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1. Consider the n-dimension Hamming space
H,, ie. the space of all n-tuples (ai,...,an),
a; € {0,1}, 1 < i < n, with the distance dpy, .
The distance dgz, between points Z = (z1,...,x,),
g = (y1,...,yn) is defined by the rule:

dm, (Z,9) = [{k : 2 # g, 1 <k <nj}l.

It easy to see that the isometry group IsomH,,
of the n-dimension Hamming space H, can be
realized as the group of orthogonal matrices over
the ring of integers Z. Moreover, it is isomorphic
to the wreath product W,, = Zs 1 S,, where
Zy is the cyclic group of order 2 and 5, is the
symmetric group of degree n. In other words,
the isometry group IsomH, decomposes into the
semidirect product of its subgroup S, and its
normal subgroup

Kn:ZQX...XZQ.
—_—

n

In this case S, acts on K, by permutations of
coordinates of vectors. We can write every element
u € W, as a so-called table u = [0;a1, a9, ..., a,],
where ¢ € S,,, a; € Zs, 1 < ¢ < n. The group
operation in W, is defined by the rule:

; bn] =

[0;a1,a9,...,a,][n;b1,ba,. ..
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(1)

where the symbol + denotes addition in Z5. The
table

= [0'77301 +b1‘77"'7an +bn‘7]a

-1
[0 a1, 0, 1] (2)
is the inverse element to the element
[0;a1,...,a,]. An element u = [o;aq,...,a,] acts

on a vector t = (t1,...,t,) € Z% by the rule:

tu:<tla +ai,...,tye —I—an). (3)
The isometry group (IsomH,, H,) of Hamming
space H,, is isomorphic as a permutation group to
the group (W, Z%) defined by (1)-(3).

Let K2 be the set of all sequences
(a1,as,...,a,) € K, such that > ,a; = 0.
Denote by W, the commutator subgroup of the
group W,,. We will need the following

Lema 1. [1],[/2] The commutator W}, of the group
W, consists of all tables [o;a1,aq9,...,a,] such
that o € A, and (ay,as,...,a,) € K.

2. The infinite sequence of positive integers
a = (a1, as,...) is said to be periodic if there exi-
sts a natural number k (a period of the sequence
a) such that the equality a; = a;;x holds for all
1 € N. A periodic sequence a is called 2°°-periodic
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if there exists a nonnegative integer [ such that the
minimal period of a equals 2'.

Define a metric dp,., on the set Ha~ of all
2%°-periodic sequences by the rule:

dHQOO ((1‘1,332, .. .), (yl, Y2, .. )) =

1
- %de((xly cee ,fEk), (3/1, cee 73//6)))
where k is a common period of sequences
(x1,x9,...) and (y1,¥y2, .. .) from Has. The metric

space (Hae,dp,.) is said to be 2%-periodic
Hamming space. This space was studied in [3] as
a generalization of finite Hamming spaces to the
infinite dimensional case.

The metric space Hoo admits another descri-
ption using diagonal limits. A mapping

1

—H
of 12k

Jr %Hk —
is said to be doubling if it is determined as

fk(xl,... (4)

The direct spectrum ® = (3 Han, for) of scaled
Hamming spaces %HQH is isometric to the space
_Hgoo .

Recall that an embedding 6 of a permutation
group (G, X) into a permutation group (H,Y) is
said to be strictly diagonal, if the restriction 6(G)
on any orbit on the set Y is isomorphic to the
group (G, X) (see [4]). The doubling defined by (4)
induces a diagonal embedding ¢y of the isometry
group IsomHan into the group I'somHon+1. Then
we obtain an embedding of Z31San into Zo 1 Sont1
where Kon embeds into Kynt1 as we defined in (4)
and Son embeds into Syn+1 diagonally in sense of
[4]. Denote by Waee the diagonal limit of W,,. Note
that

o) = (21,21, ..., Tk, Tg).

Waeo = [j Wh.

=1

()

The group Wi is an everywhere dense
subgroup of the isometry group IsomHs~ of the
2%°-periodic Hamming space (see [5]).

The subgroup Wae~ admits a natural descri-
ption using wreath products of group.

Denote by S(N) be the symmetric group on
the set positive integers. Let r be a positive
integer. A permutation 7 € S(N) is said to be
r-periodic if 7 acts on a positive integer n by the
rule:

n" =t" 4 gr,
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where n = ¢q-r +¢t 0 < t < r. All r-
periodic permutations form a subgroup S(r) of the
group S(N). This subgroup is isomorphic to the
symmetric group S,. The set of all 2°°-periodic
permutations form a subgroup Ss- in S(N). This
subgroup decomposes as a union of the increasing
chain of subgroups S(2) C S(4) C ..., ie.

Saeo = | ] S(29).
=1

Similarly define the subgroup Ase. Let A(r) be
the subgroup of the group S(r) isomorphic to the
alternating group A,. Then Asx is a union of the
increasing chain of subgroups A(2) C A(4) C ...,
in other words

Agee = J A(2).
=1

Sequences of the form

[71-,@1,02,‘”], 7T682°°7 a; GZZ, (12 ]-)

are elements of the wreath product W = Z5 { Sy
of the permutation group (S, N) with the cyclic
group of order 2. The operations of multiplication
and taking inverses are defined analogously to (1)
and (2). An element u € W acts on a sequence
t = (t1,t2...) € Z$° in a similar to (1) way.

Now consider the set W of all elements
[T,a1,a9,...] € Z31 S~ such that (aj,as,...)is a
2%°-periodic sequence. The set Wisa subgroup of
the wreath product Zs?Ss. We call the group W
the 2°°-wreath product of groups See and Z,.

It is not difficult to verify

Proposition 1. The groups Wae and W are
isomorphic.

3. The set Hax of all 2°°-periodic sequences
with coordinate-wise addition form a group.
Denote it by Kos. This group is isomorphic to a
subgroup of 2°°-wreath product of groups S~ and
Zy. Denote by C' the subgroup of Kasw containing
only sequences (0,0,...) and (1,1,...).

Theorem 1. The normal structure of the 2°°-
wreath product of group Soeo and Za has the form

E <10 < Koo Whee < Woeo,

where Wis is the commutator subgroup of the
group Woeo.
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Proof. The proof of the theorem is divided into
four parts.
1. We shall show that the equality

Wéoo — Agoo . Kzoo

holds. Indeed, hyperoctahedral group W, is a
semidirect product of K, and S,,. It follows from
Lemma 1 that W), = A, - KJ. Using (5) we get
that the equalities

Wieo = ng: DAn-ng
=1 =1

KO

I
(G
(G

Ay -
1 i

(6)

<.
Il
Il

—_

hold. But |J;2; K = Ka~. Hence, from (6) we
have
Wyll = Aro . KQoo.

2. Let v = [e; b1, ba, . . .] be an element of Waso
such that (bl, bg, .. ) 7& (0,0, .. .), (bl, bg, .. ) 7&
(1,1,...). We shall show that the normal closure
L of the element v contains the subgroup Kooo.
Note, that elements [1;0,0,...], n € Sz~ act on
v as permutations of coordinates of the sequence

(b1,ba,...). Assume that 2! is the minimal peri-
od of (bl,bz,...). As (bl,bg,...) 75 (0,0,...)
and (by,ba,...) # (1,1,...), there exist b; and

bj such that b # b;, 1 < ¢ < j < 2.
Denote by (c1, ¢, . ..) the sequence obtained from
the sequence (by,bs,...) using the 2-periodic
permutation, which permutes i¢th and jth coordi-
nates inside the minimal period. Define an element
w = [n;0,0,...] such that

wlow = [15¢1,¢9,...).
Then the sequence v + w~lvw has only two units
inside the minimal period. But elements of these
type generate Kooo. Therefore, Koo C L.
3. Let w = [o;a1,a2,...] be an element of
Wi such that o # e. We shall show that the
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normal closure M of the element u contains the
subgroup Wis. Indeed, define an element v =
[e;b1,ba,...] € Wae such that (u,v) # [e;0,0,...].
Then (u,v) = [e;c1,c2,...]. So, from the second
part of the proof it follows that Ko C M.

Now define a table w = [1;0,0,...] € W
such that (u,w) # [e;0,0,...]. Then (u,w) =
7541, 42, ...], where n € Ay~ and (q1,q2,...) €
Kox. As Koo C M, we have Ao C M. Hence
Ao - Koo C M and from the first part of the
proof we get Wi C M.

4. The abelianization Waee /Wi of the group
Wae is a cyclic group of order 2. Hence Wi is
a maximal subgroup of the group Wae. From the
second and third parts of the proof it follows that
other nontrivial normal subgroup of Wae are C
and K- only. O
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