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Some combinatorial results (e.g. cardinality
of semigroup, combinatorics of Green’s relations,
combinatorics of nilpotents) concerning wreath
product of finite inverse symmetric semigroup are
presented. Because of the recursive definition of
the wreath product, a number of recurrent formu-
lae, containing different types of known combina-
torial objects, arises.
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1 Basic definitions

For a set X, let Z(X) denote the set of all
partial bijections on X. Clearly, it is a semigroup
under natural composition law. This semigroup is
called the full symmetric inverse semigroup on X.
If X ={1,...,n}, then semigroup Z(X) is called
the full symmetric inverse semigroup of rank n and
is denoted Z,.

Let S be a semigroup, (P, X) be a semigroup
of partial transformations of the set X. Define the
set SPX as a set of partial functions from X to
semigroup S

SPX = {f:A— S|dom(f) =A,AC X}.

Given f,g € SPX the product fg is defined in a
following way:

dom(fg) = dom(f) N dom(g),
(f9)(x) = f(z)g(z) for all 2 € dom(fg).

For a € P, f € SPX define f* as:

(f) ) = f(za),
dom(f*) = {x € dom(a); xa € dom(f)}.
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Wrreath product of semigroup S with semi-
group (P, X)) of partial transformations of the set
X is a set

{(f,a) € SP% x (P, X)| dom(f) = dom(a)}
with composition defined by

(f7 CL) ’ (97 b) = (fg“,ab).

We will denote the wreath product of semigroups
S and (P, X) by S, P.

Wreath product of inverse semigroups is an
inverse semigroup. We can recursively define the
wreath product of any finite number of inverse
semigroups. Let T be a k-level n-regular rooted
tree. By a partial automorphism we mean a
root-preserving tree homomorphism defined on a
connected subtree of T. The set PAutT of all
partial automorphisms of 1" forms an inverse semi-
group under partial automorphisms composition.

Theorem 1. [3]| Let T be a rooted k-level n-regular
tree. Then

PAWT = T, 4 Toly - b In = 0 Ty)".
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2 Basic combinatorics

This sections contains brief summary of
results from |[3].
For an arbitrary function F' we denote

Proposition 1. \(ZpIn)k| = S*(1), where S(x)
2 im1 (n)zi!xi

i
Let E(Z,) be the set of idempotents of semi-
group Z,.

Proposition 2. An element (f,a) € S I, is an
idempotent if and only if a € E(Z,,) and

f(dom(a)) C E(Z,).

In terms of partial tree automorphisms, it
means that idempotent is a partial automorphi-
sm, which acts identically on its domain.

Proposition 3. Let E((ZpIn)k) be the set of

idempotents of semigroup (3, In)*. Then

|E(QZ,)F)| = FF1) = (L+1)"+ D)™ ...+ 1),
k

where F(z) = (z + 1)™.

Recall that Green’s R-relation on inverse
semigroup S is defined by

aRb< aS' =bS,
similarly, Green’s L-relation is defined by
albs S'a=S5",
Green’s J-relation is defined by
aJ b« Stast = S'bS".

Green’s ‘H- and D-relations are derivative: H =

RANL, D=RoL=LoR.
Theorem 2. Let (f,a),(g,b) € (szn)k. Then

1) (f,a) L (g,b) if and only if ran(a) = ran(b)
and ¢* ' (2) £ f* '(2) for all z € ran(a) ,
where a~! is the inverse element for a;

2) (f,a) R (g,b) if and only if dom(a)
dom(b) and f(z) R g(z) for all z € dom(a) ;
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3) (f,a) H (g,b) if and only i_flran(a) = I"E_LIll(b)
and dom(a) = dom(b), ¢* (2) £ f* (2)
and f(z) R g(z) for z € dom(a) Nran(a);

4) (f,a) D (g,b) if and only if there exists a bi-
jection map z : dom(b) — dom(a) such that
f(zx) D g(z) for all z € dom(x).

5) D-J.

It is well-known fact that in inverse semigroup
each R (L£)-class contains exactly one idempotent,
so the number of different R (£)-classes in (2, Z,)*

is equal to the number of idempotents of (2, Z,,)*.

Proposition 4. The number of D-classes of semi-
group (4, Tn)" equals P*(1), where P(x) = (*/™).

3 Combinatorics of cross-sections

Now let p be an equivalence relation on a semi-
group S. A subsemigroup H C S is called cross-
section with respect to p (or simply p-cross-section)
provided that H contains exactly one element from
every equivalence class. Correspondingly, cross-
sections with respect to R- (£-) Green’s relati-
ons are called R- (L£-) cross-sections. Note that
every R- (L£-) equivalence class contains exactly
one idempotent. Then the number of elements in
every cross-section is |E(S)|, where E(S) is the
subsemigroup of all idempotents of .S.

Observe that a subsemigroup H of semigroup
7, is an R-cross-section if and only if for every
subtree I' C T it contains exactly one element ¢
such that dom(yp) =T

Let now {1,...,n} = M; U Ms...U M, be
an arbitrary decomposition of {1,2,...,n} into
disjoint union of non-empty blocks, where the
order of blocks is irrelevant. Assume that a li-
near order is fixed on the elements of every block:
M; = {mzl <mbh << mei‘}.

For each pair 4,5 1 < i < k, 1 < 5 < |M;]
denote by a;; the element in D-class D,_1 of
rank n — 1 of semigroup Z,, containing chain

[mi,mb, ... Jné], that acts as identity on the set
{1,...,n}\ {mi,mh,...,m}}
and ‘ '
aij(mg) = mjq,
E=1,...,7—1, mé;l ¢ dom(a; ;). Denote by
— — B .
R = R(Mi, My, ..., My) the semigroup (a; ;| 1 <
i < k,1 < j < |M|)U{e}. Tt is shown in [1,
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Chapter 12| that R = R(My, Ms,..., M) is an Corollary 2. The number of non-isomorphic R-
R-cross-section of Z,,. (L-) cross-sections of I, 4Ly, is
Define the map .
Pm + ]z -1
: 2 < Ji )
: 1,2, 20 i=1 !
=1

in the following manner: ¢, maps the product
Hle(fi, a;) to the element (f,a) such that a‘M_ =

Qg f‘Ml :fl

—_— — —
Theorem 3. [2| Let R(Mi,Ms,..., M)
be an R-cross-section of semigroup I,
Ry, ..., Ry be R-cross-sections of semigroup Lp,.
Then

R=y, ((R1 tp ROVL)) % ... X (Riy R(Mi)))

is an R-cross-section of semigroup Ly, Ly
Moreover, every R-cross-section of semigroup
L Iy is isomorphic to

— —

(31 4 R(M1)) % ... x (R sz(Mk)) .
A map a — a~! is an anti-isomorphism of
semigroup Z,, Y L, that sends R-classes to L-
classes. It is also clear that it maps R-cross-
sections to L-cross-sections and vice-versa. Hence
dualizing Theorem 3, one gets a description of £-
cross-sections.

Theorem 4. [2| Let R, R" be R-cross-sections
of the semigroup I, Z,, p: R — R” be an
isomorphism. Then there exists such an element

O = (0,0) € S S, that

o((f,0)) =O07'(f,0)0.

In other words, if (f,a)
cp((f,a)), then domb = 0(
z € dom(a)

€ R and (g,b)

dom(a)) and for any
0(a()) = b(01x).

9(b(x)) =97 (@) f ()0 (a()).

Corollary 1. Semigroup Ly, 4y I, contains

w3 LG (S1(000)

=1

1
il

different R-(L-) cross-sections.

where py, denotes the number of decompositions of
n into the sum of positive integers, where the order
of summands is not important.

4 Maximal nilpotent subsemigroups and
its combinatorics

Let S be a semigroup with a zero element 0.
An element a € S is called nilpotent if for some
r € N a" = 0. Semigroup S is called nilpotent if
for some r € N

ai-ag-...-ar =0

for arbitrary ai,as,...,a, € S.

Usually, two classes of nilpotent subsemi-
groups are distinguished. First class includes ni-
Ipotent subsemigroup containing semigroup zero
0. In this case we have H" = {0} for some r > 0,
H C S. Second class includes subsemigroups of S,
which are nilpotent as semigroups, but their zero
element may differ from 0. In this case we have
H" = {e} for some idempotent and some r > 1.
We will call these subsemigroups proper nilpotent
subsemigroups.

A nilpotent subsemigroup H C S is called
mazimal nilpotent subsemigroup, if it is not contai-
ned in any other nilpotent subsemigroup H' C S,
H+#H'.

For a semigroup Z, there is
to-one correspondence between maximal
Ipotent subsemigroups and partitions of the set
{1,2,...,n} into disjoint union of ordered blocks:

If e is an idempotent, which is the zero in a
T C1Z,, and

a one-
ni-

dom(e) = {a1, a9, ...ax},

then every maximal nilpotent subsemigroup

corresponds to a permutation by, bs,...,b; of
a1, a9,...,a and has the form:

T= {a € I, | dom(e) C dom(o);
o(x) =z for all z € dom(e);

o(b;) = b; implies i < j for all b; & dom(e)}
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Details can be found in |1, Chapter §].

Consider maximal nilpotent subsemigroups
(those containing the semigroup zero) in a slightly
more general setting.

Let P be an inverse semigroup.

Lemma 1. An element (f,a) € PyZI, is ni-
Ipotent iff a € I, is nilpotent.

Proposition 5. Let S be a maximal nilpotent
subsemigroup of the semigroup I,. Then subsemi-
group P, S is a maximal nilpotent subsemigroup
of the semigroup P, T,,. Moreover, every mazimal
nilpotent subsemigroup of semigroup P,1, is of
this form.

Corollary 3. Mazimal nilpotent subsemigroup of
semigroup (2, T,)* are those having the form

(QZa)* ") S,

where S is a mazximal nilpotent subsemigroup of
the semigroup Zy,.

Now consider maximal nilpotent
subsemigroups.

Let T be a proper nilpotent subsemigroup of
PAutT with a zero e € E(PAutT). Denote by
T, the maximal subtree of T" such that its root is

x € VT and none of the edge of T} is in dom(e).

proper

Theorem 5. Let T be k-level n-regular rooted
tree. Proper mazimal subsemigroup of PAutT is
(canonically) isomorphic to

[T i,
z€dom(e)

where Nilp, is a maximal nilpotent subsemigroup
of PAutT,.

Proposition 6. The cardinality of a maximal
subsemigroup of Py, 1, is equal to

).

where By (x) denotes the nth Bell polynomial.

1

P|"B, | —:
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Consequently, the cardinality of a maximal
subsemigroup of (2, Z,)" is

" 1
Bl -
n ( ‘(21)1-”)}9—1‘
Proposition 7. The number of proper mazximal
nilpotent subsemigroups of PAutT with a zero
e € E(PAutT) equals

T )

z€dom(e)

‘(2 In)k—l
p

where ky is the number of vertices of the first level
of the tree T),.

Let l(z) be the level of T', where the vertex x li-
es, let h(x) = k—1(x)+1. The cardinality of every
mazimal proper nilpotent subsemigroup equals

Fa
B,%(l( ! )

i Z)")|
Ganyushkin O., Mazorchuk V. Classical fini-
te transformation semigroups. An introducti-
on./Tantomkin O. London: Springer, 2009. —
xii, 314 p.

(2 In)h(af)
p

z€dom(e)
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