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On some relation between sets of mappings
of a set in factor-rings

In the given paper some relations between sets
of mappings of an abstract set in factor-rings of an
associative-commutative ring are investigated.
There are found conditions to be met by a given set
of ideals, that made it possible to prove identities
which form the base for elaboration of
combinatorial schemes intended to compute the
number of objects determined over associative-
commutative rings.
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Introduction

Applications of algebraic models for information
transformation settle down that elaboration of
combinatorial schemes intended to compute the
number of objects determined over rings is actual
problem. Due to the approach generally accepted in
Modern Combinatorics [1] it is naturally to present
these combinatorial schemes via mappings of some
abstract set in factor-rings of considered ring.

In [2,3] it was investigated some relation between
sets of mappings of an abstract set S in complete
residue systems determined by pair-wise coprime
elements a,...,a, (meN) of a Dedekind ring

K =(K,+,) and sets of mappings of the set S in
complete residue system determined by the element

m
[Ta; . Proposed scheme was determined as follows.
i=1

Selecting any single element in each coset of the
quotient set K/, (aeK) (where (a) is principal
ideal of the ring K generated by the element a ), we
get complete residue system MOD(a).
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IIpo oxHe cniBBIAHOIEHHS MiK MHOKMHAMM
BiloOpakeHb MHOXKUHH Y paKkTOp-KLIBISA

Y cmammi docniooceno Oesiki cniggionouleHHs
MIJIC  MHOJCUHAMU  8IQ0OpaAdICEeHb  aOCMPAKMHOL
MHOJICUHU Y (DAKmMOp-Kinbysi  AcoyiamueHo-
KOMYMamugno2o Kinvys. Bemanosneno ymosu axum
NOBUHHA 3A0080JbHAMU 3A0AHA MHOXMCUHA i0edlie
wWo 0aoms MOJICIUBICIbG BCMAHOBUMU PIBHOCMI SIKL
€ 0CHOB010 0151 N0OYO08U KOMOIHAMOPHUX CXEM U0
NpUsHAa4eHi 05 NIOPaxyHKy 00 €Kmis AKi GU3HAYEHO
HAO ACOYIAMUBHO-KOMYMAMUBHUM KiTbYEM.
Knrouosi cnosa: acoyiamugHo-KOMYmamueHi
KinbYys, 8i00Opadicennss  y  hakmop-Kinvys,
KOMOIHAMOPHI cxemu.
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By b<moda> (a,beK) it is denoted the
element ce MOD(a), such that b u ¢ are elements
of the same coset of the quotient set K/, .

Let

F, (S)={f|f:S—>MOD(a)} (i=1...,m)
and

F(S)={f | f:S—>MOD(Ta)}.

For any fixed subsets F, (S)cF, (S) (i=1...,m)
we set
Fy 8)={f €F(S)] fros €Fy (9)},
where mapping fqq, (f € F(S)) is determined by
identity
frnoda (8)=f(s)<mod & > (se9).
The following theorem holds.
Theorem [2,3]. For any set S and pair-wise
coprime elements a,,...,a, (meN) of a Dedekind
ring K there holds the identity

% Py (S)I=INF )1 @
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If all sets F,(S) (i=1...,m) are finite then
identity (1) can be rewritten in the form

_r'"y £, (S)]=] m F, (9)]. 0

It was established in [2,3] that identity (2) can be
applied to combinatorial analysis of mathematical
structures determined in terms of commutative-
associative rings with unity or in terms of number-
theoretic structures, used in applied problems of
information transformation.

In the given paper it is investigated some general
combinatorial scheme elaborated for associative-
commutative ring (not necessary with unity), such
that above described scheme is its special case. All
algebraic notions that are not determined are the
same as in [4-6].

The rest of the paper is organized in the following
way. In chapter 1 necessary basic notions are
determined and investigated. Main result is presented
in chapter 2. The last chapter consists of some
conclusion remarks.

1. Preliminary results

Let K=(K,+,) be any associative-commutative
ring and I, be the set of all ideals of the ring K.
The ideal 1, N1, is the least common multiple of
ideals I, and I,. It is well known that inclusion

L,clnl, Q)
holds for all 1,,1, el .

Proposition 1. In any associative-commutative

ring K inclusion
LU,y
holds forall 1,,1,,1; €l .

Proof. Let K be any associative-commutative
ringand I,,1,,1; €l .

Inclusion I, nI;c 1, implies that inclusion
I,(1, n13)< 1,1, holds, and inclusion I, N1, c |,
implies that inclusion 1,(1, n13) < I;1; also holds.
Inclusions 1,(1, n1l;)c 11, and 1, (I, nlg)c L,

imply that inclusion (2) holds.
Q.E.D.

Proposition 2. In any associative-commutative
ring K for any integer meN (m>3) inclusion

)

m

ﬁligﬂli

i=1

3)

holds forall 1,,...,1,, €l.

Proof. Let K be any associative-commutative
ring, meN (m>3) and I;,...,1, €lg.

We prove inclusion (3) by induction.
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Let m=3. Inclusions (1) and (2) imply that
Lbhclh(,n)chl,nll,c
chimnb)n(lbn)=1,nl,nl;.

Suppose that inclusion (3) holds for all
integers m=3,...,n. Then

[Mhenl Mm=3..n0 @

i=1
Let m=n+1. Inclusions (1) and (4) imply
that

n+l

(=110 =0Tl = (V1)1 e

=1 i=1 i=

n+l

<Nl =Nk :ﬁli'

i=1
Q.E.D.

Corollary 1. In any associative-commutative ring
K forany integer me N (m>3) inclusion

el (meNm=2) (5
i=1 i=1

holds forall 1,,...,1, €ly.

Proof. If m=2 then (5) is turned to (1). If m>3
then (5) is turned to (3).

Q.E.D.

Quotient set K/, (I €l,) treated as a partition
of the set K would be denoted by =(K,I), i.e.
x=y(z(K,1)) ifand only if x=y(mod1).

Remark 1. Thus we get 7z(K,l)={l +alaeK}
(I ely). Itis worth to note that z(K,I,)<z(K,I,)
ifandonly if I, c1,.

We set

P ={z(K,1)| 1 el }.

The set P, can be characterized in the following
way.

Lemma 1. In any associative-commutative ring
K forall meN inequality

2(K,IT1) <[T7(K, 1)

holds forall 1,,...,1, €.

Proof. Let K be any associative-commutative
ring, meN and 1,,...,1 €l,.

If m=1 then inequality (6) is turned to inequality
7(K, 1) <z(K,1;) and it holds for all 1, el

Let m>2. Forany x,y e K we get

XEy(ﬁ(K,ﬂli))QxEy(modﬁli). )

(6)

; m m
Since [T1; < NI; then

i=1 i=1l
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xEy(modlm[li):xEy(mod(m]li)@
i=1 i=1

Sx—yeNl, & (Wi=l...mx-yel)o

< (Vi=l...,m)(x=y(modl,)) <
< (Vi=l...m)(x=y #(K, 1)) <

<@szﬁEMJ»- ®)

Formulae (7) and (8) imply that inequality (6)
holds.
Q.E.D.

Corollary 2. In any associative-commutative ring
K forall meN identity

d&ﬁm=ﬁﬂmm )

m m
holds forall 1,,...,1, €l,,suchthat [TI; =N]I,.
i=1 i=1
Proof. Let K be any associative-commutative

m m
ring, meN, I,,....1, €lc,and [TI, =N]I,.
i=l i=1

If m=1 then identity (9) is turned to identity
z(K,1,)=z(K,1,) and it holds for all I, €l .

m
Let m>2. Identity ﬁli =1, implies that

xEy(modlm[Ii)axEy(modF]li). (10)
i=1 i=1

Substituting in (8) formula (10) instead of
formula

xEy(mod]m"[Ii):xEy(modﬁli),
we get that i :
x=ymod[]1,) < x=y [T#(K,1,)).  (11)

Formulae (7) and (11) imply that identity (9)
holds.
Q.E.D.

Theorem 1. In any associative-commutative ring
K for any integer meN (m=>2) identity

n(K,ﬁli)z{ﬁBi B e z(K, 1) (i=1...,m} (12)

r
holds for all 1,,...,1,, €l,,suchthat ]I, +1,,,=K
i=1

(r=1...,m-1) and f[li =_(h]li (h=2,...,m).
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Proof. Let K be any associative-commutative

.
ring, meN (m>2), I,,..., 1 €l [1l;+1,,=K
i=1

h h
(r=1...m-=-1) and [TI; =N1; (h=2,...,m).
i=1 i=1
Identity (12) is equivalent to proposition that

B, =@ (meN,m>2) (13)

forall B, e z(K,I;) (i=1...,m).

We prove this proposition by induction.

Let m=2. Since Ll,=1,n1,, we get (see
Corollary 2) that z(K, 1,1,) =z(K,1,)z(K,1,) .

Let B, ex(K,I;) (i=12), ie. Bj=I;+4a for
some fixed elements a K. Identity I, +1,=K
implies that there exist elements «; €l, (i=12),
such that a, —a, =, — . Thus &, + o =a, + , .
Since ¢; el; (i=12) we get g, + ; €B;.

Formulae a, +a; €B; (i=12)
a+a, =b+a, implythat B, nB, #J.

Suppose that considered proposition holds for all
integers m=2,...,n.

and

m m
Let m=n+1. Since []I;=NI; we get (see
i=l i=1

Corollary 2) that
ﬂKﬁm=ﬂKﬁm4ﬁdKMMMh@-

Let Ber(K,JT1;) and B,,ex(K,1 ), ie.
i=1

m
B=[Il,+a and B,,=1,,+a, for some fixed
i=1

n
elements a; e K (i=12). ldentity []I;+1,,=K
i=l

n
implies that there exist elements ¢, €[]I; and
i=1

a,€l,,,, such that a —a,=a,—a. Thus

n
a+o,=a,+a,.Since o €[]I, and o, €1, We
i=1
getthat &, + oy B and a, + 2, €B,,;.

Formulae @& +o,€B, a,+a,€B,; and
a+o,=a,+a, implythat BNB,; #J.

Q.E.D.

2. Main result.

Let S be any non-empty set, K be an
associative-commutative ring and 1,,...,1, €l

(meN,m>2) be such ideals that
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[l +1,,,=K (r=1...m-1)
i=1

and
h h
| Ii:'(_]li (h=2,...,m).
We set _ :
F,i(S):{f | f:S—>z(K, 1)} (i=1...,m)
and

F(S)={f | f:S— (K JTI)}.
i=1
Remark 2. Identity ]m[lizﬁli implies (see
i=1 i=1
Corollary 2) that z(K,ITI,) =[]#(K,1.). Thus we
i=1 i=l
get
F(S)={f | f:S—>T]z(K,1,)}.
i=1
For any subsets F, (S)cF,(S) (i=1...,m)
we set
F. (S)={f eF(S)| f, €F, (S)} (i=L...,m),
where mapping f,. (f eFF(S)) is determined as
follows: if f(s)=B (seS) (where Be[]#(K,I.))
i=1

then f, (s)=B’, where B’ is such single block of
the partition 7(K,1,) that B B'.

Theorem 2. In any associative-commutative ring
K for any non-empty set S and any integer meN
(m>2) identity

%P ®)I=INF, )] (14)

holds for all 1,,...,1,, €l,, such that lL[Ii +1,,=K
i=1
h h
(r=1...m-1and [I;, =N (h=2,...,m).
i=1 i=1
Proof. Let K be any associative-commutative

r
ring, meN (m=2), ... 1, €l, [Tl +1,4,=K
i=1

(r=1...,m-1) and ﬁli =(h]li (h=2,...,m).
i=1 i=1

_ 'To. prove identity (14) it is sufficient to construct
injections

0B, (8)x..xF_(S) aﬁﬁ,i (S)  (15)
and

w:ﬁﬁ,i(S)eﬁ,l(S)x...xIf,m(S). (16)

Injection ¢ can be constructed as follows.
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For any f=(f,,....f,)eF (S)x..xF_(S) we
set o(f)=f , where mapping f
identity

is determined by

f(s):_ﬁlfi(s) (seS).

Theorem 1 implies that f € F(S).

Firstly we prove that mapping (17) is some
mapping of the form (15).
Indeed, identity (17) implies that f, (s)= f;(s)

(i=L...m) for all seS, ie. f, =f ek (S) for
all i=1..,m. Since . eF, (S) forall i=1..,m
we get that felz,i(S) for all i=1...m, i.e.

m ~
fe _ﬂlF,i (S).
i=
Now we prove that mapping (17) is injection, i.e.
if f, =(f",... f7)eF (S)x..xF_(S) (r=12)
and f, =f, then o(f,) = o(f,).
Since f, #f, then there exists jeN,, such that

(17)

f® = £®. This implies that there exists an element
seS such that f(s)=f@(s), ie. fP(s) and
f?(s) are different blocks of partition z(K,1;).

Thus ]m[fi(l)(s) and ]m[fi(z)(s) are different blocks
i=1 i=1
of partition ]m[n(K, I,). Since
i=1

o(f,)(s) = q £, (s) = F{ f2(s) = o(f,)(s)
we get that o(f,) = o(f,) .
Injection y can be constructed as follows.
Forany f eﬁﬁi (S) we set
i=1
w(B)=(ffi). (18)
Identity (18) implies that for any mapping
f e(\F, (S) identity f(s)e(1f, (s) holds for any
i=1 i=1

element seS.
Firstly we prove that mapping (18) is some
mapping of the form (16).

Since f <(1F, (S) we getthat f e, (S) forall
i=1
i=1...,m. This implies that f, elf,i(S) for all

i=1...m,ie.
w(f)=(f,.... T, YeF (S)x..xF_(S).
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Now we prove that mapping (18) is injection, i.e.
if £O, @ cF and O = f@ then

i=1
p(F)=(f0, L fD) = (£9, . 1) =y (19).
Since f®xf®@ (f(l),f(z)eF]F) then there

oo
i=1

exists an element seS such that f®(s)= f@(s),
ie. fP(s) and fP(s) are elements of different

blocks of partition lm[ﬂ'(K, I,). Thus we get
i=1

NfO(s)=FO(s)= ) =N ().
This I;:1eans that there exists jeillm such that
19(s) = D (s), ie. £9 %10, Since £ = £
then we get (@) =y (f@).
Q.E.D.

If all sets F.(S) (i=L...m) are finite then
identity (14) can be rewritten in the form

HI F, (S)|=|ﬁﬁ.i ).

From proof of Theorem 2 it follows immediately
that the following corollary holds.

Corollary 3. If all sets Ifli(S) (i=1...,m) are
finite then the mappings ¢ and w constructed in

(19)

proof of Theorem 2 are bijections such that ¢ =y

and v t=0p.

It is worth to note that just the identity (19) forms
the base for elaboration of combinatorial schemes
intended to compute the number of objects
determined over associative-commutative rings. The
following example confirms this factor.

Example. 1. Let K be any finite associative-
commutative ring with unity. Proper ideals
1,1, el are comaximal if I, +1,=K. Proper
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ideals 1,,...,1, €l are pair-wise comaximal if I
and I; are comaximal forall i, j=1...,m (i=j).It
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comaximal then identity 1'm[|i :F]Ii holds. Thus
i=1 i=1

identity (19) also holds. If |S|=1 :[hen identity (19)

establishes that factor-rings K/, and ﬁK/ ; have
Il i=1
i=1

the same cardinality. Moreover, bijections ¢ and
constructed in proof of Theorem 2 establish
isomorphism of these factor-rings.

2. If K is aDedekind ringand a,,...,a, (meN)
are pair-wise coprime elements then principal ideals
(&),...,(a,) are pair-wise comaximal. Thus all

results established ad hoc in [2,3] can be treated as
special case of identities (14) and (19).

Conclusions

In the given paper mappings of an abstract set in
factor-rings of an associative-commutative ring were
investigated. Found in the paper conditions to be met
by a given set of ideals, made it possible to prove
identities (14) and (19) which form the base for
elaboration of combinatorial schemes intended to
compute the number of objects determined over
associative-commutative rings. In particular, all
results established ad hoc in [2,3] can be treated as
special case of these identities.
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I/l Cybernetics and system analysis. — 2012. —
Ne 2. — P. 105-112.

4. Zariski O., Samuel P. Commutative algebra.
Vol. 1. — Moscow: Inostrannaja literatura,
1963. — 374 p. (in Russian).

5. Kurosh A.G. Lectures in general algebra. —
Moscow: Nauka, 1973. — 400 p. (in Russian).

6. Van der Varden B.L. Algebra. — Moscow:
Nauka, 1979. — 624 p. (in Russian).

Hapi#inmna o peaxosrerii 19.09.13

117



	time1.pdf

