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Introduction 

Spin models investigated in this paper are 
widely used in the theoretical physics. The aim of 
this paper is to investigate a new and efficient 
method for studies of the phase diagrams of yet 
unstudied spin Hamiltonians. The idea of such 
investigation was first suggested by Anders at al. 
[1]. The method is based on the singular value 
decomposition (SVD) of the space correlation tensor 
(or displacement matrix). For this case SVD is very 
closely related to the problem of proper orthogonal 
decomposition (POD), also known as Karjunen-
Loeve transform, introduced by Kosambi [2] and to 
the principal component analysis introduced by 
Hotelling [3] (See review [4]). POD is a procedure 
for extracting a basis for a modal decomposition 
from an ensemble of signals. This is very efficient 
and optimal method in the sense that for a given 
number of modes, the projection on the subspace 
used for modelling the random field will on average 
contain the most energy possible [5] and given by so 
called proper orthogonal modes (POMs). Finding of 
POMs of given physical problem is correlated to the 
transformation to eigen basis of the given physical 
model with respect to specific observable 
(correspondent analogy from mechanics will be the 
main axe transformation). As it was shown in [5] 
POD can be carried out by means of singular value 
decomposition. 

 

Singular value decomposition 

Principal component analysis (PCA) is a 
mathematical procedure that uses an orthogonal 
transformation to convert a set of observations of 
possibly correlated variables into a set of values of 
uncorrelated variables called principal components. 
The number of principal components is less than or 
equal to the number of original variables. This 
transformation is defined in such a way that the first 
principal component has as high a variance as 
possible (that is, accounts for as much of the 
variability in the data as possible), and each 
succeeding component in turn has the highest 
variance possible under the constraint that it be 
orthogonal to (uncorrelated with) the preceding 
components. Principal components are guaranteed to 
be independent only if the data set is jointly 
normally distributed. PCA is sensitive to the relative 
scaling of the original variables. Depending on the 
field of application, it is also named the discrete 
Karhunen-Loe`ve transform (KLT), the Hotelling 
transform or proper orthogonal decomposition 
(POD). PCA was invented in 1901 by Karl Pearson 
[6]. Now it is mostly used as a tool in exploratory 
data analysis and for making predictive models. 
PCA can be done by eigenvalue decomposition of a 
data covariance matrix or singular value 
decomposition of a data matrix, usually after mean 
centering the data for each attribute. The results of a 
PCA are usually discussed in terms of component 
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scores (the transformed variable values 
corresponding to a particular case in the data) and 
loadings (the weight by which each standarized 
original variable should be multiplied to get the 
component score) . 

PCA is the simplest of the true eigenvector-
based multivariate analyses. Often, its operation can 
be thought of as revealing the internal structure of 
the data in a way which best explains the variance in 
the data. If a multivariate dataset is visualised as a 
set of coordinates in a high-dimensional data space 
(1 axis per variable), PCA can supply the user with a 
lower-dimensional picture, a “shadow” of this object 
when viewed from its (in some sense) most 
informative viewpoint. This is done by using only 
the first few principal components so that the 
dimensionality of the transformed data is reduced. 

The purpose of singular value decomposition is 
to reduce a dataset containing a large number of 
values to a dataset containing significantly fewer 
values, but which still contains a large fraction of the 
variability present in the original data. Applying the 
SVD to space correlation matrix we obtain the most 
persistent structure of the correlations for each 
POM. In this paper we use SVD in order to calculate 
the phase diagrams for 1D Ising model spin chains 
(rings) in the transverse magnetic field. 

XY model with transverse magnetic field 

The XY model with transverse field for a 
system of spin-1/2 on a lattice is given by the 
Hamiltonian 
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1 + 𝛾
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where 𝜎!,!,! are the Pauli matrices, ℬ is the set of all 
pairs of spins, on which a term act jointly; ℬ the 
transverse field and 𝛾 is called the asymmetry. For 
𝛾 = 0, we get a special case the 𝑋𝑋 model and for 
𝛾 = 1, we get the Ising model. 

As it was shown in [7] for the finite chain the 
critical regions are: 𝑋𝑋 criticality at 𝛾 = 0 for 
0 < 𝑩 < 1 and 𝑋𝑌 criticality for 𝑩 = 1, 𝛾 ≠ 0 
(Ising criticality for 𝑩 = 𝛾 = 1. 

The phase diagram which describes the critical 
regions are shown on Fig. 1. 
 

 
 Fig.1 Phase diagram of 𝑋𝑌 model for 1D spin chain 
[7] . 
 
Numerical calculations which can confirm the 
critical behavior of the correlation functions can be 
done using the DMRG algorithm. Critical behavior 
of the correlations can be seen from the plots of the 
singular values of the correlation matrix 
𝜎!
! 𝜎!

! − 𝜎!
! 𝜎!

!
!,!!!,!,!

. 

Calculation of the correlation functions 
separately are not showing yet predicted by [7] 
phase diagram. Three dimensional plot of correlation 
functions can be seen from Fig. 3 

Rest of the correlation functions 𝜎!!𝜎!! ,
𝜎!!𝜎!! , 𝜎!!𝜎!!  and etc. are effectively zero. As we 

can see our correlations correctly reproduce the 
analytical predictions made in [7] about vanishing of 
the correlations while approaching to the points on 
the Baruch-McCoy circle, which is defined by 
𝑩! + 𝛾! = 1. On this circle the ground state has 
product form [7]. This behavior can be clearly seen 
from second and third plots which corresponds to 
middle and lowest singular values of the correlation 
matrix respectively. Maximal singular value is not 
very informative for this type of calculations 
because of the strong criticality at 𝛾 = 0. 

From the Fig. 2 we also can see that critical 
behavior at 𝛾 = 0 (𝑋𝑋 criticality) is much stronger 
than 𝑋𝑌 criticality. Ising critical point at 𝛾 = 𝑩 = 1 
do not have that strong critical behavior as at 𝛾 = 0. 
This picture of the correlation functions behavior is 
in qualitative agrement with behavior of the amount 
of entanglement in this regions (See Fig. 3 in [8] ). 

Calculations of the magnetization 𝑀! and 𝑀! 
which are given as  
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here |0  in our DMRG calculations is an eigenvector 
which corresponds to the lowest eigenvalue 
measured in the middle of the chain. For periodic 

boundary conditions this condition is irrelevant 
because of the ring symmetry. 
 

 

 Fig.2. Singular values of the correlation matrix from the maximal (right plot) to minimal (left plot) for the 
ring of 16 spins.  
 

 
 Fig.3. XX, YY and ZZ correlation functions from left to right.  

 

Results for the magnetization 𝑀! and 𝑀! as a 
function of the parameters of the Hamiltonian is 
given on Fig. 4. 

As we can see from this figures 
𝑀!magnetization for such a small system do not 

 have a symmetry braking and essentially equals 
zero. 𝑀! magnetization as it is expected grows with 
magnetic field 𝑩 until system is fully magnetized. 
 
 
 
 

      
 

 Fig.4. Magnetization as a function of the asymmetry and magnetic field for a 16 spins with open boundary 
conditions. Left: 𝑀!. Right: 𝑀!.  
 

The interesting region for 𝑀! magnetization, as 
we can see from Fig. 4, is at asymmetry value 𝛾 = 0. 

In this regime magnetization grows stepwise unless 
for the Ising case when 𝛾 = 1. 
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One can expect that increasing the number of 
sites in the quantum system magnetization at 𝛾 = 0 
and 𝛾 = 1 shown on Fig. 4 will get closer and for 
the infinite system will coincide. 

Another interesting results can be obtained 
introducing the explicit symmetry braking in the 
initial Hamiltonian that it takes the form of  
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In this case magnetization 𝑀! is not zero any more 
and shown on Fig. 5 
 

 
 Fig.5. Magnetization 𝑀! as a function of the B and 
𝛾 for chain of 𝑁 = 16 spins with symmetry braking. 
 

The density plot of the 𝑀!  magnetization is 
given on the Fig. 5. 

More clear the “classical” behavior of the 𝑀! 
magnetization can be seen for the Ising model 
(𝛾 = 1). This order parameter as a function of the 
magnetic field is given on Fig. 6. 

As we can see the decay of the 𝑀! 
magnetization become stronger if system is large. At 
thermodynamic limit 𝑁⟶ ∞ the 𝑀! is expected to 
vanish at the critical point 𝐵 = 1. 

 

 
 
 Fig.6. Magnetization 𝑀!  as a function of the B for 
𝛾 = 1 (Ising) for chain of 𝑁 = 12 (upper plot) 
𝑁 = 16 (middle plot) and 𝑁 = 18 (lower plot) spins 
with symmetry braking.  
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