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Варiанти напiврешiток

Для скiнченної нижньої напiврешiтки,
яка розглядається як напiвгрупа вiдносно взя-
ття точної нижньої гранi двох елементiв,
встановлено критерiй iзоморфностi двох ва-
рiантiв. Потiм цей критерiй використовує-
ться для опису варiантiв скiнченного ланцю-
га, булеану скiнченної множини, решiтки роз-
биттiв скiнченної множини i решiтки пiд-
просторiв скiнченного простору.
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Variants of a semilattice

In the paper there is obtained a criterion of
isomorphism for two variants of a finite lower
semilattice, which is considered as a semigroup
under the operation of taking of the infinum (i.e.
a greatest lower bound). Then this criterion is
being used to describe variants of a finite chain,
the powerset of a finite set, the lattice of parti-
tions of a finite set, and the lattice of subspaces
of a finite space.
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Introduction

Let S be a semigroup and a ∈ S. For x, y ∈ S
let x ∗a y = xay, then ∗a is an associative binary
operation on S. The operation ∗a is usually called
the sandwich-operation. The semigroup (S, ∗a)
is called the variant of S, or, alternatively, the
sandwich semigroup of S with respect to the
sandwich element a.

The task of researching variants of semigroups
was first raised in Liapin’s famous monograph [1].
Although initially Liapin formulated problem only
for semigroups of transformations, soon different
authors began to explore options for many other
classes of semigroups (see for example, [2] [3] [4]
[5], and chapter 13 of the monograph [6] with the
literature listed there).

In this paper, we study variants of a finite
lower semilattice that is considered as a semigroup
under the operation of taking of the infimum of
two elements.

The main result of this paper is Theorem 1,
which is establishing a criterion of isomorphism of
two variants for such semigroups. Then this criteri-
on is used to describe variants of several classical
lattices.

1 Isomorphism of variants criterion

Let (L,6) be a finite lower semilattice with
zero 0, a ∈ L. The semigroup (S, ∗a) with the
operation x∗ay = x∧a∧y is said to be the variant
of semilattice L with the sandwich element a.

For each element x ∈ [0, a] define weight
ω(x) = |{y ∈ L | a ∧ y = x}|.
Theorem 1 (Criterion of isomorphism of
variants of lower semilattice). Two variants
(L, ∗a) and (L, ∗b) of semilattice L are isomorphic
if and only if there exist an isomorphism from the
interval [0, a] to the interval [0, b] which saves the
weights of all elements.

Proof. Necessity. Let variants (L, ∗a) and (L, ∗b)
be isomorphic, and

ϕ : (L, ∗a) → (L, ∗b) and ψ : (L, ∗b) → (L, ∗a)

be mutually inverse isomorphisms. Then the
following relations hold:

ϕ(x ∧ a ∧ y) = ϕ(x) ∧ b ∧ ϕ(y), and
ψ(x ∧ b ∧ y) = ψ(x) ∧ a ∧ ψ(y). (1)

When x = y = a, the first of these relations turns
into equality ϕ(a∧ a∧ a) = ϕ(a)∧ b∧ϕ(a), which
implies ϕ(a) = ϕ(a) ∧ b. Hence, ϕ(a) 6 b.
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Similarly, when x = y = a, from the second
relation from (1) we get that ψ(b) = ψ(b) ∧ a and
ψ(b) 6 a.

Applying the isomorphism ϕ to both parts of
the equality ψ(b) = ψ(b) ∧ a, we obtain:

b = ϕ(ψ(b)) = ϕ(ψ(b) ∧ a) = ϕ(ψ(b) ∧ a ∧ a) =
= ϕ(ψ(b)) ∧ b ∧ ϕ(a) = b ∧ b ∧ ϕ(a) = b ∧ ϕ(a).

Hence, b 6 ϕ(a). Then, taking into account
an inequality ϕ(a) 6 b, it follows that b = ϕ(a).
Since isomorphisms ϕ i ψ are mutually inverse, we
also get a = ψ(b).

Now we’ll prove that the isomorphism ϕ
maps each element from the interval [0, a] into
an element from the interval [0, b]. Indeed, let
x ∈ [0, a]. Then x = x ∧ a. Applying isomorphism
ϕ to both parts of this equality, we get:

ϕ(x) = ϕ(x ∧ a) = ϕ(x ∧ a ∧ x) = ϕ(x ∗a x) =
= ϕ(x) ∗b ϕ(x) = ϕ(x) ∧ b ∧ ϕ(x) = ϕ(x) ∧ b.

It proves that ϕ(x) 6 b, thus ϕ(x) ∈ [0, b].
If x, y ∈ [0, a], then x ∧ a ∧ y = x ∧ y.

Furthermore, in this case ϕ(x), ϕ(y) ∈ [0, b],
therefore ϕ(x) ∧ b ∧ ϕ(y) = ϕ(x) ∧ ϕ(y). But then
if x, y ∈ [0, a], the first relation from (1) gives
us equality ϕ(x ∧ y) = ϕ(x) ∧ ϕ(y). Thus the
restriction ϕ̃ of isomorphism ϕ to interval [0, a] is
a homomorphism from the partially ordered set
[0, a] to the partially ordered set [0, b]. Since for ϕ̃
there exists a mutually inverse homomorphism ψ̃
induced by the mapping ψ, ϕ̃ is an isomorphism
of intervals [0, a] and [0, b].

It is left to prove that isomorphism ϕ̃ saves the
weights of all elements. Fix an element x ∈ [0, a]
and consider an arbitrary element y ∈ L such that
the equality y ∧ a = x holds. Then

ϕ̃(x) = ϕ(x) = ϕ(y ∧ a) = ϕ(y ∧ a ∧ a) =
= ϕ(y ∗a a) = ϕ(y) ∗b ϕ(a) =

= ϕ(y) ∧ b ∧ b = ϕ(y) ∧ b.

Therefore, the isomorphism ϕ maps every
element of set Ω(x) = {y ∈ L | a ∧ y = x} into an
element of set Ω(ϕ̃(x)) = {z ∈ L | z ∧ b = ϕ̃(x)}.
Similarly we check that inverse isomorphism ψ
maps the set Ω(ϕ̃(x)) into the set Ω(x). But then
|Ω(ϕ̃(x))| = |Ω(x)|, i.e. ω(ϕ̃(x)) = ω(x).

Sufficiency. Let ϕ̃ be an isomorphism from
interval [0, a] to interval [0, b], which saves the

weights of elements. We’ll show that it can be
expanded to an isomorphism ϕ : (L, ∗a) → (L, ∗b)
of the corresponding variants.

For each element x ∈ [0, a] consider the set
Ω(x) = {y ∈ L | a ∧ y = x}. The sets Ω(x), x ∈
[0, a] are generating a partition of semilattice L.
Indeed, since for any y ∈ L we have a ∧ y ∈ [0, a],
then

⋃
x∈[0,a]

Ω(x) = L. On the other hand, sets Ω(x)

are pairwise disjoint, because for any x1, x2 ∈ [0, a]
y ∈ Ω(x1) ∩ Ω(x2) implies x1 = a ∧ y = x2. Simi-
larly one can show that sets Ω(ϕ̃(x)), x ∈ [0, a] are
also generating a partition of semilattice L.

The fact that isomorphism ϕ̃ saves the wei-
ghts of elements implies that for each x ∈ [0, a]
sets Ω(x) and Ω(ϕ̃(x)) have the same cardinality.
For each element x ∈ [0, a] fix an arbitrary bi-
jection ψ′x : (Ω(x) r {x}) → (Ω(ϕ̃(x)) r {ϕ̃(x)})
and expand it to bijection ψx : Ω(x) → Ω(ϕ̃(x)),
putting ψx = ϕ̃(x). Consider mapping

ϕ : (L, ∗a) → (L, ∗b), where ϕ(z) = ψx(z),
if z ∈ Ω(x)r {x}. (2)

Obviously, the mapping ϕ is a bijection. To
complete the proof it suffices to show that ϕ is
a homomorphism of semigroups. Take any two
elements u ∈ Ω(x), v ∈ Ω(y). Then element

u ∗a v = u ∧ a ∧ v = u ∧ a ∧ a ∧ v = x ∧ y

belongs to the interval [0, a], therefore ϕ(u ∗a v) =
ϕ̃(x ∧ y). On the other hand, for the elements u
and v we have:

ϕ(u) ∗b ϕ(v) = ϕ(u) ∧ b ∧ ϕ(v) =
= ϕ(u) ∧ b ∧ b ∧ ϕ(v) = ϕ̃(x) ∧ ϕ̃(y).

But ϕ̃ is an isomorphism from [0, a] to [0, b], so
ϕ̃(x ∧ y) = ϕ̃(x) ∧ ϕ̃(y). Thus ϕ(u ∗a v) = ϕ(u) ∗b

ϕ(v) and this completes the proof of the theorem.

2 Variants of some lattices

Consider the applications of theorem 1 to
some classical lattices.

1. Finite chain.

Proposition 1. All variants of a finite chain are
pairwise non-isomorphic .
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Proof. If a and b are two different elements
of a finite chain L, then one of the intervals
[0, a] and [0, b] is strictly contained in another.
Therefore they have different cardinality and are
not isomorphic. From the theorem 1 it immedi-
ately follows that the variants (L, ∗a) and (L, ∗b)
are also not isomorphic.

Corollary 1. Number of pairwise non-isomorphic
variants of a chain with length n is equal to n+1.

2. Power set of a finite set.
The set Bn of all subsets of the set

{1, 2, . . . , n} (i.e. set Bn, ordered by inclusion)
called power set of a finite set.

Proposition 2. Let A and B be two elements of
the power set Bn. Variants (Bn, ∗A) and (Bn, ∗B)
are isomorphic if and only if sets A and B have
the same cardinality.

Proof. If the set A ∈ Bn has the form
A = {a1, . . . , ak}, than interval [∅, A] is
isomorphic to the power set Bk and has 2k

elements. Let now X = {ai1 , . . . , aim} be any
element from [∅, A]. Set Y ∈ Bn satisfies equality
Y ∩A = X if and only if it has the form Y = X∪Z,
where Z {1, 2, . . . , n}rA.

So the weight ω(X) of element X is equal
to 2n−k. Therefore all the elements of interval
[∅, A] have the same weight, which is fully
determined by the cardinality of the set A.

Thus intervals [∅, A] and [∅, B] are
isomorphic if and only if |A| = |B|. Moreover,
any isomorphism between these intervals saves
the weights. Reference to the theorem 1 ends the
proof of the statement.

Corollary 2. The number of non-isomorphic
variants of power set Bn is equal to n + 1.

Proof. This follows from the proposition 2 together
with the fact that cardinality of the set A ∈ Bn

may change from 0 to n.
3. Lattice of subspaces of a finite di-

mensional vector space.

Let L(n, q) be the lattice of subspaces of the
n–dimensional vector space Fn

q over the finite field
Fq of dimension q, ordered by inclusion.

Proposition 3. Variants (L(n, q), ∗U ) and
(L(n, q), ∗W ) of lattice L(n, q) are isomorphic if
and only if subspaces U and W have the same
dimension.

Proof. Let Fn
q ⊇ U ⊇ X, and let subspaces U and

X have dimensions m and k respectively. Then
subspace Y ⊆ Fn

q satisfies condition Y ∩ U = X
if and only if quotient space Y/X will have a zero
crossing with (m− k)–dimensional quotient space
U/X in (n−k)–dimensional quotient space Fn

q /X.
Then quotient spaces U/X and Y/X have a zero
crossing if and only if the union of their bases is
a linearly independent system. Fixed base e1, . . . ,
em−k of quotient space U/X can be extended to
a linearly independent system by e1, . . . , em−k,
vm−k+1, . . . , vm−k+i

(qn−k−qm−k)(qn−k−qm−k+1)· · ·(qn−k−qm−k+i−1)

ways, and (qi − 1)(qi − q) · · · (qi − qi−1) different
sets vm−k+1, . . . , vm−k+i will generate the same
i–dimensional space Y/X. Therefore the total
number of subspaces Y that satisfy the conditi-
on Y ∩ U = X, is equal to

n−m∑

i=0

(qn−k − qm−k)(qn−k − qm−k+1) · · ·
(qi − 1)(qi − q) · · · (qi − qi−1)

×

· · · (qn−k − qm−k+i−1)
(qi − 1)(qi − q) · · · (qi − qi−1)

. (3)

Thus the weight of the element X from interval
[0, U ], which is given by expression (3), depends
only on the dimensions of the subspaces U and X.

Interval [0, U ] of the lattice L(n, q) is
isomorphic to the lattice L(n, dimU). Therefore
intervals [0, U ] and [0,W ] are isomorphic if and
only if dimU = dimW . But if dimU = dimW
then subspaces U and W are isomorphic, and each
isomorphism from U to W induces an isomorphi-
sm from [0, U ] to [0,W ] which save dimensions of
subspaces and their weights. Therefore, accordi-
ng to the theorem 1, variants (L(n, q), ∗U ) and
(L(n, q), ∗W ) are isomorphic if and only if dimU =
dimW .

Corollary 3. The number of non-isomorphic
variants of lattice L(n, q) is equal to n + 1.

4. The lattice of partitions of a finite set.

Let Partn be lattice of all partitions of a set
{1, 2, . . . , n}, and partition ρ is said to be less than
partition τ if and only if each block of the parti-
tion ρ is contained in one of the blocks of the
partition τ . Partition τ has type 〈l1, l2, . . . , ln〉 (or
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1l12l2 . . . nln) if it contains l1 blocks of length 1, l2
blocks of length 2, . . . , ln blocks of length n. It is
clear that l1 + 2l2 + · · ·+ nln = n.

We need several lemmas, proofs of which are
obvious.

Lemma 1. Partition ρ is coatom of lattice Partn
if and only if it is a two-blocks partition. In parti-
cular, lattice Partn has exactly 2n−1 − 1 coatoms.

Lemma 2. Let ρ be a partition of the set
{1, 2, . . . , n} into blocks M1, . . . ,Mk of cardinaliti-
es m1, . . . , mk, respectively. Then the interval [0, ρ]
is isomorphic to the Cartesian product Partm1 ×
· · · × Partmk

.

Denote the number of coatoms of the lattice
L by κ(L).

Lemma 3. If a finite lattice L is the Cartesian
product L = L1× · · ·×Lm of lattices L1, . . . , Lm,
then element b ∈ L is coatom if and only if it has
a form b = (11, . . . , 1i−1, bi, 1i+1 . . . , 1m), where 1j

is a unit of lattice Lj, and bi is a coatom of lattice
Li. In particular, κ(L) = κ(L1) + · · ·+ κ(Lm).

Theorem 2. Variants (Partn, ∗ρ) and (Partn, ∗τ )
of lattice Partn are isomorphic if and only if parti-
tions ρ and τ have the same type.

Proof. First, we’ll prove that intervals [0, ρ] and
[0, τ ] are isomorphic if and only if partitions ρ and
τ have the same type. The sufficiency of the condi-
tion is obvious; we will prove necessity by inducti-
on on the power of the interval. The statement is
obvious if cardinality of interval is equal to 1 or 2.
It gives the base for the induction.

Let intervals [0, ρ] and [0, τ ] be isomorphic and
assume that the statement is already proved for
intervals of all smaller dimensions. Then we can
choose coatoms µ ∈ [0, ρ] and ν ∈ [0, τ ] such that
the intervals [0, µ] i [0, ν] are also isomorphic. By
the lemma 2 this intervals have the following form:

[0, µ] ' Partm1 × · · · × Partmp ,

[0, ν] ' Part n1 × · · · × Part nq . (4)

By induction assumption, partitions µ and ν must
have the same type so p = q and after renumberi-
ng of factors we may assume that m1 = n1, . . . ,
mp = np. By the lemma 2, partition ρ is formed
by joining two blocks of partition µ into one, and
partition τ is formed by joining two blocks of parti-
tion ν into one.

Without loss of generality we can assume that
one of two cases holds:

I. ρ ' Partm+k × Part l × Partm4 × · · ·
· · · × Partmp ,

τ ' Partm+l × Part k × Partm4 × · · ·
· · · × Partmp ;

II. ρ ' Partm+r ×Part k ×Part l×Partm5 ×
· · · × Partmp ,

τ ' Part k+l × Partm × Part r × Partm4 ×
· · · × Partmp .

Consider the first case. Without loss of
generality we can assume that k > l.

Since the intervals [0, µ] and [0, ν] are
isomorphic, they contain the same number of
coatoms. From the lemma 3, it follows that the
number of coatoms of interval [0, ρ], nonunit part
of which lies in Partm+k × Part l, must be equal
to the number of coatoms of the interval [0, τ ],
nonunit part of which lies in Partm+l × Part k,
and this numbers are equal to

(2m+k−1 − 1) + (2l−1 − 1) and

(2m+l−1 − 1) + (2k−1 − 1),

respectively. Hence

2m+k + 2l = 2m+l + 2k. (5)

If m + l > k it leads to the equality

2l(2m+k−l + 1) = 2k(2m+l−k + 1),

and m + k − l > 0 i m + l − k > 0. Then l = k,
and partitions ρ and τ have the same type.

Inequality m + l 6 k is not possible because
then number 2 will be included with the exponent
l in decomposition of the left part of the equali-
ty (5), and with the exponent at least m + l in
decomposition of the right part.

Thus in the first case partitions ρ and τ have
the same type.

Now consider the second case. Similarly to the
case I from the counting coatoms in intervals [0, ρ]
and [0, τ ] we obtain the equality

2m+r + 2k + 2l = 2k+l + 2m + 2r. (6)

Count the number of atoms in each of the
intervals [0, ρ] and [0, τ ]. Obviously, the partition
is atom if and only if all its blocks have exactly one
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element, except the one block which contains two
elements. And both elements of this block must
belong to the same block of the partition ρ (for
the interval [0, ρ]) or partition τ (for the interval
[0, τ ]). It gives equality(

m + r

2

)
+

(
k

2

)
+

(
l

2

)
=

(
k + l

2

)
+

(
m

2

)
+

(
r

2

)
.

Hence we obtain:

mr = kl. (7)

Without loss of generality, we can assume that
m > r i k > l. If m = k then r = l and parti-
tions ρ and τ have the same type. Suppose now
that m 6= k. We can assume that m > k. Then (7)
implies r < l.

If k = l then (7) implies that r < k. Now from
equality (6) we obtain:

2k+1(2m+r−k−1 + 1) = 2r(22k−r + 2m−r + 1),

and m + r − k − 1 > 0, 2k − r > 0, m − r > 0.
Therefore k + 1 = r, which contradicts with the
inequality r < k. Hence the case k = l is impossi-
ble.

It is left to consider the case m > k > l > r.
In this case equality (6) can be rewritten as

2l(2m+r−l + 2k−l + 1) = 2r(2k+l−r + 2m−r + 1),

and m + r − l > 0, k − l > 0, 2k+l−r > 0,
m − r > 0. But then l = r which again leads
to a contradiction.

Thus in all cases the assumption that m 6= k
leads to a contradiction. Hence, intervals [0, ρ] and
[0, τ ] are isomorphic if and only if the partitions ρ
and τ have the same type.

Now let partitions

ρ = a1 . . . ak|b1 . . . bl| . . . |d1 . . . dm and

τ = a′1 . . . a′k|b′1 . . . b′l| . . . |d′1 . . . d′m
have the same type. Consider the permutation

π =
(

a1 . . . ak b1 . . . bl . . . d1 . . . dm

a′1 . . . a′k b′1 . . . b′l . . . d′1 . . . d′m

)
.

Then mapping ϕπ : Partn → Partn, whi-
ch sends a partition x1 . . . xp| . . . |y1 . . . yq into
partition π(x1) . . . π(xp)| . . . |π(y1) . . . π(yq), is an
automorphism of lattice Partn which maps the
interval [0, ρ] into the interval [0, τ ]. Since in
this case expression δ ∧ ρ = µ go into expressi-
on ϕπ(δ) ∧ ϕπ(ρ) = ϕπ(µ), the restriction of
the automorphism ϕπ on interval [0, ρ] save the
weights of elements. From the theorem 1 now
follows that variants (Partn, ∗ρ) and (Partn, ∗τ )
are isomorphic.

Corollary 4. Lattice Partn has exactly p(n) pai-
rwise non-isomorphic variants, where p(n) is the
number of unordered partitions of number n into
the sum of natural summands.

Proof. The statement follows from theorem 2 and
the fact that if we put in the corresponding to
partition ρ the sum of power of it blocks, we
will obtain a one-to-one correspondence between
the types of partition of the set {1, 2, . . . , n} and
partitions of number n in the sum of natural
summands.

3 Conclusions

We obtained a criterion of isomorphism for
two variants of a finite lower semilattice, which
is considered as a semigroup under the operation
of taking of the infinum. We have applied this cri-
terion to describe variants of a few classical semi-
lattices such as: a finite chain, the powerset of a
finite set, the lattice of partitions of a finite set,
and the lattice of subspaces of a finite space.
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