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Нормальна структура дiагональної
границi гiпероктаедральних груп з
зануреннями дублювання

Розглянуто групу, що є дiагональною гра-
ницею гiпероктаедральних груп з занурення-
ми дублювання. Ця група реалiзується також
як скрiзь щiльна пiдгрупа групи iзометрiй 2∞-
перiодичного простору Хемiнга. Охарактери-
зовано її нормальну структуру.
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1. Consider the n-dimension Hamming space
Hn, i.e. the space of all n-tuples (a1, . . . , an),
ai ∈ {0, 1}, 1 6 i 6 n, with the distance dHn .
The distance dHn between points x̄ = (x1, . . . , xn),
ȳ = (y1, . . . , yn) is defined by the rule:

dHn(x̄, ȳ) = |{k : xk 6= yk, 1 6 k 6 n}|.

It easy to see that the isometry group IsomHn

of the n-dimension Hamming space Hn can be
realized as the group of orthogonal matrices over
the ring of integers Z. Moreover, it is isomorphic
to the wreath product Wn = Z2 o Sn, where
Z2 is the cyclic group of order 2 and Sn is the
symmetric group of degree n. In other words,
the isometry group IsomHn decomposes into the
semidirect product of its subgroup Sn and its
normal subgroup

Kn = Z2 × . . .× Z2︸ ︷︷ ︸
n

.

In this case Sn acts on Kn by permutations of
coordinates of vectors. We can write every element
u ∈ Wn as a so-called table u = [σ; a1, a2, . . . , an],
where σ ∈ Sn, ai ∈ Z2, 1 6 i 6 n. The group
operation in Wn is defined by the rule:

[σ; a1, a2, . . . , an][η; b1, b2, . . . , bn] =

= [ση; a1 + b1σ , . . . , an + bnσ ], (1)

where the symbol + denotes addition in Z2. The
table

[σ−1; a
1σ−1 , . . . , anσ−1 ]. (2)

is the inverse element to the element
[σ; a1, . . . , an]. An element u = [σ; a1, . . . , an] acts
on a vector t̄ = (t1, . . . , tn) ∈ Zn

2 by the rule:

tu = (t1σ + a1, . . . , tnσ + an). (3)

The isometry group (IsomHn,Hn) of Hamming
space Hn is isomorphic as a permutation group to
the group (Wn, Zn

2 ) defined by (1)-(3).
Let K0

n be the set of all sequences
(a1, a2, . . . , an) ∈ Kn such that

∑n
i=1 ai = 0.

Denote by W ′
n the commutator subgroup of the

group Wn. We will need the following

Lema 1. [1],[2] The commutator W ′
n of the group

Wn consists of all tables [σ; a1, a2, . . . , an] such
that σ ∈ An and (a1, a2, . . . , an) ∈ K0

n.

2. The infinite sequence of positive integers
a = (a1, a2, . . .) is said to be periodic if there exi-
sts a natural number k (a period of the sequence
a) such that the equality ai = ai+k holds for all
i ∈ N. A periodic sequence a is called 2∞-periodic
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if there exists a nonnegative integer l such that the
minimal period of a equals 2l.

Define a metric dH2∞ on the set H2∞ of all
2∞-periodic sequences by the rule:

dH2∞ ((x1, x2, . . .), (y1, y2, . . .)) =

=
1
k
dHk

((x1, . . . , xk), (y1, . . . , yk)),

where k is a common period of sequences
(x1, x2, . . .) and (y1, y2, . . .) from H2∞ . The metric
space (H2∞ , dH2∞ ) is said to be 2∞-periodic
Hamming space. This space was studied in [3] as
a generalization of finite Hamming spaces to the
infinite dimensional case.

The metric space H2∞ admits another descri-
ption using diagonal limits. A mapping

fk :
1
k
Hk → 1

2k
H2k

is said to be doubling if it is determined as

fk(x1, . . . , xk) = (x1, x1, . . . , xk, xk). (4)

The direct spectrum Φ = 〈 1
2n H2n , f2n〉 of scaled

Hamming spaces 1
2n H2n is isometric to the space

H2∞ .
Recall that an embedding θ of a permutation

group (G,X) into a permutation group (H, Y ) is
said to be strictly diagonal, if the restriction θ(G)
on any orbit on the set Y is isomorphic to the
group (G,X) (see [4]). The doubling defined by (4)
induces a diagonal embedding ϕk of the isometry
group IsomH2n into the group IsomH2n+1 . Then
we obtain an embedding of Z2 oS2n into Z2 oS2n+1

where K2n embeds into K2n+1 as we defined in (4)
and S2n embeds into S2n+1 diagonally in sense of
[4]. Denote by W2∞ the diagonal limit of Wn. Note
that

W2∞ =
∞⋃

i=1

Wn. (5)

The group W2∞ is an everywhere dense
subgroup of the isometry group IsomH2∞ of the
2∞-periodic Hamming space (see [5]).

The subgroup W2∞ admits a natural descri-
ption using wreath products of group.

Denote by S(N) be the symmetric group on
the set positive integers. Let r be a positive
integer. A permutation π ∈ S(N) is said to be
r-periodic if π acts on a positive integer n by the
rule:

nπ = tπ + qr,

where n = q · r + t, 0 6 t < r. All r-
periodic permutations form a subgroup S(r) of the
group S(N). This subgroup is isomorphic to the
symmetric group Sr. The set of all 2∞-periodic
permutations form a subgroup S2∞ in S(N). This
subgroup decomposes as a union of the increasing
chain of subgroups S(2) ⊂ S(4) ⊂ . . ., i.e.

S2∞ =
∞⋃

i=1

S(2i).

Similarly define the subgroup A2∞ . Let A(r) be
the subgroup of the group S(r) isomorphic to the
alternating group Ar. Then A2∞ is a union of the
increasing chain of subgroups A(2) ⊂ A(4) ⊂ . . .,
in other words

A2∞ =
∞⋃

i=1

A(2i).

Sequences of the form

[π, a1, a2, . . .], π ∈ S2∞ , ai ∈ Z2, (i > 1)

are elements of the wreath product W = Z2 o S2∞

of the permutation group (S2∞ ,N) with the cyclic
group of order 2. The operations of multiplication
and taking inverses are defined analogously to (1)
and (2). An element u ∈ W acts on a sequence
t̄ = (t1, t2 . . .) ∈ Z∞2 in a similar to (1) way.

Now consider the set Ŵ of all elements
[π, a1, a2, . . .] ∈ Z2 o S2∞ such that (a1, a2, . . .) is a
2∞-periodic sequence. The set Ŵ is a subgroup of
the wreath product Z2 oS2∞ . We call the group Ŵ
the 2∞-wreath product of groups S2∞ and Z2.

It is not difficult to verify

Proposition 1. The groups W2∞ and Ŵ are
isomorphic.

3. The set H2∞ of all 2∞-periodic sequences
with coordinate-wise addition form a group.
Denote it by K2∞ . This group is isomorphic to a
subgroup of 2∞-wreath product of groups S2∞ and
Z2. Denote by C the subgroup of K2∞ containing
only sequences (0, 0, . . .) and (1, 1, . . .).

Theorem 1. The normal structure of the 2∞-
wreath product of group S2∞ and Z2 has the form

E / C / K2∞ / W ′
2∞ / W2∞ ,

where W ′
2∞ is the commutator subgroup of the

group W2∞.
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Proof. The proof of the theorem is divided into
four parts.

1. We shall show that the equality

W ′
2∞ = A2∞ ·K2∞

holds. Indeed, hyperoctahedral group Wn is a
semidirect product of Kn and Sn. It follows from
Lemma 1 that W ′

n = An · K0
n. Using (5) we get

that the equalities

W ′
2∞ =

∞⋃

i=1

W ′
n =

∞⋃

i=1

An ·K0
n =

=
∞⋃

i=1

An ·
∞⋃

i=1

K0
n (6)

hold. But
⋃∞

i=1 K0
n = K2∞ . Hence, from (6) we

have
W ′

n = A2∞ ·K2∞ .

2. Let v = [e; b1, b2, . . .] be an element of W2∞

such that (b1, b2, . . .) 6= (0, 0, . . .), (b1, b2, . . .) 6=
(1, 1, . . .). We shall show that the normal closure
L of the element v contains the subgroup K2∞ .
Note, that elements [η; 0, 0, . . .], η ∈ S2∞ act on
v as permutations of coordinates of the sequence
(b1, b2, . . .). Assume that 2l is the minimal peri-
od of (b1, b2, . . .). As (b1, b2, . . .) 6= (0, 0, . . .)
and (b1, b2, . . .) 6= (1, 1, . . .), there exist bi and
bj such that bi 6= bj , 1 6 i < j 6 2l.
Denote by (c1, c2, . . .) the sequence obtained from
the sequence (b1, b2, . . .) using the 2l-periodic
permutation, which permutes ith and jth coordi-
nates inside the minimal period. Define an element
w = [η; 0, 0, . . .] such that

w−1vw = [τ ; c1, c2, . . .).

Then the sequence v + w−1vw has only two units
inside the minimal period. But elements of these
type generate K2∞ . Therefore, K2∞ ⊆ L.

3. Let u = [σ; a1, a2, . . .] be an element of
W2∞ such that σ 6= e. We shall show that the

normal closure M of the element u contains the
subgroup W ′

2∞ . Indeed, define an element v =
[e; b1, b2, . . .] ∈ W2∞ such that (u, v) 6= [e; 0, 0, . . .].
Then (u, v) = [e; c1, c2, . . .]. So, from the second
part of the proof it follows that K2∞ ⊆ M .

Now define a table w = [ν; 0, 0, . . .] ∈ W2∞

such that (u,w) 6= [e; 0, 0, . . .]. Then (u,w) =
[η; q1, q2, . . .], where η ∈ A2∞ and (q1, q2, . . .) ∈
K2∞ . As K2∞ ⊆ M , we have A2∞ ⊆ M . Hence
A2∞ · K2∞ ⊆ M and from the first part of the
proof we get W ′

2∞ ⊆ M .
4. The abelianization W2∞/W

′
2∞ of the group

W2∞ is a cyclic group of order 2. Hence W ′
2∞ is

a maximal subgroup of the group W2∞ . From the
second and third parts of the proof it follows that
other nontrivial normal subgroup of W2∞ are C
and K2∞ only.
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