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діраківському напівметалі 
 
Розглянуто електронні стани на найнижчому 
рівні Ландау у невпорядкованому діраківському 
напівметалі  в другому порядку теорії збурень 
по потенціалу домішок. Отриманий результат 
порівняно з точним розв’язком і обговорено 
необхідність врахування процесів  розсіяння 
між різними вейлівськими точками для того, 
щоб провідність була скінченною. 
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 Electron states in the lowest Landau level in 
disordered Dirac semimetal 
 

The electron states in the lowest Landau level in 
disordered Dirac semimetal are studied in the 
second order of perturbation theory in impurities 
potential. The results are compared with the exact 
solution and the necessity of  impurity  scattering 
between different Weyl nodes to produce a finite 
conductivity is discussed. 
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          Recently there was a significant interest in 
condensed matter community to the role of quantum 
anomalies in transport and electromagnetic 
properties of  Dirac and Weyl semimetals, whose 
low energy quasiparticles are described by the Dirac 
and Weyl equation, respectively. Historically, the 
first example of a metal whose low effective energy 
includes three dimensional Dirac fermions is yielded 
by bismuth Ref.[1].  Its band structure features 
pockets of holes near T point in the Brillouin zone 
and pockets of electrons near the three equivalent L 
points which are described by (3+1)-dimensional 
Dirac equation with non-zero mass.  
        It is interesting that the magnitude of this mass 
can be tuned by doping bismuth with antimony. As 
Sb concentration in  alloy increases, the 
mass decreases and closes at  
realizing a truly massless point. As  is further 
increased, the gap reopens and for  the 
material becomes an inverted-band bulk insulator 
with topological surface states (see, e.g., Ref.[2]). 

Recently, applying magnetic fields, a negative 
magnetoresistivity [3] was observed in . 
Negative magnetoresistivity connected with the 
chiral anomaly was long ago [4] argued to be a 
fingerprint of the existence of a Weyl semimetal 
phase, where the single Dirac point splits into two 

Weyl nodes with opposite chirality and the distance 
in momentum space between these points is 
proportional to the applied magnetic field. It is well 
known that only the fermion states on the lowest 
Landau level (LLL) produce the chiral anomaly (see, 
e.g., Ref.[5]). According to Ref.[4], one cannot 
neglect scattering processes involving two Weyl 
nodes. As shown in [4], if the internode scattering 
rate for the electron states in the LLL is small, this 
leads to a negative magnetoresistivity. 

It is clear that in order to theoretically describe 
negative magnetoresistivity, it is necessary to 
calculate the width of the LLL states due to the 
scattering on random impurities. The standard 
method to perform such a calculation is the impurity 
(or “cross”) diagram technique [6,7]. According to 
this technique, the interaction Hamiltonian of 
electrons with impurities is given by 

  (1) 

where  and summation is 

performed over impurities situated at random 
positions. The simplest interaction potential with an 
impurity is the short-range one 

  (2) 
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Further, the averaging over the positions of 
impurities proceeds according to the rule [6,7] 
               

 (3) 

where  is the volume of the system. Using Eq.(3), 

we easily find the following average of the impurity 
correlation function: 

 
  (4) 

where  is the concentration of impurities.  

Obviously, Eq.(4) can be interpreted as an effective 
impurity propagator in the impurity diagram 
technique for electrons in disordered material. In 
momentum space, it equals 

          (5) 

Two features of the effective propagator are worth 
noticing. At first, it is purely real in contrast to usual 
propagators due to the exchange of a particle in 
quantum field theories. This is a very important fact 
and its one immediate consequence as we will see 
below is that the scattering on impurities leads to an 
imaginary contribution in the electron self-energy 
producing a finite width for electron states. At 
second, the effective propagator (5) depends on 
frequency only through the Dirac -function, 

therefore, virtual particles in the impurity diagram 
technique have energies that are completely defined 
by the energies of external particles. Of course, this 
result is a trivial consequence of the fact that the 
electron scattering elastically on an impurity can 
change its momentum, however, it cannot change the 
energy. Using Eq.(5), we find the following second 
order contribution to the electron self-energy due to 
scattering on an impurity: 

 
 

    (6) 

      Let us consider how impurity scattering affects 
the electron states in a magnetic field. Since the 
effective propagator (4) is local in coordinate space, 
the Schwinger phase is irrelevant for the second 

order contribution to the electron self-energy. Then 
using the translation invariant part of the electron 
propagator in a magnetic field given, for example, by 
Eq.(A21) in Ref.[8], we find that Eq.(6) implies the 
following contribution: 

        (7) 

 
where the summation is performed over Landau 
levels  and  is the translation invariant part 

of the electron propagator on the th Landau level. 

Since we are interested in the present paper in the 
electron states in the lowest Landau level, we retain 
in Eq.(7) only the LLL contribution. Using 

 
   (8) 

where  is the magnetic length, we find 

that the electron self-energy in the LLL due to 
scattering on impurities equals 

 
(9) 

       Integrating over the transverse components of 
momentum and using the chiral representation of the 
Dirac matrices, it is not difficult to show that Eq.(9) 
can be rewritten as follows: 

 
    (10) 

The structure of Eq.(10) reflects the well-known fact 
that LLL fermion propagator reduces to the 
propagator of two chiral edge states in an effective 
(1+1)-dimensional theory (see, e.g., Eq.(36) in 
Ref.[9]). Integrating in Eq.(10), we obtain 
 

 
       (11) 
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Eq.(11) means that LLL states acquire due to 
scattering on impurities non-zero width 

. However, it is not clear how 

this result is consistent with the well-known result 
[10] that current-carrying  chiral edge states are 
immune to scattering on impurities for a moderate 
amount of disorder (for a discussion of  impurity 
scattering for helical edge states see, e.g., Ref.[11]).  
     In order to clarify the situation, we will calculate 
the exact Green`s function for chiral edge states. The 
Hamiltonian density of chiral edge electrons 
interacting with impurities is given by 
 

 
 (12) 

 
Since Hamiltonian (12) is a diagonal matrix, it 
suffices to find the Green`s function at fixed 
chirality. The corresponding Green`s function in 
mixed frequency and coordinate representation is 
determined by 
 

  (13)   

where  is the 

Hamiltonian for the chiral edge state at fixed 
chirality. Obviously, without loss of generality we 
can consider the state with chirality . Since  

defines a completely integrable system, we easily 
find its complete set of eigenfunctions given by  

  

  (14) 

 
Then the Green`s function equals 
 

 
 (15) 

 
The exact Green`s function (15) immediately implies 
that the processes of scattering on impurities do not 

affect conductivity and current-carrying chiral edge 
states are indeed immune to such processes. 
         Further, it is interesting to find the averaged 
exact Green`s function. This is not difficult to do 
using Eq.(3). Averaging in Eq.(15), we obtain 
 

 
 

 (16) 

 
where  is the spatial size of the system. As it goes 

to infinity, the Green`s function (16) tends to 
 

 
 (17) 

where  is the one-dimensional 

concentration of impurities.  
     Let us discuss the physical meaning of the 
averaged Green`s function (17). It is known [6,7] 
that the averaged Green`s function in the first order 
of perturbation theory in impurity potential produces 
only a correction to the chemical potential. Clearly, 
the averaged Green`s function (17) is in agreement 
with this conclusion. On the other hand, the second 
order contribution of perturbation theory in impurity 
potential should produce [6,7] nonzero width of the 
states which this function describes. Obviously, 
expanding the averaged Green`s function (17) in the 
second order in impurity potential we find that the 
corresponding contribution is real. Therefore, this 
second order contribution indeed generates a nonzero 
width for the states which this Green`s function 
describes. 
    It is instructive to calculate the second order 
contribution in impurity potential using the exact 
Green`s function (15) and compare it with the second 
order contribution of perturbation theory  to the self-
energy of the LLL states given by Eq.(11). 
Expanding the Green`s function (15) in the second 
order in impurity potential, we obtain 
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   (18) 

 
As usual in the impurity diagram technique [6,7], 
only scattering on the same impurity should be 
retained in the second order contribution. Then we 
find 

 
 

  (19) 

Averaging over impurity position in Eq.(19), we 
obtain 

 
         (20) 

Of course, this contribution completely agrees with 
Eq.(17) in the leading in  contribution and is 

consistent with the self-energy of LLL states given 
by Eq.(11). Thus, we conclude that although there is 
a non-zero width of chiral edge states in the averaged 
Green`s function due to the impurity scatterings 
within the same Weyl node only scattering processes 
that involve impurity scatterings between different 
Weyl nodes can provide finite conductivity.
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