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1 Introduction

Fractional calculus is extensively used in di-
fferent modelling, including financial modelling.
The paper [1] studies Doob’s transformation of
fractional Brownian motion, which is identical
in law with the Ornstein—Uhlenbeck diffusion.
The book [2| represents stochastic calculus for
fractional Brownian motion. It contains financi-
al models and statistical problems that involve
fractional Brownian motion. The paper [3] studies
financial markets with stochastic volatilities dri-
ven by fractional Brownian motion with Hurst
index H > % Current paper examines behavior
of the European call option price of the bond with
interest rate driven by modified geometric fracti-
onal Ornstein—Uhlenbeck process as a function of
Hurst index.

2 Price of the Bond with Interest
Rate Driven by Geometric Ornstein—
Uhlenbeck Process with Wiener Process

The Ornstein—Uhlenbeck process X = {X;,t > 0}
is a Gaussian and Markov process that satisfies
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the following stochastic differential equation:
dX; = —aXdt +~dW;, X( = Xo,
t=

where a > 0 and v > 0 are constants and W =
{W4,t > 0} is the Wiener process. The solution of
this stochastic differential equation has the followi-

t
ng form X; = Xge % 4 ye~% f e dWs.

0
We suppose in what follows that Xg = 1.
The geometric Ornstein—Uhlenbeck process sati-
sfies the following stochastic differential equation:

t
dX, = Xt{ — ae"¥dt — a'ye_“tdt/e“des—i—
0

1
S ydWy + 5ydt}, (1)
and the solution of equation (3) has the following
form
¢
X = zpexp {e‘at + ye~ o / eanWS} =

0
t s

= I exp {e_“t—cw/e_as/e““quds—l—’th}.
0

0
(2)
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Consider the following model of financial
market. Suppose we have the European call opti-
on with an expiration date 1. The bond interest
rate is driven by the modified geometric Ornstein—
Uhlenbeck process with the Wiener process.
It satisfies the following stochastic differential
equation

dXt(l) = Xt(l){ — pe Mtdt — pye M x
t
X /eadeSdt + e HAtauy, + 76_2(“_‘1)tdt}.
0

(3)

The solution of equation (3) has the following form

Xt(l) = T exp {e_“t + ye M e“SdWS} =

o

e dW, ds+

—

¢
= xpexp {e_“t — *yu/e_"s
0

+ e*f*S*anWS}.

o — .

To find the price of this option we have to
calculate the expectation value E[Xi(pl) - KT,

where K > 0 is the strike price. Using indi-
cator I{Xt(l) > K}, we remove brackets in the
expectation value
Ex{ - k1t = Blx{V - KI{x{" > K} =
1 1 1
= Ex\V{xV > k) - Ki{x{) > K}. (4)

We find both items of this equality. Ornstein—

Uhlenbeck process is a Gaussian process, so
oo
EX}I)I{X:(FI) > K} = /exp(ac)d:c,
K

where p(x) is a density function of normal distri-
bution with parameters m and o?:

1 { (x —m)? }
expy — ———
oV 2w P 202 ’
here m is the expectation and ¢? is the variance
of modified Ornstein—Uhlenbeck process

p(x) =

m = E[Xj(})] =e M,
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2= 21T

2 (1)
o =Va XT
T’[ ] 2a

(eQaT _ 1)_

(5)

We continue to calculate the first item in (4)

ExVH{x{ > K} = / e“p(x)dr =
K

o0
2

1 { (x—az—m>2+ L9 }d
=—— [exp{—|——=—) +m+—pdx =
oV 2T P V20 2
K
2

-l 2 g(Krom)

Consider the second item of (4). Evidently,
EI{x{") > K} = P{x{") > K} and
K

X

oV2r
7 $_m2 —m
Jool e - (a5

As a result we obtain the price for the option

[ee]
KEH{XY > K} =K / p(z)dz =
K

exp{m—i—";}x

; V2r
(e (F=)) 7 (e (55),

where the variance o is determined by (5).

_K]Jr:

3 Price of the Bond with Interest
Rate Driven by Geometric Fractional
Ornstein-Uhlenbeck Process

Now we consider a call option with the bond
interest rate driven by geometric fractional
Ornstein—Uhlenbeck process that satisfies the
following stochastic differential equation

dXt(2) = Xt(2){ — pe” M dt—
t
— prye Mt / e®dBHdt + 76_“t+“tdBtH}.
0
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The solution of the stochastic differential equation As H — 5 easily can be shown that z

has the following form

t
Xt(z) = T exp {e_“t + ye Ht / e“sdBf} =

S

t
= I exp {e_“t — Y / e s | e™dBH ds+
0

0
t
oo [emany
0

The expectation and the variance for the
corresponding Ornstein-Uhlenbeck process e ¢ +

¢
ve Ht [ e®dBH at the point T equal, respectively,
0

m=e Ml

o? = H(2H-1)y%¢ QHT//B‘IH““LS u|* 2 duds. =t

0 0
(6)

The price for such option equals

exp{m+ %)

) Var
<(1-e (5= - (e ()

where the variance o2 is determined by (6).

ExP - K]t =

4 Behavior of the Variance of Geometric
Fractional Ornstein—Uhlenbeck Process
as a Function of Hurst Index

We already know that the variance of geometric
fractional Ornstein—Uhlenbeck process equals

o? = H(2H—1)726_2“T//e“s+““|s—u\2H_2duds.

After some transformation we obtain the following
form for the variance

T
0_2 — H(?H—l) 2 72MT1 ZaT/eazZQHde_
0

_/eazzQH—de)‘
0
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2H-1 _, .

T
lim (2H — 1) /eazzQHde =1,
H~>f
0
T
lim (2H — 1) / e M2y = 1.
qu /

Now we can observe that the asymptotic behavior
of the variance as H — % is following:

2_—2uT
lim o = L(ezaT —1).
H—>% 2a
As H — 1 we obtain:
2 _—2uT h T
lim 0% = L5 (eQaT/e_ dz— / azdz =
0 0
2 —ouT
ye T\2
=T -
5 Monotonicity of the Variance of
Geometric Fractional Ornstein—

Uhlenbeck Process as a Function of
Hurst Index. Monotonicity of Price
of the Bond with Interest Rate Dri-
ven by Geometric Fractional Ornstein—
Uhlenbeck Process as a Function of
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The price of the bond with interest rate dri-
ven by geometric fractional Ornstein—Uhlenbeck
process is an increasing function of o2.
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vy=1;a=0,1;T=1; K =5 H = 3/2.
\
[, 7 Conclusion
1x10f [ \
| "xx We examined objective call option price behavior
L of the bond with interest rate driven by geometric
F L fractional Ornstein—-Uhlenbeck process as a functi-
Ex1D' I \ on of Hurst index. As an auxiliary result were
[ ", studied the behavior of variance of geometric
| ht fractional Ornstein—Uhlenbeck process as a functi-
63107 | M\nm on of Hurst index and examined call option price
: H"a\__ behavior of the bond with interest rate driven by
H‘“‘x._q_ geometric fractional Ornstein—Uhlenbeck process
o L . Th-ul.___ﬁslaﬁ function of variance.
0.6 .7 0.8 T _ 1.0
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