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There are developed mathematical methods
intended for resolving the problem of analysis of
satisfiability modular linear arithmetic over any
finite associative (not necessary commutative) ring
with non-zero multiplication. General schemes for
solvers intended for analysis of satisfiability of
formulae presented via any system of linear
equations or linear disequalities are proposed.
Time complexity of proposed solvers is estimated
for finite fields and rings of residues.
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Introduction.

Satisfiability modulo theory (SMT) is an NP-
complete problem intended for deciding satisfiability
of a first-order formula (usually presented via
conjunction of literals) in some decidable first-order
theory T (SMT(T)).

At present the lazy approach [1] (also referred as
DPLL(T) [2]) is predominant for construction of

SMT(T). It is based on integration of some Boolean

satisfiability (SAT) solver with some procedure
intended to handle basic atomic constraints of the
theory T . Elaboration of the last procedure is the
basic step for construction of SMT(T) under the

lazy approach.

It is worth to note the following aspects of
architecture of modern SMT solvers.

Firstly, besides output sat or unsat some formulae
valid in the theory T (i.e. some lemmas of the
theory T ) can be produced (if output is sat they are
called theory-deduction clauses, while if output is
unsat they are called theory-conflict clauses).

Secondly, layering technique [3] is used, i.e. it is
implemented some hierarchy
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S-S,

of solvers of increasing expressivities and
complexity, such that S; (i=1,...,n-1) is intended
to decide some sub-theory T, (T, <T,,;), while S

is intended to decide full theory T .

Thirdly, the splitting-on-demand-technique [4] is
used, i.e. it can be produced the output unknown with
some list of T -lemmas containing new T -atoms,
which will be taken into account in the DPLL search.

The most well studied case of SMT(T) is linear
rational arithmetic [1,5,6], i.e. T = LA(Q) and atoms

are of the form
Tax +b00 (0e{<,<#=25}).
i=1

Some efficient support for linear integer
arithmetic LA(Z) under condition ¢e{<,=} was
developed in [7].

But situation is much more complicated for linear
arithmetic over any finite ring K=(K,+,) (i.e. if
T =LA(K)), since any finite ring as an algebraic
system differs essentially from the ring of integers.
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It is worth to note that there are important
applications of LA(K) (K is a finite ring) in
cryptography [8]. Thus, satisfiability of formulae of
linear arithmetic over a finite ring is actual problem
from theoretic and applied point of view, both.

Investigation of SMT(T) for T =LA(K), where

K is any associative finite ring is the main aim of
the given paper.

1. Typical structure of LA(Z) -solvers.

Typical modern LA(Z)-solver
analysis of atoms of the form

Yax +bo0 (0ef=<}).

intended for

is proposed in [7]. This solver is organized in the
following way.

Firstly, the rational relaxation of the problem is
analyzed by Simplex-based LA(Q)-solver. If its

output is unsat (i.e. some conflict is detected), then
LA(Z) -solver also returns unsat and halts. If its

output is sat (i.e. no conflict is detected), then it is
checked, whether all assigned values for variables
are integers. If this happens, then LA(Z) -solver also

returns sat and halts.

Otherwise, module intended to analyze system of
linear  Diophantine  equations is  activated.
Corresponding algorithm runs in polynomial time,
and is based on integration of procedure intended for
checking consistency for analyzed system of
equations with procedure intended for reducing this
system of equations to triangular form, i.e. to the
form

Xj = 285X
1#]
where variable x; does not occur in the right part of

any equation.
The first procedure is based on the factor that if it
is obtained equation
Ya,X +b, =0,

+¢; (a,¢c5€2),

such that GCD of a,;’s does not divide b, then

analyzed system of linear Diophantine equations is
inconsistent.
The second procedure
following way. Let
Ya,X +b, =0
1

is organized in the

is analyzed equation and a, be the non-zero
coefficient with the smallest absolute value.

If |a, |=1 then analyzed equation is rewritten in
the form
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Xy Z_Zl:(ahkahixi —ayb, (ay =ay lay 7).
1#

This substitution is then applied to all the other
equations.

If |a,, |>1 then analyzed equation is rewritten in
the form

an (% + Xai’x + o)+ Tal'x +b{" =0,

izk izk

where al® and a (similarly, b{® and b{") are
the quotient and the remainder of the division of a,;

by a,, (similarly, of b, by a,, ). Substitution
X =X, + >aix +b{¥
i=k

where x, is some fresh variable is applied to all
equations and then this equation is included in
analyzed system of linear Diophantine equations.

If output of considered module is unsat, then
LA(Z) -solver also returns unsat and halts.

Otherwise, resulted system of linear Diophantine
equations is used for substitutions

X; =i§jajixi +C;

of variables into all analyzed inequalities.

Then module intended to analyze system of linear
inequalities is activated.

Firstly, it tighten every inequality > a;x; +b<0,

I

such that GCD g of & ’s does not divide b, by
transforming it to inequality
Ya,07'x +[bg* <0.

Then LA(Q)-solver is activated. If its output is
unsat (i.e. some conflict is detected), then LA(Z)-
solver also returns unsat and halts. If its output is sat
(i.e. no conflict is detected), then it is checked,
whether all assigned values for variables are integers.
If this happens, then LA(Z)-solver also returns sat
and halts.

Otherwise, the branch-and-bound module is
activated. This module recursively divides analyzed
problem in two sub-problems by adding to original
formula additional constraint in the following way.
Let LA(Q)-solver has assigned to variable x, some

non-integer value ¢, . For the first sub-problem
additional constraint is x, - e, | <0, while for the
second one it is —x, + &, 1 <0. Then LA(Q)-

solver is activated for analyzed sub-problem.

These computations are produced until either
LA(Z) -solver returns sat, or it would be established
that all sub-problems are unsatisfiable ones and,
thus, LA(Z) -solver returns unsat.
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2. Preliminary analysis.

If we compare the ring Z=(Z,+,) of integers
with any finite ring K, considering them as algebraic
systems, then the following essential distinctions can
be detected, at least:

1. Inaring K operation of multiplication can be
non-commutative [9]. In this case it is necessary to
consider terms ab and ba as different ones.

2. There is no natural relation < of total
ordering in any finite ring K. Thus, only atoms of
the form

Yaxal+ho0 (0ef=%})

can be considered in any linear arithmetic LA(K) .

3. Any finite ring K is not an algebraic sub-
system of the ring Z of integers (and, thus, of the
ring Q=(Q,+,) of rational numbers). This implies
that any LA(Q)-solver and any module intended to
analyze system of linear Diophantine equations,
both, cannot be applied in any linear arithmetic
LA(K), in principle.

4. Division inaring K can be partial operation.
If this happens, then in the process of analysis of
linear equations it is necessary to consider separately
two essentially different situations: when selected
coefficient is an invertible element and when it is a
non-invertible one.

5. There can be zero divisors for non-zero
elements of a ring K. If this happens, then in the
process of analysis of linear equations these divisors
can be considered in details.

Taking all these factors into account, we analyze
basic modules of LA(K)-solver under supposition
that K is any associative finite ring with non-zero
multiplication, i.e. there exist a,be K such that
ab=0 or baz0.

Remark 1. Arithmetic in any ring K = (K ,+,)
with zero multiplication can be directly reduced to
arithmetic in the abelian group (K,+).

3. Some backgrounds of the ring theory.

By supposition, for any considered
K =(K,+,) inequality | K|>2 holds.

If |K|=2 then K is finite field GF(2) .

If | K|>3 then the following two lemmas hold.

Lemma 1. Let K =(K,+,-) be any ring such that
|K|>3. For any aeK if there exist be K such
that ax=b for all xe K \{0} then b=0.

Proof. Let ax=b for all x e K \{0}.

If a=0 then b=0.

ring
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Let a=0. Since | K |>3 there exist two different
elements x;,x, e K\{0} such that ax,=b and
ax, =b. Thus, a(x, —x,)=0.

Since X, #X,,1.e. X, —X, #0 we get b=0.

Q.E.D.

Lemma 2. Let K = (K,+,)) be any ring such that
|K|>3. For any aeK if there exist be K such
that xa="Db forall xe K \{0} then b=0.

Proof is similar to proof of lemma 1.

Lemma 3. Let K=(K,+,)) be any ring such that
|K|>3. For any a;,a, e K if there exist beK
such that a,xa, =b forall xe K\{0} then b=0.

Proof is similar to proof of lemma 1.

For any considered ring K = (K ,+,") we set

K'"*° —{fa e K \{0}| (vx e K \{0})(ax = 0)},

K™ ={ae K \{0}| (vxe K \{0})(xa=0)}.

Taking into account the notion of “division” we
can extract the following three non-empty sets of
considered finite rings K = (K ,+,) :

1. Theset D' of all rings K = (K ,+,-) with left
division, i.e. KeD' if and only if for any
aeK\{0} and any beK the set of solutions of
equation ax=>Db is non-empty.

2. The set D" of all rings K=(K,+,) with
right division, i.e. KeD" if and only if for any
aeK\{0} and any beK the set of solutions of
equation xa=b is non-empty.

3. Theset D=D' AnD" of all rings with two-
sided division.

Taking into account the notion of “unit” we can
partition all considered rings into the following six
non-empty sets:

1. The set C, of all commutative rings
K =(K,+,) with the unit, i.e. with such element
leK that Ix=x1=x forall xeK.

2. The set C, of all commutative rings without

the unit.

3. The set C, of all non-commutative rings
K =(K,+,) withthe unit 1le K.

4. The set C, of all non-commutative rings
K =(K,+,) with some left unit 1, eK (i.e. L, x=x

for all x e K ') and without any right unit (i.e. without
any such element 1, e K that x1, =x forall xe K).
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5. The set C; of all non-commutative rings
K =(K,+,7) with some right unit 1, € K and without
any leftunit 1, e K.

6. The set C; of all non-commutative rings
K = (K,+,7) without any left unit 1, ¢ K and without
any right unit 1, € K, both.

Lemma 4. There hold identities
(C,uC,)NnD*=(C,uC,)nD (ae{l,ir}). (1)

Proof. Since DcD' and DcD" there hold

inclusions
(C,uC,)nD'c(C,uC,)nD, 2)
(C,uC,)NnD"' < (C,uC,)nD. (3)

For any ring Ke(C,uC,)nD' the set of
solutions of any equation ax=b (ae K\{0},beK)
IS non-empty.

Since for any ring KeC, UC, equations ax=>b
and xa=b are equivalent to each other, then for any
ring Ke(C, uC,)nD' the set of solutions of any
equation xa=b (aeK\{0},beK) is also non-
empty.

This implies that Ke(C, uC,)nD. Thus, it
holds inclusion

(C,uC,)nDc(C,uC,)nD". (4)
Inclusion
(C,uC,)nDc(C,uC,)nD' (5)

can be proved similarly.
Inclusions (2)-(5) imply that identities (1) hold.
Q.E.D.

Lemma 4 implies that the following corollary
holds.

Corollary 1. There hold identities
(C,uC,)\D*=(C, uC,)\D (ae{l,r}).
Remark 2. There can be several one-sided
units elements inaring KeC, uC;.
The simplest ring KeC, with two distinct left

units contains four elements and its operations are
determined in the following way

+ |O0Oja|b|cl-]0|ajljb|c
0O|O|la|b|jcpgfojo|l0|0]O
alal0O|jc|bflajO0Oja|b]|c
b |b|lc|O0O|afjlb|[O0O|a|b]|c
c c|bjla|Ofjc|O0O]jO0|0]|O

To get the simplest ring K eC, with two distinct

right units it is sufficient to transpose the matrix that
determines multiplication.
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We would use the following denotation for
considered ring K = (K ,+,) :

1. If KeC,, then K™ is the set of all invertible

elements of the ring K. Thus, (K'™,) is the
multiplicative (commutative) group of the ring K .
2. If KeC,, then
K" —fueK|@veK)(u=1)}
is the set of all left-invertible elements of the ring K,
and

K™ ={ueK|@weK)uw=1)}

is the set of all right-invertible elements of the ring
K.

Thus, (K'™ ~ K™ .) is the multiplicative (not
necessary commutative) group of the ring K .

3. If KeC,, then for any left unit 1, e K

K™ (@) ={ueK|@veK)(u=1)}
is the set of all elements of the ring K, left invertible
relatively to the left unit 1, .
4. 1If KeCg, then for any right unit 1, e K
K™1,)={ueK|@veK)uv=1)}
is the set of all elements of the ring K, right
invertible relatively to the right unit 1, .

Let K=(K,+-)eC,. Subsets <x>=Km™x
(xe K) are called classes of associated elements of
the ring K. It is well known that <0>={0},
<a>=K™ (¢eK™) and

<X>*SY>=<XY>
forall x,yeK.

The following generalization of the notion
‘associated elements’ was investigated in [10] for
rings K=(K,+,)€C;.

Let K™ =K'"™™ ~ K" Subsets < x> =K™x
(xe K) are called classes of |-associated elements
and subsets < x>, =K™x (xeK) are called classes
of r-associated elements. Thus, to determine any
specific element ye<x>, (xe K\{0}), as well as
any specific element ze<x>, (xeK\{0}) it is
sufficiently to determine corresponding element of

the set K™
It is evident that:

1) <0>=<0} ={0};
2) <a>=<a>= KinV for any a € Kinv;
3) <x>=<x>, forany xe K", where K"

is the center of the ring K ;
4) xe<x> Nn<x> forany xeK.
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For any subsets A and B of the set K we set
AxB={ab|ae AbeB}.

Remark 3. Forany ring K eC, if K™ < K™

then identities
<X>=<X>=<X> (xeK)
hold. Moreover, in this case in aring K identities
<X>*<yY>=<Xxy> (X,yeK)

also hold.

It was established in [10] that the following
theorems hold.

Theorem 1. For any ring K eC,
XY > T<X> *#< Y >,
XY >, C<X> *#<y>,
forall x,yekK.
Theorem 2. For any ring K eC,
<X> <y > =<xy > *K™ = KM <xy >,
Xy E<X>, <y >
forall x,yeK.
4. Analysis of satisfiability of the simplest atoms.

In any associative finite ring K =(K,+,) with
non-zero multiplication the simplest atoms are axob,
xa0b and a;xa,0b, where a,a,,a,,beK are fixed
elements and ¢ e{=,#}.

Remark 4. In any commutative ring atoms
axOb, xadb and a,xa,0b are indistinguishable.
Thus, when K is commutative ring only the simplest
atoms axOb (0 e{=,#}) can be analyzed.

Let us consider architecture of LA(K) -solver

St intended for analysis of satisfiability of atoms

ax=>b, (6)
xa=b @)

and
axa, =b, (8)

where a,a;,a,,b e K are fixed elements.
This solver can be designed on the base of
layering technique with the following hierarchy

MO MP MP of modules.

Firstly, the module M,* is activated. It produces
the following computations.

If some atom (6) or (7) is analyzed it is checked,
if a=0, while if some atom (8) is analyzed it is
checked, if a, =0 or a, =0.

Let a=0 for an atom (6) or (7) (correspondingly,
a, =0 or a,=0 for an atom (8)). It is checked, if
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b=0. If this happens, M{® returns sat and halts
(thus, S{«, also returns sat and halts). Otherwise,

M returns unsat and halts (thus, S{}y, also

returns unsat and halts).
Let a=0 for an atom (6) or (7) (correspondingly,
a, #0 and a, =0 for an atom (8)).

Remark 5. Let it is analyzed some atom (8)
under supposition that a, =0 and a,=0. If
KeD'\D" then (8) can be transformed into (7),
while if KeD"\D' then (8) can be transformed
into (6).

The following two situations can take the place:

1. Let KeD' and some atom (6) is analyzed, or

KeD" and some atom (7) is analyzed, or Ke D and
some atom (8) is analyzed.

The module M® returns sat and halts (thus,
Stk also returns sat and halts).

2. Let Ke¢D' and some atom (6) is analyzed, or
KegD" and some atom (7) is analyzed, or
KeD' uD" and some atom (8) is analyzed.

If KeC, UC, UC, UC, then the module M)
is activated, while if KeC, UC; then the module
M is activated.

The module M{? produces some computations in
the following four cases (in all other cases M’
directly activates M ).

1. Let KeC,;\D (taking into account remark 4,
we can restrict ourselves with atoms (6) only).

The module M checks if acK™. If this
happens, M{” returns sat and halts (thus, S{),
also returns sat and halts). Otherwise, the module
M is activated.

2. Let KeC, (we emphasize that if some atom
(6) is analyzed then K eC, \D', if some atom (7) is
analyzed then KeC,\D", and if some atom (8) is
analyzed then (see remark 5) K eC, \ (D' UD")).

The module MY
computations.

For any atom (6) it is checked, if ae K'™™. For
any atom (7) it is checked, if ae K"™™™. For any
atom (8) it is checked, if a, e K™ and a, e K"

produces the following
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If this happens, M{? returns sat and halts (thus,
Stk also returns sat and halts). Otherwise, the

module MY is activated.

3. Let KeC,\D' The module M{? produces

the following computations.
For any atom (6) it is checked, if there exists

some left unit 1, e K such that ae K'™™(1,) . If this

happens, M{? returns sat and halts (thus, S{),
also returns sat and halts). Otherwise, the module
M is activated.

For any atom (7) the module M is activated.

For any atom (8) it is checked, if there exists
some left unit 1, € K such that a, e K'™™(1,). If this
happens, then (8) is transformed into (7). The
module M is activated.

4. Let KeCy\D" The module M{” produces

the following computations.
For any atom (7) it is checked, if there exists

some right unit 1 € K such that ac K"™™(1,). If
this happens, M{" returns sat and halts (thus, SX

also returns sat and halts). Otherwise, the module
M s activated.

For any atom (6) the module M is activated.

For any atom (8) it is checked, if there exists
some right unit 1, e K such that a, e K"™™™(1,). If
this happens, then (8) is transformed into (6). The
module M{" is then activated.

Architecture of the module M depends

essentially on the structure of considered ring K .
The simplest case is when KeC, uC,;. The

following two approaches are possible, at least.

The first approach is based on direct checking
satisfiability of atoms (possibly, by exploring these
or the others algebraic properties of the structure of
the ring K).

The second approach is based on exploring notion
of ‘associated elements’ considered in the previous
section and lies in the following.

Let KeC, \D (taking into account remark 4, we
can restrict ourselves with atoms (6) only).

Satisfiability of (6) is reduced to satisfiability of
the atom <a>*<x>=<b> in the semigroup
({<x>|xeK}*).
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If the last atom is satisfiable then M {" returns sat
and halts (thus, S, also returns sat and halts).

Otherwise, M returns unsat and halts (thus,

Stk also returns unsat and halts).

It is well known that cardinality of the set of
classes of associated elements can be sufficiently
less than cardinality of the set K. In this case
considered approach seems to be promising.

Let KeC,. Satisfiability of (6) is reduced to
satisfiability of the formula be<a> *<x>,
satisfiability of (7) is reduced to satisfiability of the
formula be<x>, *<a>, and satisfiability (8) is
reduced to satisfiability of the formula
be<a > *<x> *<a, >.

If analyzed formula is satisfiable then M)

returns sat and halts (thus, S}, also returns sat

and halts). Otherwise, M{" returns unsat and halts
(thus, S{«, also returns unsat and halts).

Cardinality of the set of classes of | -associated
elements as well as cardinality of the set of classes of
r -associated elements can be sufficiently less than
cardinality of the set K. In this case considered
approach seems to be promising.

If KeC,uC,uC;uUC, (especially in the
absence of effective technique intended for solving
factorization problem in a ring K ) the module M "

executes exhaustive searching over some subset
S < K which cardinality can be comparable with

cardinality of the set K .
Since all considered rings could be partitioned
into the sets C;, (i=1...,6), we get that the

following theorem holds.

Theorem 3. LA(K)-solver S, is complete

and consistent.
Let us consider architecture of LA(K)-solver

S{2«, intended for analysis of satisfiability of atoms

ax#b, 9)

xa#b, (10)
and

axa, #b, (11)

where a,a,,a,,b e K are fixed elements.

Remark 6. Taking into account remark 4, we
emphasize that when K is commutative ring only an
atom (9) can be considered.
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LA(K) -solver S{2, can be designed on the base
of layering technique with the following hierarchy
M2 MP M{? of modules.

Firstly, the module M? is activated. It produces
the following computations.

If some atom (9) or (10) is analyzed it is checked,
if a=0, while if some atom (11) is analyzed it is
checked, if a, =0 or a, =0.

Let a=0 if an atom (9) or (10) is analyzed
(correspondingly, a, =0 or a, =0 if an atom (11) is
analyzed).

It is checked, if b=0. M2

returns unsat and halts (thus, S{3, also returns

If this happens,

unsat and halts). Otherwise, M.? returns sat and
halts (thus, SLA(K) also returns sat and halts).

Let a=0 if an atom (9) or (10) is analyzed
(correspondingly, a, #0 and a, #0 if an atom (11)
is analyzed).

The module M{? is activated. It checks, if b=0.
If this happens, M{? returns sat and halts (thus,

Stk also returns sat and halts). Otherwise, the

module M{? is activated.
Computations produced by the module M{?

depend on the following three situations:
1. Some atom (9) is analyzed. The module

M{? checks, if aeK'™™®, If this happens, M{?
returns unsat and halts (thus, S{3, also returns

unsat and halts). Otherwise, M{? returns sat and
halts (thus, SLA(K) also returns sat and halts).

2. Some atom (10) is analyzed. The module
M? checks, if ae K™, If this happens, M{?

returns unsat and halts (thus, S{3, also returns

unsat and halts). Otherwise, M{? returns sat and

halts (thus, SLA(K) also returns sat and halts).
3. Some atom (11) is analyzed. The module

M{? checks, if a, e K™ or a, e K™ If this
happens, M{? returns unsat and halts (thus, S,
also returns unsat and halts). Otherwise, M{?

returns sat and halts (thus, S{%, also returns sat

and halts).
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Since all considered rings could be partitioned
into the sets C; (i=1...,6), we get that the

following theorem holds.
Theorem 4. LA(K)-solver S, is complete
and consistent.

4. Analysis of satisfiability of a system of linear
equations.

Let us consider architecture of LA(K)-solver
S« intended for analysis of satisfiability of atoms
presented via systems of linear equations

agX, +...+a, X, =b, (i=1...,m), (12)
X8 +...+ X8, =b (i=1...,m) (13)
and
Uy +...+ U, =by (i=1...,m), (14)
where u; (ieN;jeN,) is a;X;, X;a; or ajx;aj

and at least two of these three types of terms are
presented.

Remark 7. Taking into account remark 4, we
emphasize that when K is commutative ring only
atom (12) can be considered.

LA(K) -solver S( La) €an be designed on the base

of layering technique with the following hierarchy
M M M of modules.

Firstly, the module M,® is activated. This
module is based on usual Gauss method and it is
intended to transform:

1) system (12) into equivalent diagonal form

&%, = > CXj+di (heN;), (15)
jeNp\i....ir}
where e, #0 (heN,);
2) system (13) into equivalent diagonal form
Xiheih= Z |hj+d (hENr)! (16)

jeNp\iL....ir}
where e, #0 (heN,);
3) system (14) into equivalent diagonal form

e{hxihe{;1 = Z C.hJX,C.hJ (heN,), (17)
jeNpXig,...ir}
where e ,ef € K\{0} (heN,).

If some inconsistency is checked then M,®
returns unsat and halts (thus, S{3, also returns

unsat and halts). If transformation of analyzed
system of linear equations into corresponding
equivalent diagonal form is successful then the

module M is activated. Otherwise, the module
M is activated.
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Remark 8. Any of equivalent diagonal forms
(15)-(17) can be considered as a system of linear

equations with parameters X; (jeN\{i;,....i;}).

The module M is intended to check

satisfiability of corresponding equivalent diagonal
form.

This module is based on sequential analysis of
equations of equivalent diagonal form by applying

corresponding LA(K) -solver S .

Besides, if it is necessary, it is executed some
analysis of non-emptiness of the set of admissible

parameters x; (jeN\{ij,...,i.}). This analysis is
based on these or the others algebraic properties of
the structure of the ring K .

Remark 9. It is evident that if the set of
admissible of parameters x; (jeN\{i,...,i;}) is

empty then corresponding initial system of equations
is unsatisfiabe. Thus, if it is checked that set of

admissible of parameters x; (jeN\{i,...,i;}) is

empty then M immediately returns unsat and
halts (thus, S{3, also returns unsat and halts).

If M{? establishes that corresponding equivalent
diagonal form is consistent it returns sat and halts
(thus, S&, also returns sat and halts). If M

establishes that corresponding equivalent diagonal
form is inconsistent it returns unsat and halts (thus,

S« also returns unsat and halts). Otherwise the

module M{? is activated.

The module M{? is intended to check if is non-

empty the set of solutions of initial system of
equations (correspondingly, of equivalent diagonal
form). This module is based on searching (possibly
restricted by exploring these or the others algebraic
properties of the structure of the ring K).

If it is checked that the set of solutions of initial
system of equations (correspondingly, of equivalent

diagonal form) is non-empty then M{¥ returns sat
and halts (thus, S, also returns sat and halts).
Otherwise, M returns unsat and halts (thus,

St also returns unsat and halts).

Taking into account theorem 3, we get that the
following theorem holds.

Theorem 5. LA(K)-solver S{,, is complete
and consistent.
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5. Analysis of satisfiability of a system of linear
disequalities.

Let us consider architecture of LA(K)-solver
S{«, intended for analysis of satisfiability of atoms
presented via systems of linear disequalities

aX +...+a,x, #b (i=1...m),  (18)
X ...+ X3, zb (i=1...,m),  (19)

and
U, +...+U, =b (i=1...,m), (20)

where u; (ieN;jeN,) is a;X;, X;a; or ajx;aj

and at least two of these three types of terms are
presented.

We associate with analyzed system of
disequalities (18), (20) and (21), correspondingly,
the system of linear equations

apX +...+a,X, =b +¢; (i=1...,m), (21)
Xy +...+ X, =b+¢; (i=1....m) (22)

and
Uy +...+ U, =b+¢; (i=1...,m), (23)

where «,...,a, € K\{0} are parameters.

It is evident that:

1) system of disequalities (18) is satisfiable if
and only if associated system of equations (21) is
satisfiable;

2) system of disequalities (19) is satisfiable if
and only if associated system of equations (22) is
satisfiable;

3) system of disequalities (20) is satisfiable if
and only if associated system of equations (23) is
satisfiable.

This factor implies that LA(K) -solver S{7, can
be designed on the base of layering technique with

the following hierarcny M® MY M of
modules.
Firstly, the module M is activated. It

transforms analyzed system of disequalities into
corresponding associated system of linear equations.

Then the module M{* is activated.
The module M{" is based on applying LA(K) -
solver S(L?(K) to corresponding associated system of

linear equations.

Besides, if it is necessary, it is executed some
analysis of non-emptiness of the set of admissible
parameters ¢o,...,a,, € K\{0}. This analysis is

based on these or the others algebraic properties of
the structure of the ring K .
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Remark 10. It is evident that if the set of

admissible parameters «,...,a,, € K\{0} is empty

then corresponding initial system of disequalities is
unsatisfiabe. Thus, if it is checked that set of
admissible of parameters «,...,a, e K\{0} is

empty then M{* immediately returns unsat and
halts (thus, S{}, also returns unsat and halts).

If M{" establishes that corresponding associated
system of linear equations is consistent it returns sat
and halts (thus, S}, also returns sat and halts). If

M{" establishes that corresponding associated
system of linear equations is inconsistent it returns
unsat and halts (thus, S{, also returns unsat and

halts). Otherwise the module M{* is activated.

The module M{" is intended to check if is non-

empty the set of solutions of initial system of
disequalities and is based on searching (possibly
restricted by exploring these or the others algebraic
properties of the structure of the ring K) and

applying corresponding LA(K) -solver S, when

it Is necessary.
If it is checked that the set of solutions of initial

system of disequalities is non-empty then M
returns sat and halts (thus, S{}, also returns sat

and halts). Otherwise, M{® returns unsat and halts

(thus, S{}, also returns unsat and halts).

Taking into account theorems 4 and 5, we get that
the following theorem holds.

Theorem 6. LA(K)-solver S{}, is complete
and consistent.
6. Time complexity of LA(K) -solvers.

We would analyze time complexity of proposed
LA(K) -solvers in terms of logarithmic weight [11].

Time complexity of LA(K) -solver S, can be
characterized in the following way.

Theorem 7. For any finite field GF(p*) (peN
is prime integer and keN) time complexity of

kyy - )
LA(GF(p")) -solver SLA(GF(pk))

O(log p), if p— wandKk is fixed
T =< 0(k),if k >o0and pis fixed
O(klog p),if p—>wand k —» w

(24)
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Proof. For any finite field GF(p*) (peN is
prime integer and keN) the modules M{" and
M are not needed at all.

For any finite field GF(p*) (peN is prime
integer and k e N) time complexity of the module
M.® is determined by formula (24).

Thus, time complexity of LA(GF(p*))-solver

Ss® . isalso determined by formula (24).
LAGF(p¥))

Q.E.D.

The simplest finite rings KeC, \ (D' UD") are
rings of residues Zpk =(Zpk +), where peN is
prime integer and k > 2.

Theorem 8. For any ring of residues
Zpk =(Zpk +,) (peN is prime integer and k>2)

time complexity of LA(Zpk)-soIver S(Ll,l(zpk) is
O(log p), if p— candk is fixed
T =<0(logk),if k > oand pisfixed .
O(log pk),if p—>wand k —> o
Proof. Any non-zero element of a ring Zpk

(25)

(peN is prime integer and k >2) can be presented
in the form ap', where « € N,, and ieZ, while

zero of the ring Zpk can be presented as 0p°.

Thus, checking if ap' =0 is reduced to checking
if =0 and i=0. Thus, time complexity of the
module M is

O(log p), if p—ooandKk is fixed
T, =10(logk), if k > and pisfixed .
O(log pk),if p—>oand k — o

(26)

Checking if ap' eZi:\k’ is reduced to checking if
a#0 and i=0. Thus, time complexity of the
module M is

O(log p), if p—> wandKk is fixed
T, =10(logk), if k > ocand pisfixed .
O(log pk),if p—>oand k — o

(27)

Classes of associated elements of the ring Zpk
(peN is prime integer and k>2) are <0>={0},
C,=N,,and G, ={ap' |z eN pat (TN ).

103



Bicutw Kulwe oo naygionarhnoso yaigepoumeny
Luienl Tapaca Illeavensa
Cepia ghizttwo-samenanisial Hoywi

Any atom ax=b, where aeC; (ieN,) and
beC; (jeN,) can be transformed into the atom
C;*<x>=C;. Satisfiability of the last atom is
reduced to checking if i< j. Thus, time complexity
of the module M{" is

O(2), if k is fixed
3:{omwkyﬁk-»w'

Since T =T, +T, +T,, formulae (26)-(28) imply

that the formula (25) holds.
Q.E.D.

Let KeC, uC, UCy UCy under condition that
there is no effective technique intended for solving
factorization problem in the ring K. In this case the
module M{Y executes exhaustive searching over
some subset Sc K which cardinality can be

comparable with cardinality of the set K .
Thus, in this case time complexity of LA(K)-

(28).

solver S{Y ., is some sub-exponent, at least.

Time complexity of LA(K) -solver S&,, can be
characterized in the following way.

Theorem 9. For any finite field GF(p*) (peN
is prime integer and keN) time complexity of
LA(GF(p")) -solver S(LZA’(GF(pk» is determined by
formula (24).

Proof. For any finite field GF(p*)
complexity of each of the modules M and M{?
is determined by formula (24).

For any finite field GF(p*) time complexity of
the module M® s
K20 = K200 — g5

Thus, time complexity of LA(GF(p*))-solver

time

some constant, since

Sizz(GF(pk)) is determined by formula (24).
Q.E.D.
Theorem 10. For any ring of residues

Zpk =(Zpk +) (peN is prime integer and k >2)
time complexity of LA(Z ,)-solver S‘LZA’(ZPR) is

determined by formula (26).

Proof is similar to proof of theorem 9.
Time complexity of LA(K) -solver S, could

depend essentially on time complexity of the module
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M{?. Time complexity of checking, if aeX
(X e{K"™™" K"™*"}) do not exceed
T =O(max{| K" | K" [Hog|K[) (|K |- ).

This estimation is upper bound for time
complexity of LA(K) -solver SZ,.

Time complexity of LA(K) -solver S{3, can be
characterized in the following way.

Theorem 11. For any finite field GF(p*) (peN
is prime integer and keN) time complexity of

Ky - @)
LA(GF(p")) -solver SLA(GF(pk))

T = (O(min{m,n}(t, + mn’t,)) (p* =), (29)
where t, is time complexity of computing of inverse
element and t, is time complexity of multiplication

in the field GF(p*).
Proof. For any finite field GF(p*) the module
M is not needed at all.

The module M,? tries to transform initial system
of equations into equivalent diagonal form
X, = 2 CXj+d, (heN,). (30)

jeNn\ig,...ir}
Transformation of any equation
QX + @ juaXjr oo AR X, =hy
into equation
Xj + @ 1 Xjyy +ee X, =D

needs one operation of computing of inverse element

aijfl and n— j operations of multiplication. Thus,

time complexity of this step is
T/(J) =0t +(n - j)t;) (p* —>). (31)
Deleting of variable x; from any other equation
of analyzed system needs n-—j operations of
multiplication and n-— j operations of addition.

Since time complexity of addition is much more less
then time complexity of multiplication we can ignore
time complexity of addition.

Thus, time complexity of this step is also
determined by formula

T(1)=0((n- j)t,) (p* > ).

This implies that time complexity of deleting of

variable x; from all the others equation of analyzed

system is
T/(j)=0(m(n - j)t,) (p* —> ).
Time complexity of module M is

(32)
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min{m,n

i . m s
2 M +T(0).
=
Taking into account formulae (31) and (32), we get
T, = O(min{m,n}(t, + mn?,)) (p* — ).
If some inconsistency is checked then M

T, =

returns unsat and halts (thus, S{, also returns

unsat and halts).
Otherwise, the module M{? directly returns sat

and halts (thus, S{%, also returns sat and halts), i.e.

time complexity of the module M? is
T,=0@1) (p*—> ).
Since T =T, +T,, we get that formula (29) holds.
Q.E.D.

The situation differs essentially for any ring of
residues Zpk =(Zpk +) (peN is prime integer

and k >2). In this case the module M{® also is not
needed.

The module M, tries to transform initial system
of equations into equivalent diagonal form

a4, P = X B M+, p" (heN,), (33)

jESih
where S, <N \{i,....i,}, awﬁmezﬁ,am
7, =0 0r y eZigf(’ .

Dealing as in proof of theorem 11, we establish
that time complexity of the module M® is
determined by formula

T, = O(min{m,n}(t, + mn?,)) (p* »>x), (34)
where t, is time complexity of computing of inverse
element and t, is time complexity of multiplication
in the ring Zpk :

If some inconsistency is checked then M
returns unsat and halts (thus, S{, also returns
unsat and halts). Otherwise, the module M is
activated.

The module M§3) executes sequential analysis of

equations of equivalent diagonal form (33) in
accordance with the following scheme.

Step 1. U =K", h:=1.

Step 2. If y;, =0 then go to step 8.

Step 3. If 1, = min{min{w; ; | j € S; },v;} then go
to step 5.
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Step 4. The module M$® returns unsat and halts
(thus, S, also returns unsat and halts).

Step 5. Compute the set V, of solutions of h-th
equation of equivalent diagonal form.
Step 6. If V, =@ then M¥ returns unsat and

halts (thus, S{%, also returns unsat and halts), else
U=UAnV,.

Step 7. If U= then M{¥ returns unsat and
halts (thus, S, also returns unsat and halts).

Step 8. If h=r then M{® returns sat and halts
(thus, S&, also returns sat and halts), else
h:=h+1 and go to step 2.

It is evident that time complexity of the module
M ¥ is much more higher then (34) and is the same
as time complexity of searching the set of solutions
of equivalent diagonal form (33).

Moreover, let KeC, uC, uC;UCy under
condition that there is no effective technique
intended for solving factorization problem in the ring
K . In this case the module M$® executes exhaustive
searching over some subset S < K which cardinality

can be comparable with cardinality of the set K.
Thus, in this case time complexity of LA(K) -solver

S{«, is some sub-exponent, at least.

It was established that analysis of satisfiability of
any system of disequalities is equivalent to analysis
of satisfiability of associated system of linear
equations. Thus, time complexity of any LA(K)-

solver S{), is not less than time complexity of
H 3
corresponding LA(K) -solver S, .

Conclusions.

In the given paper there are developed
mathematical methods intended for resolving the
problem of analysis of satisfiability modular linear
arithmetic over any finite associative (not necessary
commutative) ring with non-zero multiplication.
General schemes for solvers intended for analysis of
satisfiability of formulae presented via any system of
linear equations or linear disequalities are proposed.

It is evident that if analyzed formula is presented
via some system of linear equations and disequalities
then its analysis is reduced to sequential application

of corresponding LA(K)-solvers S{),, S{A.

3 4
S and S
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It is worth to note that if LA(K)-solver S{),,

concludes that all analyzed simplest atoms (6)-(8)
are satisfiable then these atoms can be used for
substitution into all other atoms of analyzed formula.

And only after this substitution LA(K) -solver S{Zy,
can be applied.
Similarly, let LA(K)-solver S{3, has produced

equivalent diagonal form for analyzed system of
equations. If this solver concludes that all analyzed
atoms are satisfiable then equivalent diagonal form
can be used for substitution into all disequalities.

And only after this substitution LA(K) -solver S{%y,

can be applied.

In the given paper time complexity of proposed
solvers is estimated for finite fields and rings of
residues. It was established that even for the simplest
rings, i.e. for rings of residues time complexity of

LA(K) -solvers S{2, and S{}, is much more
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