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Канонічна пуассонова структура на 
T*SE(3) в кватерніонних змінних 

 
В даній роботі показано, що дужки Пуассона 

з кватерніонними змінними можуть бути 
виведені безпосередньо з канонічних дужок 
Пуассона на кодотичному розшаруванні до 
групи (3)SE

 
( (3)SO ), що забезпечено 

стандартною симплектичною геометрією, 
відповідною формою Ліувіля. Отримані 
результати засновані на представленні 
кватерніонних змінних як явних функцій 
елементів матриці поворотів групи (3)SO . 
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Canonical Poisson structure on T*SE(3) in 
the quaternion variables 

 
In this paper showed that Poisson bracket with 

quaternion variables can be deduce directly from 
the canonical Poisson brackets on the cotangent 
bundle to (3)SE  ( (3)SO ) group endowed with the 
canonical symplectic symplectic geometry 
corresponding Liouville one form. The obtained 
results based on quaternion variables 
representation as the explicit functions of rotation 
matrix elements of (3)SO group. 
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1. Introduction  

Quaternion applications in mechanics of rigid 
body there are greate number of publication are 
devoted. The most of them refer to the kinematic of 
the rigid body that is the description of rigid body 
orientation in space with quaternion parameters [1]. 

Thereinafter we specify those rare works that 
devote to dynamical aspects of quaternion 
application. In the V.V.Kozlov's work [2] descrition 
of the dynamics is given by quaternion variables 
based on the Lagrange approach that was modified 
by Poincaré for the nonholonomic basis. That 
approach also allow to put into consideration the 
momentum that conjugate to quaternion variables 
and give the hamiltonian form to the motion 
equations with redundant variables. Starting from 
deep relations between quaternion algebra  
and (3)SO , (4)SO  groupes A.V. Borisov and  
I.S. Mamaev [3-5] propose the expressions of 
Poisson brackets between quaternion's parameters 
and angular momentum of the rigid body. They 
consider them as the generatrix of some Lie-Poisson 
structure. So, the condition of normalized per unit 
quaternion that is required for rigid body description 
sprang  into  special  value  of  the  Casimir  function  in  
the present Lie-Poisson structure. 

The expression of group matrix element by 
quaternions parameters is well known [1,4-6]. 
Additionally it clearly demonstrates the structure of 
the orthogonal matrix. Per se, inverse problem that is 

expressing the quaternion's parameters in terms of 
the elements of the corresponding rotation matrix is 
not so difficult. Though in the litterature we succeed 
in found (post factum) only one work where this task 
was posed and its solution presented [7]. But the 
main goal of this short (but very instructive) work 
was to present the comparative analysis of the 
necessary number of operation for quaternions and 
matrix computations. In terms of quantity was 
proven that quaternions computation is more 
effective. It is important to notice that as it was 
pointed in the book [4, c.104] the quaternions give 
one the balance of advantage also in the stability of 
numerical integration of rigid body motion 
equations.         

From general relations of work [8] one can 
deduce the following expressions for Poisson 
brackets between the elements of rotation matrix and 
the angular momentum components in the inertial 
reference system. Here and further for determinacy 
we consider more wide group (3)SE , that describe 
not only rotational, but also translational degree of 
freedom of the rigid body.     

0, 0, ,
, 0, ,

0, 0, 0,
0.

i j i j i jk ijl lk

i j ij i jk i j ijl l

i jk i j i j

ij kl

{x x } {p p } {m Q } Q
{x p } {p Q } {m m } m
{x Q } {p m } {x m }
{Q Q }

e
d e

, = , = , =ì
ï , = , = , =ï
í , = , = , =ï
ï , =î

       (1.1) 

where ix  –  coordinates of the body center of mass, 
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ip – components of the momentum of translational 
motion, jkQ – elements of rotation matrix that 
describe the body orientation with respect to the 
inertial reference system, jm – components of the 
angular moment of the body with respect to the 
inertial reference system.      

Notice that Poisson brackets in the system 
connected with a body is not difficult to get by 
simple canonical manipulation from (1.1), see also 
[4-5].     

From the explicit expression of quaternion 
parameters as the functions of the elements of 
rotation matrix from (1.1) one can deduce the 
required Poisson brackets between the components 
of quaternion and the angular momentum 
components of the body. The construction ot these 
relations is the main goal of the paper.  

It turns out that expressions computed in this way 
have the same form that the previously discussed 
Lie-Poisson brackets between generatrix of the 
Poisson structure, see [4, ф. (2.7), с.103].  

Though, the essence of the getting relations is 
something else. Quaternion parameters in our case 
are not the generatrix of the Poisson structure, but 
the dynamic variables in the canonical Hamiltonian 
mechanics on (3)T SE*  (it is not the Lie-Poisson 
structure). In our case the structural tensor of Lie 
algebra of the Poisson brackets is not nondegenerate, 
and,  so,  Casimir  functions  are  absent  then  the  
condition of normalized quaternion are simply 
express the relation of quaternion dynamic variables 
on group. As an explanatory notes of this 
circumstance let us examine the example. Let j  is 
one of the Euler angel. Then the dynamic variable  

2 2cos ( ) sin ( )j j+  is identically equal to one, but it 
is not the Casimir function. 
 

 2. Quaternion’s algebra 
As it was already mention there is a vast amount 

of literature devoted to quaternions. Remind briefly 
the properties of quaternions [1,4-7,9]. 

The quaternions form the associative algebra with 
0e  identity and ie , 1 2 3,i = , ,  generatrix that satisfy 

the influential relations. 

0r s rs rst te e e ed e= - +                     (2.1) 
or that is equal  

0

[ ] 2 ,
2 .

r s r s s r rst t

r s s r rs

e e e e e e e
e e e e e

e
d

, = - =ì
í + = -î

       (2.2) 

Thus the quaternions form 4-dimensional vector pace 

over field of real numbers   
0 1 2 3

0 1 2 3q q e q e q e q e= + + +             (2.3) 
or expressed in terms of  4-dimensional column-
vector 0 1 2 3q (q )q q q= , , , . 

The component 0q  name  is  scalar  part  of  
quaternion  q  and components 1 2 3q q q, ,  group in 
vector part. Thus quaternion can be presented as  

0( )q q= ,q . 
If 0 0q =  then it is acceptable to write q = q  and 

that quaternions named pure quaternion [6, c.301]. 
Pure quaternions form the linear subspace of 
quaternion algebra, but it is not subalgebra, because 
of the associative product of two pure quaternions be 
the quaternion of the general type. 

Multiplicative rule between a  and b  quaternions 
follow from (2.1) 

0 0 0 0
0 0 0 0( )( ) ( )( )r s

r sab a e a e b e b e a e b e= + + = + +a b (2.4) 
0 0 0 0

0( )a b < > e a b= - , + + + ´a b b a a b  
Then for the pure quaternions the next 

expressions of scalar and vector product by 
associative multiplication are valid.    

1
2

1
2

( ),
( ).

< >, = - +ì
í ´ = -î

x y xy yx
x y xy yx

           (2.5) 

The operation of quaternion conjugation specify 
as 

†
0 0e e= ,  †

k ke e= -                 (2.6) 
or 

† 0 † 0( ) ( )q q q= , = ,-q q             (2.7) 
Thus the pure quaternions fully characterize of 

the next property   
† .= -x x                         (2.8) 

 
It is follow from (2.7)  

† † 0 0
0

0 2 1 2 2 2 3 2

( ( ))

( ) ( ) ( ) ( ) .

qq q q q q e
q q q q
= = + , =

= + + +

q q     (2.9) 

In addition, from the formulas (4,6a) follow  
† † †( ) .ab b a=                   (2.10) 

Let’s define the quaternion norm 
†( )q qq| |=                (2.11) 

then 
.ab a b| |=| || |                    (2.12) 

Moreover, from the formulas (2.9,2.11) follow 
the simple representation of the inverse quaternion  
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†
1

2 .qq
q

- =
| |

                       (2.13) 

Formulas (2.9) and (2.13) show that all 
quaternions excepting the zero one have there 
inverse, so the quaternion algebra is a body. 

It is follow from (2.12) and (2.13) that unit 
quaternion or the quaternions with norma equal to 
identity form the group.  
 

3. Right (left) action in the quaternion algebra  
Its  make  sense  to  put  into  consideration  the  

algebra representation of quaternions by 4×4-matrix 
of right action. Moreover, in some computation the 
using of rut matrix technic is offer advantages.   

It is clear from (2.1) that for the right action of 
quaternion 0( )b b= , b  the matrix operation 
corresponds 

0 01 2 3

1 0 3 2 1

2 3 0 1 2

3 2 1 0 3

.b

b b b b a
b b b b a

R a ab
b b b b a
b b b b a

é ù é ù
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê úê ú ê úë û ë û

- - -
-

= =
-

-

  (3.1)  

We can expand the matrix bR  into the present set 
of basis matrices   

0 1 2 3
0 1 2 3,bR b R b R b R b R= + + +     (3.2) 

where 

0 1

1 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0
0 0 1 0 0 0 0 1
0 0 0 1 0 0 1 0

R R

-é ù é ù
ê ú ê ú
ê ú ê ú= , = ,
ê ú ê ú
ê ú ê ú-ë û ë û

 

2 3

0 0 1 0 0 0 0 1
0 0 0 1 0 0 1 0

.
1 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0

R R

- -é ù é ù
ê ú ê ú-ê ú ê ú= , =
ê ú ê ú-
ê ú ê ú
ë û ë û

 

The matrices 
0 1 2 3R R R R, , ,  satisfy the relations 

that are fully analogous to the relations (2.1) for 
quaternions generatrix. Therewith  kR  is anti-
symmetrical in 1 2 3,k = , , , and, then, the quaternion 
conjugation corresponds the operation of matrix 
transpose.   

Quite similarly to the right action we can consider 
the matrix representation of the left action. 
 
 
 
 
 
 

4. Representation of rotation by quaternions 

Let’s consider a linear subspace of the pure 
quaternions as a 3-dimensional Euclidian space with 
scalar product defined by (5). 

Shown that interior automorphism of quaternion 
algebra that generated by unit quaternion q  translate 
the space of pure quaternions by themselves. 

The rule of conversion we write in form  
1 †' [ ] 1q q q q Q q-= = = , | |= .x x x x      (4.1) 

Shown that resulting quaternion 'x  is  also  pure  
quaternion, really, 

† † † † † † †( ) ( )q q q q q q= = - .x x x         (4.2) 
Thus the operator [ ]Q x  is the linear operator that 
acts in subspace of the pure quaternions.  

Shown that operator [ ]Q x  conserve the scalar 
product of the vectors by using expression of scalar 
product via associative multiplication in (2.5) 

1 1 1 11[ ] [ ] ( )
2

< Q Q > q q q q q q q q- - - -, = - +x y x y y x  

11 ( )
2

q q-= - +xy yx 1q < > q < >-= , = , .x y x y  

Thus the following relations of invariance are true 
for the operator Q  (it is proved analogous) 

[ ] [ ] ,
[ ] [ ] [ ],

[ ] [ ] [ ] .

< Q Q > < >
Q Q Q
< Q Q Q > < >

, = ,ì
ï ´ = ´í
ï , ´ = , ´î

x y x y
x y x y

z x y z x y
 (4.3) 

The first relation of (4.3) means that the operaror 
Q  is orthogonal, and the third that it is unimodular, 
i.e. Q  is the intrinsic rotation ( (3))Q SOÎ . 

In this context of the task the main interest invoke 
the explicit form of the matrix elements of Q -
operator that can be obtained from (4.1) from the 
multiplication rule (2.4)  

0 2 012 ( )
2

i k j
ik ik jikQ q q q q qd e

é ù
ê ú
ê ú
ê ú
ë û

æ ö= - + -ç ÷
è ø

  (4.4) 

that for the unit quaternion equal to the following 
expression of matrix operator Q : 

2 2 2 2
0 1 2 3 1 3 0 21 2 0 3

2 2 2 2
1 2 0 3 0 1 2 3 2 3 0 1

2 2 2 2
1 3 0 2 2 3 0 1 0 1 2 3

2( ) 2( )
2( ) 2( )
2( ) 2( )

q q q q qq qq qq qq
qq qq q q q q qq qq
qq qq qq qq q q q q

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

+ - - - +
+ - + - -
- + - - +

 (4.5)  

Shown that reflection q Q®  is the reflection 
that cover whole group (3)SO .   
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In particular in the case 1 0,q = 2 0,q =  this matrix 
has the form 

2 2
0 3 0 3

2 2
0 3 0 3

2 2
0 3

2 0
2 0

0 0

q q q q
Q q q q q

q q

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

- -
= -

+

 

If appear that 1
0 2cosq q= ,  1

3 2sinq q= ,  then  

cos sin 0
sin cos 0

0 0 1
Q

q q
q q

-é ù
ê ú= ê ú
ê úë û  

It is the rotation matrix around the axis z  on the 
angel q  (anticlockwise).  

Similarly get the rotations around other two axes 
x and y . 
R  e  m a  r  k.  It  is  useful  to  notice  that  the  arbitrary  
unit quaternion can be offered in the form 

0cos( 2)e sin( 2)q j j= / + / ,e          (4.6) 
where e  – unit pure quaternion, that specify the 
rotation axis, and j  – the corresponding rotational 
angle around this axis. The expression (4.6) that 
concerned as a function j  is one-parameter 
subgroup of this group of unit quaternions.   

Since q Q®  is the homomorphism, so then the 
product of such rotations belong to direct image of 
this homomorphism. Well known that any rotation 
can be realized as the product of rotations around the 
axes of Cartesian coordinate system. Thus, really, 
matrix (4.6) represents the record of the arbitrary 
element of group (3)SO  via quaternion parameters.  

So, formula (4.1) defines the homomorphism of 
the group of unit quaternions on the (3)SO  group. 
Therewith these groups are locally isomorphic and 
group of unit quaternions double cover (3)SO  [6]. 
Really, from (4.1) it is clear that quaternions q  and 
( )q-  give us the same rotation Q . 

 
5. Rotational representation of quaternions 

In Section 4 it was proved that for each rotation 
of (3)SO  corresponds 2 and only 2 unit quaternions 
with opposite sign. Then the task about explicit form 
of this functional dependence is appeared. 

Matrix Q  corresponding to the quaternion q  has 
the follows elements.    

2
0 0(2 1) 2 2 .ik ik i k j jikQ q q q q qd e= - + -    (5.1) 

Let’s evaluate the spur of the matrix with keep in 
mind that q  is unit quaternion 

2
0Sp(Q) 4q 1= -                     (5.2) 

i.e. 
2
0

1 (Sp(Q) 1).
4

q = +                   (5.3) 

Antisymmetric part of the matrix Q  has a simple 
form, then we have   

0
1 .
4i ijk jkq q Qe= -                  (5.4) 

Thus for 
0 0q ¹  we can express in the explicit 

form the components of quaternion that 
corresponding to the target rotation matrix by its 
elements   

1
2

ijk jk
1
2

1
0 2

Q1
2

(Sp(Q) 1)

(Sp(Q) 1) ,

.i

q

q e

+

ì = +ï
í = -ïî

               (5.5) 

We have two solutions of this system 
corresponding of two choose of root sign in the 
expression of 

0q  (1-st line in (5.5)). 
If we want to have the solution of these functional 

equations in the neighborhood of quaternion with 
zero scalar part (Sp(Q) 1)= - , i.e. in neighborhood 
of the pure quaternion then formulas (5.5) is not 
acceptable. 

It must be noticed that for the numarical 
computations the difficulties is possible even for 
small but not zero value of 0q . Therefore E. Salamin 
who investigate the task of comparative estimation 
of the efficiency of numarical computations with 
orthogonal matrix and quaternions [7], to put 
forward the set of experssions for finding the 
quaternion components that follow from the form of 
matrix Q . 

2 1
0 11 22 334
2 1
1 11 22 334
2 1
2 11 22 334
2 1
3 11 22 334

(1 ),
(1 ),
(1 ),
(1 )

q Q Q Q
q Q Q Q
q Q Q Q
q Q Q Q

ì = + + +
ï = + - -ï
í

= - + -ï
ï = - - +î

            (5.6) 

and 
1

0 1 32 234
1

0 2 13 314
1

0 3 21 124
1

1 2 12 214
1

1 3 13 314
1

2 3 23 324

( ),
( ),
( ),
( ),
( ),
( ).

q q Q Q
q q Q Q
q q Q Q
q q Q Q
q q Q Q
q q Q Q

= -ì
ï = -ï
ï = -ï
í = +ï
ï = +
ï

= +ïî

                   (5.7) 

For numarical computations the optimum is to 
choose the maximum component of quaternion by its 
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absolute magnitude from the relations (5.6) (so this 
component sign will defined the sign of quaternion 
in general), then other components can be found 
from (5.7). 

It is clear that for the unit quaternion at least we 
have one component nonvanishing.    

Noticed that the present solution (5.5) 
hereinabove is corresponding to the 1-st line of (5.6) 
and for the first 3 lines in (5.7). 

 
6. The Poisson brackets with quaternion 

components 

If we want to get Poisson brackets with 
quaternion components it is required to deduce the 
expressions 0

kl

q
Q
¶
¶  and .i

kl

q
Q
¶
¶ For example, 

0
0i i kl

kl

q{m q } {m Q }
Q
¶

, = ,
¶

          (6.1) 

where the Poisson bracket i kl{m Q },  is known from 
(1.1).  

From the relation (5.5) we have 
0

0

0 0

1
8

1 1
4 2

,

.
kl

j j

kl

q
klQ q

q q
jkl klQ q q

d

e d

¶
¶

¶ æ ö
ç ÷ç ÷¶ è ø

ì =ï
í

= - +ïî
          (6.2) 

In consideration of i kl ikn nl{m Q } Qe, =  and using 
(6.2) we receive 

0
0

1
2i i kl i

kl

q{m q } {m Q } q
Q
¶

, = , =
¶

       (6.3) 

and 

0
1 ( ).
2i j ijk k ij{m q } q qe d, = -           (6.4) 

Take into consideration 0ij kl{Q Q }, = , finally we 

get 

1
0 2

1
02

0 0 1 2 3
,

( ).
i i

i j ijk k ij

{q q }
{m q } q
{m q } q q

m n m

e d

ì , = , = , , ,
ï , =í
ï , = -î

   (6.5) 

As it was mentioned above in Section 1 such 
Poisson bracket were deduced by A.V. Borisov and 
I.S.  Mamaev  as  the  relation  for  the  generatrix  of  
some Lie-Poisson structure. Then the value 

0 2 1 2 2 2 3 2( ) ( ) ( ) ( ) ( )C q q q q q= + + +  is the Casimir 
function for this Poisson structure and for deduce of 
motion equations of the rigid body it is required to 
pass on the symplectic sheet of this Poisson structure 
that corresponds to the ( ) 1C q = . 

7. The invariance properties of the Poisson 
structure on T*(SE(3)) (T*(SO(3))) 

Take note on the Poisson brackets (1.1) that 
includes the matrix elements of the rotations. 
Examine, for example, the relation  

i jk ijl lk{m Q } Qe, =                    (7.1) 
and multiply it on the fixed matrix (3)B SOÎ  by 
right hand. 

Thus the elements of the matrix is constant, so we 
can be bring them behind the sign of the Poisson 
brackets in the left side of (7.1), and then the 
relations are valid 

( ) ( )i jn ijl ln{m QB } QBe, =            (7.2) 
After doing the analogous conversion with all of 

these Poisson brackets, we see, that matrix elements 
of the rotation P QB=  satisfy  to  all  of  those  
Poisson brackets as well as the matrix elements of 
the initial rotation Q .    

Let's shown that the Poisson brackets of the 
Section 6 can be transform to more compact form by 
using the multiplicative rule of the quaternions. 
Multiply the quaternion 

0 0 k kq q e q e= +  left hand on ie  

0 0 0( ) ( )i i k i k i k ik ikj je q q e q e e q e q e ed e= + = + - +  

0 0 ,i ij j k ikj jq e q e q ed e= - + +  

0 0i i ij j k ikj je q q e q e q ed e= - + +          (7.3)  

0

0

( ) ,
( ) .

i i

i j ijk k ij

e q q
e q q qe d

= -ì
í = - +î

             (7.4) 

Then 

1
0 02

1
2

( ) ,
( )

i i

j i i j

{q m } e q
{q m } e q

, =ì
í , =î

                (7.5) 

1
2 ( ) 0 1 2 3.i i{q m } e qm m m, = , = , , ,    (7.6) 

Formally it is possible to multiply (by left hand) the 
expressions (7.6) on the fixed quaternions 

0 1 2 3e e e e, , ,  and sum by index m . Moreover, using 
the constancy of  em , let's bring them behind the sign 
of the Poisson bracket.   
In result we have 

1 .
2i i{m q} e q, = -                        (7.7) 

As far as in the matrix case by multiplying the 
expression (7.7) (by right hand) on some fixed 
quaternion 1b b,| |= ,  we  make  sure  that  new  
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quaternion dynamic variable p qb=  is also satified 
those Poisson brackets (7.7) for q . In fact, this is the 
simple algebraic conversion that is equal to the the 
action of right hand matrix shift (3.2) on the set of 
(7.7). Consequently, p  satisfy to all Poisson 
brackets that are analogous to the Poisson brackets 
(7.5-7.6) of the Section 6.   
 

8. Poisson bracket with quaternion compo-
nents in the special case 

Deduce of the relations (7.5-7.6) hereinabove, 
strictly speaking, will not be correct in the 
neighborhood of the pure quaternion 

0Sp(Q) 1 q 0= - ® = , because of (5.5) in this point 
is not valid. But it does not mean that relation (7.5-
7.6) in the neighborhood of the pure quaternion is 
not valid. Quaternion with 0 0q =  is not looks as the 
special point for this relations. But the proof of this 
relations in general case required another approach. 

First of all, it is possible to use the Salamin's 
solutions (5.6-5.7) by taken as a base those 
component of quaternion that is nonzero in the target 
neighborhood, for example 1q . But this approach, 
unfortunally, result in hungus and non-transparent 
computations. 

Let’s examine the properties of invariance that 
was  presented  in  the  Section  7  and  the  fact  that  

reflection of q Q®  is homomorphism on (3),SO  
group as it was describe hereinabove.  

Suppose that we want to compute Poisson 
brackets with quaternions in the neighborhood of a 
pure quaternion q  with 

0 0q = . 
Let’s take such fixed quaternion 1b b:| |=  that 

the dynamical quaternion variable p qb=  with 
value 0 0p ¹  in  the  target  point  (it  is  always  
possible for 1,q q:| |=  as it was shown 
hereinabove). Quaternion p reflects into the matrix 

(3)P SOÎ  for the mentioned homomorphism 
( )p P® . 

Quaternion variable p  lie in the same relation to 
the matrix variable P  as far as variable q  relates to 
Q  in computation of the Poisson brackets with 
quaternions presented hereinabove, it being known 
that 0 0p ¹ .  
  Therefore, the Poisson bracket (7.5-7.6) is valid for 
quaternion variable p . Applling the inverse 

conversion 1q pb-=  to the expressions that was 
received result in the expressions (7.5-7.6), but for 
the quaternion variable q .     
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