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1. Introduction

Quaternion applications in mechanics of rigid
body there are greate number of publication are
devoted. The most of them refer to the kinematic of
the rigid body that is the description of rigid body
orientation in space with quaternion parameters [1].

Thereinafter we specify those rare works that
devote to dynamical aspects of quaternion
application. In the V.V.Kozlov's work [2] descrition
of the dynamics is given by quaternion variables
based on the Lagrange approach that was modified
by Poincaré for the nonholonomic basis. That
approach also allow to put into consideration the
momentum that conjugate to quaternion variables
and give the hamiltonian form to the motion
equations with redundant variables. Starting from
deep relations between quaternion algebra
and SO(3), SO(4) groupes A.V. Borisov and

I.S. Mamaev [3-5] propose the expressions of
Poisson brackets between quaternion's parameters
and angular momentum of the rigid body. They
consider them as the generatrix of some Lie-Poisson
structure. So, the condition of normalized per unit
quaternion that is required for rigid body description
sprang into special value of the Casimir function in
the present Lie-Poisson structure.

The expression of group matrix element by
quaternions parameters is well known [1,4-6].
Additionally it clearly demonstrates the structure of
the orthogonal matrix. Per se, inverse problem that is
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expressing the quaternion's parameters in terms of
the elements of the corresponding rotation matrix is
not so difficult. Though in the litterature we succeed
in found (post factum) only one work where this task
was posed and its solution presented [7]. But the
main goal of this short (but very instructive) work
was to present the comparative analysis of the
necessary number of operation for quaternions and
matrix computations. In terms of quantity was
proven that quaternions computation is more
effective. It is important to notice that as it was
pointed in the book [4, c.104] the quaternions give
one the balance of advantage also in the stability of
numerical integration of rigid body motion
equations.

From general relations of work [8] one can
deduce the following expressions for Poisson
brackets between the elements of rotation matrix and
the angular momentum components in the inertial
reference system. Here and further for determinacy
we consider more wide group SE(3), that describe
not only rotational, but also translational degree of
freedom of the rigid body.

x,x /=0, {p,p;}=0 {m,0,}=¢,0,,
.0, =06, .0, }=0, {m,m }=¢m,
2,0, /=0, {p.m; }=0,  {x,m }=0,
10,,0, }=0.

where x, — coordinates of the body center of mass,

(1.1)
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p,— components of the momentum of translational
motion, ij — elements of rotation matrix that

describe the body orientation with respect to the
inertial reference system, m;— components of the

angular moment of the body with respect to the
inertial reference system.

Notice that Poisson brackets in the system
connected with a body is not difficult to get by
simple canonical manipulation from (1.1), see also
[4-5].

From the explicit expression of quaternion
parameters as the functions of the elements of
rotation matrix from (1.1) one can deduce the
required Poisson brackets between the components
of quaternion and the angular momentum
components of the body. The construction ot these
relations is the main goal of the paper.

It turns out that expressions computed in this way
have the same form that the previously discussed
Lie-Poisson brackets between generatrix of the
Poisson structure, see [4, ¢. (2.7), c.103].

Though, the essence of the getting relations is
something else. Quaternion parameters in our case
are not the generatrix of the Poisson structure, but
the dynamic variables in the canonical Hamiltonian

mechanics on 7*SE(3) (it is not the Lie-Poisson

structure). In our case the structural tensor of Lie
algebra of the Poisson brackets is not nondegenerate,
and, so, Casimir functions are absent then the
condition of normalized quaternion are simply
express the relation of quaternion dynamic variables
on group. As an explanatory notes of this
circumstance let us examine the example. Let ¢ is

one of the Euler angel. Then the dynamic variable
cos’ (@) +sin’(¢) is identically equal to one, but it
is not the Casimir function.

2. Quaternion’s algebra

As it was already mention there is a vast amount
of literature devoted to quaternions. Remind briefly
the properties of quaternions [1,4-7,9].

The quaternions form the associative algebra with
e, identity and e,, i =1,2,3, generatrix that satisty
the influential relations.

eres = _5rs60 + giﬁvtet (21)
or that is equal
le.e]=ee —ee =2¢ e, 2.2)
ee +ee =-20 e,.

Thus the quaternions form 4-dimensional vector pace
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over field of real numbers

q= qoeo + q1e1 + qzez + q3e3 (2.3)

or expressed in terms of 4-dimensional column-
vector q=(q°,¢",9%,9°)-

The component qo name is scalar part of
quaternion ¢ and components ¢' g° g’ group in
vector part. Thus quaternion can be presented as
q=(4".q)-

If qo =( then it is acceptable to write ¢ = q and

that quaternions named pure quaternion [6, c.301].
Pure quaternions form the linear subspace of
quaternion algebra, but it is not subalgebra, because
of the associative product of two pure quaternions be
the quaternion of the general type.

Multiplicative rule between g and p quaternions
follow from (2.1)

ab=(a’e,+a’e )(b’e, +b’e) =(a’e, +a)(b’e, +b)(2.4)
=(a'h’-<a,b>)e, +a’b+b’a+axb
Then for the pure quaternions the next

expressions of scalar and vector product by
associative multiplication are valid.

{< X,y >=—1(xy +yx),

XXy =7 (Xy —yx).
The operation of quaternion conjugation specify
as

(2.5)

e, =e, e =—e (2.6)

or

¢ =(¢".a)" =(q"~q) 2.7

Thus the pure quaternions fully characterize of
the next property

x =-x. (2.8)
It is follow from (2.7)
99" =q'q9=(q"9" +(q.q))e, = (2.9)
=(q°) + (g +(q*) +(¢g")".
In addition, from the formulas (4,6a) follow
(ab)' =b'a’. (2.10)
Let’s define the quaternion norm
lq1=(gq") (2.11)
then
|ab|=|al|b]. (2.12)

Moreover, from the formulas (2.9,2.11) follow
the simple representation of the inverse quaternion
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i 4. Representation of rotation by quaternions
14 (2.13)
q = 2" ) . .
a Let’s consider a linear subspace of the pure
Formulas (2.9) and (2.13) show that all guaternions as a 3-dimensional Euclidian space with

quaternions excepting the zero one have there
inverse, so the quaternion algebra is a body.

It is follow from (2.12) and (2.13) that unit
quaternion or the quaternions with norma equal to
identity form the group.

3. Right (left) action in the quaternion algebra

Its make sense to put into consideration the
algebra representation of quaternions by 4x4-matrix
of right action. Moreover, in some computation the
using of rut matrix technic is offer advantages.

It is clear from (2.1) that for the right action of

quaternion p = (b0 ,b) the matrix operation

corresponds
b’ —b b2 b ||d°
1 0 3 —hH2 1
Ra=ab= " ¥ 0 TPA gy
/S I S B N NE
b b b |3

We can expand the matrix R, into the present set

of basis matrices

R, =b"R,+b'R +b°R, +b’R,, (3.2)

where

1 0 0 O 0 -1 0 0

0O 1 0 O 1 0 0 0
RO = ;Rl = b

0O 0 1 0 0 0 0 1

0O 0 0 1 0 0 -1 0

0O 0 -1 O 0O 0 0 -1

0O 0 0 -1 o 0 1 o
R, = R, =

1 0 0 0 0O -1 0 O

0O 1 o 0 1 0 0 O

The matrices R,,R,R,,R, satisfy the relations
that are fully analogous to the relations (2.1) for
quaternions generatrix. Therewith R is anti-
symmetrical in f =1,2,3,, and, then, the quaternion
conjugation corresponds the operation of matrix
transpose.

Quite similarly to the right action we can consider
the matrix representation of the left action.

scalar product defined by (5).

Shown that interior automorphism of quaternion
algebra that generated by unit quaternion ¢ translate

the space of pure quaternions by themselves.
The rule of conversion we write in form

x'=qxq" =qxq' =0[x], |ql=1. (‘4D
Shown that resulting quaternion x' is also pure
quaternion, really,

(9x¢") =(¢")'x'q" =—qxq".  (4.2)

Thus the operator Q[x] is the linear operator that
acts in subspace of the pure quaternions.

Shown that operator (Q[x] conserve the scalar

product of the vectors by using expression of scalar
product via associative multiplication in (2.5)

1, L
<Q[x],0[y]>= —E(qxq 'gyq~ +qyq'gxq™")

= —%c1(xy+yX)c1‘1 =q<Xy>q =<X,y>.
Thus the following relations of invariance are true
for the operator Q (it is proved analogous)

<Ox]dly]>=<xy >,

Olx]x Jly] = QO[xxy],

<Q[z], O[x]xQly]>=<1z,xxy>.

The first relation of (4.3) means that the operaror
Q is orthogonal, and the third that it is unimodular,

i.e. Q is the intrinsic rotation (QeS0O®M))-
In this context of the task the main interest invoke
the explicit form of the matrix elements of Q-

(4.3)

operator that can be obtained from (4.1) from the
multiplication rule (2.4)

Qz’k = 2{((q0)2 _%j 5ik + qiqk - qoqjgj[k (4‘4)

that for the unit quaternion equal to the following
expression of matrix operator Q'

G444 Ageam)  A9%+am)
Agp+ad) %—4+6—4% Aegam) |45)
Ag—ab)  Apd+ad) 44 —b+E

Shown that reflection q—Q is the reflection
that cover whole group SO(3) .
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In particular in the case q,=0, g, =0, this matrix
has the form

4% -9 249, O

0=|299 %4 O
0 0 g +q;
If appear that g, = cos10, g, =sin$0, then
cosf —sinf 0
QO=|sin@ cosf O
0 0 1

It is the rotation matrix around the axis z on the
angel @ (anticlockwise).

Similarly get the rotations around other two axes
x and V-

R e m ar k. It is useful to notice that the arbitrary
unit quaternion can be offered in the form

q = cos(¢/2)e, +sin(¢p/2)e, (4.6)
where e — unit pure quaternion, that specify the
rotation axis, and ¢ — the corresponding rotational
angle around this axis. The expression (4.6) that
concerned as a function ¢ is one-parameter
subgroup of this group of unit quaternions.

Since g— Q is the homomorphism, so then the
product of such rotations belong to direct image of
this homomorphism. Well known that any rotation
can be realized as the product of rotations around the

axes of Cartesian coordinate system. Thus, really,
matrix (4.6) represents the record of the arbitrary

element of group SO(3) via quaternion parameters.
So, formula (4.1) defines the homomorphism of
the group of unit quaternions on the SO(3) group.
Therewith these groups are locally isomorphic and
group of unit quaternions double cover SO(3) [6]
Really, from (4.1) it is clear that quaternions g and

(—q) give us the same rotation Q.

5. Rotational representation of quaternions

In Section 4 it was proved that for each rotation
of SO(3) corresponds 2 and only 2 unit quaternions
with opposite sign. Then the task about explicit form
of this functional dependence is appeared.

Matrix O corresponding to the quaternion ¢ has
the follows elements.

Oy = (qu —-1)6, + 24,4, =244 ;€ ju- (5.1)

Let’s evaluate the spur of the matrix with keep in
mind that ¢ is unit quaternion
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Sp(Q) = 4q; -1 (5.2)

1.e.

%=5%@Hn (5.3)

Antisymmetric part of the matrix Q has a simple
form, then we have

1
904; = _Zgiijjk' (5.4

Thus for g +0 we can express in the explicit

form the components of quaternion that
corresponding to the target rotation matrix by its
elements

gy =1 (Sp(Q)+1)",

_ 1 GikQ (5.5)
-2 1-
(Sp(Q)+1)?
We have two solutions of this system

corresponding of two choose of root sign in the
expression of g, (1-st line in (5.5)).

If we want to have the solution of these functional
equations in the neighborhood of quaternion with
zero scalar part (Sp(Q)=-1), i.e. in neighborhood
of the pure quaternion then formulas (5.5) is not
acceptable.

It must be noticed that for the numarical
computations the difficulties is possible even for
small but not zero value of qo . Therefore E. Salamin
who investigate the task of comparative estimation
of the efficiency of numarical computations with
orthogonal matrix and quaternions [7], to put
forward the set of experssions for finding the
quaternion components that follow from the form of
matrix Q.

qg :%(1+Q11 + 0y +05),
%2 :%(1+Q11 -0y —0s),

2 (5.6)
q, :%(I—Q“ +Q22 _QBB)a
q32 :%(I—Q“ _sz +Q33)
and
991 =5 (05, — Oy),
909, =5(0i; = 0s)),
9095 =5(05 —O), (5.7)

99, = %(le +05),
9493 = %(Qn +05),
9,93 =%(Q23 +0;,).

For numarical computations the optimum is to
choose the maximum component of quaternion by its
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absolute magnitude from the relations (5.6) (so this
component sign will defined the sign of quaternion
in general), then other components can be found
from (5.7).

It is clear that for the unit quaternion at least we
have one component nonvanishing.

Noticed that the present solution (5.5)
hereinabove is corresponding to the 1-st line of (5.6)
and for the first 3 lines in (5.7).

6. The Poisson brackets with quaternion
components

If we want to get Poisson brackets with
quaternion components it is required to deduce the

expressions ;52/ and %.For example,
oq, 6.1
{m[’q0}= {m[’le} (6.1)
anl
where the Poisson bracket {m.,0, } is known from
(1.1).
From the relation (5.5) we have
G0 _ 1
u ~ 849 5]‘1 ? ( )
6.2
%, __ 1 19
0y~ 4q [8ka + 2 gy 5]‘1]'

In consideration of {m,0, t=¢,0, and using
(6.2) we receive

oq, 1
i = i =—4q. (63)
{m;,q, } 20, {m., 0, } 2%
and
1
{mi’qj} :E(gijqu _q05ij)' (6.4)

Take into consideration {Q,,0, } =0, finally we
get

{qu7qv}=0’
{m.,q, } :%q[’

{m[’ q, } = %(gijqu - q05[j)'

As it was mentioned above in Section 1 such
Poisson bracket were deduced by A.V. Borisov and
I.S. Mamaev as the relation for the generatrix of
some Lie-Poisson structure. Then the value
A=(q"Y+@ ) +@) +(g) s the
function for this Poisson structure and for deduce of
motion equations of the rigid body it is required to
pass on the symplectic sheet of this Poisson structure
that corresponds to the C(g)=1.

u=0,1,23
6.5)

Casimir
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7. The invariance properties of the Poisson
structure on T*(SE(3)) (T*(SO(3)))

Take note on the Poisson brackets (1.1) that
includes the matrix elements of the rotations.
Examine, for example, the relation

{m;, 0 }= N (7.1)
and multiply it on the fixed matrix B e SO(3) by
right hand.

Thus the elements of the matrix is constant, so we
can be bring them behind the sign of the Poisson
brackets in the left side of (7.1), and then the
relations are valid

{m, (QB)jn 4= Eiir (OB),, (7.2)
After doing the analogous conversion with all of
these Poisson brackets, we see, that matrix elements
of the rotation P = OB satisfy to all of those
Poisson brackets as well as the matrix elements of
the initial rotation Q.
Let's shown that the Poisson brackets of the
Section 6 can be transform to more compact form by
using the multiplicative rule of the quaternions.

Multiply the quaternion g=ge +¢,e, left hand on ¢,
eq=q.¢ +q,(ee)=q.¢ +q,(-0,¢ + &€
=-q,¢, +q,0,€; +q, €€,

y-Jj
eq =—q.e,+q,0,€; + 4.8, (7.3)
(eiq)o =—q;, (7 4)
(efq)j = _gijqu + q05ij'
Then
{q0,m; } =3(€q)o, (1.5)
{q,,m }=%(eq),

{qwml-}:%(el—Q)u, MZO,1,2,3. (76)

Formally it is possible to multiply (by left hand) the
expressions (7.6) on the fixed quaternions

€,,€,,¢e,,e, and sum by index ;. Moreover, using
the constancy of e, let's bring them behind the sign

of the Poisson bracket.
In result we have
(7.7

1
m.,q}=——eq.
{m.,q} 544

As far as in the matrix case by multiplying the
expression (7.7) (by right hand) on some fixed

quaternion b,|b|=1, we make sure that new
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quaternion dynamic variable p =gb is also satified
those Poisson brackets (7.7) for ¢ . In fact, this is the

simple algebraic conversion that is equal to the the
action of right hand matrix shift (3.2) on the set of
(7.7). Consequently, p satisfy to all Poisson

brackets that are analogous to the Poisson brackets
(7.5-7.6) of the Section 6.

8. Poisson bracket with quaternion compo-
nents in the special case

Deduce of the relations (7.5-7.6) hereinabove,
strictly speaking, will not be correct in the
neighborhood of  the pure quaternion

Sp(Q) =—-1->q, =0, because of (5.5) in this point

is not valid. But it does not mean that relation (7.5-
7.6) in the neighborhood of the pure quaternion is

not valid. Quaternion with g, =0 is not looks as the

special point for this relations. But the proof of this
relations in general case required another approach.

First of all, it is possible to use the Salamin's
solutions (5.6-5.7) by taken as a base those
component of quaternion that is nonzero in the target

neighborhood, for example ¢4'. But this approach,

unfortunally, result in hungus and non-transparent
computations.

Let’s examine the properties of invariance that
was presented in the Section 7 and the fact that
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