  then go to step 8. 
Step 3. If }},|min{min{ hhijhih vSjwl ∈≥  then go 

to step 5. 

Step 4. The module )3(
2M  returns unsat and halts 

(thus, )3(
)(KSLA  also returns unsat and halts). 

Step 5. Compute the set hV  of solutions of h -th 
equation of equivalent diagonal form. 

Step 6. If ∅=hV  then )3(
2M  returns unsat and 

halts (thus, )3(
)(KSLA  also returns unsat and halts), else 

hVUU ∩=: . 
Step 7. If ∅=U  then )3(

2M  returns unsat and 
halts (thus, )3(

)(KSLA  also returns unsat and halts). 

Step 8. If rh =  then )3(
2M  returns sat and halts 

(thus, )3(
)(KSLA  also returns sat and halts), else 

1: += hh  and go to step 2. 
It is evident that time complexity of the module 

)3(
2M  is much more higher then (34) and is the same 

as time complexity of searching the set of solutions 
of equivalent diagonal form (33). 

Moreover, let 6542 CCCC ∪∪∪∈K  under 
condition that there is no effective technique 
intended for solving factorization problem in the ring 
K . In this case the module )3(

2M  executes exhaustive 
searching over some subset KS ⊆  which cardinality 
can be comparable with cardinality of the set K . 
Thus, in this case time complexity of )(KLA -solver 

)3(
)(KSLA  is some sub-exponent, at least. 

It was established that analysis of satisfiability of 
any system of disequalities is equivalent to analysis 
of satisfiability of associated system of linear 
equations. Thus, time complexity of any )(KLA -
solver )4(

)(KSLA  is not less than time complexity of 

corresponding )(KLA -solver )3(
)(KSLA . 

Conclusions. 
In the given paper there are developed 

mathematical methods intended for resolving the 
problem of analysis of satisfiability modular linear 
arithmetic over any finite associative (not necessary 
commutative) ring with non-zero multiplication. 
General schemes for solvers intended for analysis of 
satisfiability of formulae presented via any system of 
linear equations or linear disequalities are proposed. 

It is evident that if analyzed formula is presented 
via some system of linear equations and disequalities 
then its analysis is reduced to sequential application 
of corresponding )(KLA -solvers )1(

)(KSLA , )2(
)(KSLA , 

)3(
)(KSLA  and )4(

)(KSLA . 
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It is worth to note that if )(KLA -solver )1(
)(KSLA  

concludes that all analyzed simplest atoms (6)-(8) 
are satisfiable then these atoms can be used for 
substitution into all other atoms of analyzed formula. 
And only after this substitution )(KLA -solver )2(

)(KSLA  
can be applied. 

Similarly, let )(KLA -solver )3(
)(KSLA  has produced 

equivalent diagonal form for analyzed system of 
equations. If this solver concludes that all analyzed 
atoms are satisfiable then equivalent diagonal form 
can be used for substitution into all disequalities. 
And only after this substitution )(KLA -solver )4(

)(KSLA  
can be applied. 

In the given paper time complexity of proposed 
solvers is estimated for finite fields and rings of 
residues. It was established that even for the simplest 
rings, i.e. for rings of residues time complexity of 

)(KLA -solvers )3(
)(KSLA  and )4(

)(KSLA  is much more 

higher than time complexity of corresponding 
)(KLA -solvers intended for finite fields. 

Detailed analysis of time complexity for the 
simplest non-commutative rings forms one of trends 
for future research. 

It is well known that any system of equations 
over some finite ring determines some variety over 
this ring (see [12], for example). 

Proposed in the given paper )(KLA -solvers 
)1(

)(KSLA , )2(
)(KSLA , )3(

)(KSLA  and )4(
)(KSLA  can be applied for 

analysis of structure of linear varieties over finite 
rings. 

Analysis of general schemes for solvers intended 
for analysis of satisfiability of formulae presented 
via systems of non-linear equations or non-linear 
disequalities over finite rings forms another trend for 
future research. 
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