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Recently there was a significant interest in
condensed matter community to the role of quantum
anomalies in transport and electromagnetic
properties of Dirac and Weyl semimetals, whose
low energy quasiparticles are described by the Dirac
and Weyl equation, respectively. Historically, the
first example of a metal whose low effective energy
includes three dimensional Dirac fermions is yielded
by bismuth Ref.[1]. Its band structure features
pockets of holes near T point in the Brillouin zone
and pockets of electrons near the three equivalent L
points which are described by (3+1)-dimensional
Dirac equation with non-zero mass.

It is interesting that the magnitude of this mass
can be tuned by doping bismuth with antimony. As
Sb concentration in Bi¢y_.,Sb, alloy increases, the
mass decreases and closes at x & 0.03 —0.04
realizing a truly massless point. As x is further
increased, the gap reopens and for x = Q.07 the
material becomes an inverted-band bulk insulator
with topological surface states (see, e.g., Ref.[2]).

Recently, applying magnetic fields, a negative
magnetoresistivity [3] was observed in Bi;g75b 3
Negative magnetoresistivity connected with the
chiral anomaly was long ago [4] argued to be a
fingerprint of the existence of a Weyl semimetal
phase, where the single Dirac point splits into two
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Weyl nodes with opposite chirality and the distance
in momentum space between these points is
proportional to the applied magnetic field. It is well
known that only the fermion states on the lowest
Landau level (LLL) produce the chiral anomaly (see,
e.g., Ref.[5]). According to Ref.[4], one cannot
neglect scattering processes involving two Weyl
nodes. As shown in [4], if the internode scattering
rate for the electron states in the LLL is small, this
leads to a negative magnetoresistivity.

It is clear that in order to theoretically describe
negative magnetoresistivity, it is necessary to
calculate the width of the LLL states due to the
scattering on random impurities. The standard
method to perform such a calculation is the impurity
(or “cross™) diagram technique [6,7]. According to
this technique, the interaction Hamiltonian of
electrons with impurities is given by

H... =Jd3r U@t (r)y(r), @

where Ulr) = Zu(r—r;) and summation is
performed over impurities situated at random
positions. The simplest interaction potential with an
impurity is the short-range one

u(r — 'rj-} = up83(r - *rj-}.
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Further, the averaging over the positions of
impurities proceeds according to the rule [6,7]

1
< flry) =1 f(ry)dr;, (3)
where V7 is the volume of the system. Using Eq.(3),

we easily find the following average of the impurity
correlation function:

rijulr' —r;) =

=uin 8 (r—r"),

iu{r—

(4)
where n, = N/V is the concentration of impurities.

Obviously, Eq.(4) can be interpreted as an effective
impurity propagator in the impurity diagram
technique for electrons in disordered material. In
momentum space, it equals

Dy(w, k) = 2nuin &(w). (5)

Two features of the effective propagator are worth
noticing. At first, it is purely real in contrast to usual
propagators due to the exchange of a particle in
guantum field theories. This is a very important fact
and its one immediate consequence as we will see
below is that the scattering on impurities leads to an
imaginary contribution in the electron self-energy
producing a finite width for electron states. At
second, the effective propagator (5) depends on
frequency only through the Dirac d&-function,

therefore, virtual particles in the impurity diagram
technique have energies that are completely defined
by the energies of external particles. Of course, this
result is a trivial consequence of the fact that the
electron scattering elastically on an impurity can
change its momentum, however, it cannot change the
energy. Using Eq.(5), we find the following second
order contribution to the electron self-energy due to
scattering on an impurity:

2(0,p) = —if— =7 5w, k)Dy(2 —w,p — k)

dd
e

5(!’2 k).

= —muncj' e

(6)

Let us consider how impurity scattering affects
the electron states in a magnetic field. Since the
effective propagator (4) is local in coordinate space,
the Schwinger phase is irrelevant for the second
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order contribution to the electron self-energy. Then
using the translation invariant part of the electron
propagator in a magnetic field given, for example, by
Eq.(A21) in Ref.[8], we find that Eq.(6) implies the
following contribution:

5,00, k),

I =—iujn = G_[H}S

(")

where the summation is performed over Landau
levels nn and 5,, (12, k) is the translation invariant part

of the electron propagator on the nth Landau level.

Since we are interested in the present paper in the
electron states in the lowest Landau level, we retain
in Eq.(7) only the LLL contribution. Using

22 42 — k3y?®

—k%4

=ie —ﬂ‘_kﬁ

So(, k)

x [1—iyly?sgn(eBlly®, (8)

where I = |eB|~1/2 is the magnetic length, we find

that the electron self-energy in the LLL due to
scattering on impurities equals

d3k
@n3°

21 — K3y 3yt
n? — k3

u%ncj

T =

% [1—iytyisgn(eB)ly". 9)

Integrating over the transverse components of
momentum and using the chiral representation of the
Dirac matrices, it is not difficult to show that Eq.(9)
can be rewritten as follows:

1
8w + yk* + idsgn(n)

T = ué”c|"35| +.f

x [1 —iytyisgn(eB)ly®, & -+0. (10
The structure of Eq.(10) reflects the well-known fact
that LLL fermion propagator reduces to the
propagator of two chiral edge states in an effective
(1+1)-dimensional theory (see, e.g., EQ.(36) in
Ref.[9]). Integrating in Eq.(10), we obtain

usn,leB|sgn{il)
4

L =

X [1 —iytyZsgn(eB)]ly". (11)
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Eg.(11) means that LLL states acquire due to
scattering on  impurities  non-zero  width
I' = uin_|eB|/(4m). However, it is not clear how

this result is consistent with the well-known result
[10] that current-carrying chiral edge states are
immune to scattering on impurities for a moderate
amount of disorder (for a discussion of impurity
scattering for helical edge states see, e.g., Ref.[11]).

In order to clarify the situation, we will calculate
the exact Green's function for chiral edge states. The
Hamiltonian density of chiral edge electrons
interacting with impurities is given by

H = (i730, + Zjuod(x — x;))

= x=i(1.rax + I:;l'uI]"f:"(-?i‘- - x}'}}(i + XTE:}.'IE . (12)

Since Hamiltonian (12) is a diagonal matrix, it
suffices to find the Green's function at fixed
chirality. The corresponding Green's function in
mixed frequency and coordinate representation is
determined by

62y =< x| 2]y >, (13)

ﬁJ_HK

where  H, =iyd, +Zupd(x—x;) is the
Hamiltonian for the chiral edge state at fixed
chirality. Obviously, without loss of generality we

can consider the state with chirality y = +. Since H.

defines a completely integrable system, we easily
find its complete set of eigenfunctions given by

Yp (x) = (2m) /2

b exp[—ipx +iZup f_xm dz E:-"[z — x}}] . (14)
Then the Green's function equals
dp
626 = | oo explip(x— )
(2m)(w —p)
+iZug (6(x —x;) = 6(y — %) )1 (15)

The exact Green's function (15) immediately implies
that the processes of scattering on impurities do not
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affect conductivity and current-carrying chiral edge
states are indeed immune to such processes.

Further, it is interesting to find the averaged
exact Green's function. This is not difficult to do
using Eq.(3). Averaging in Eq.(15), we obtain

= G:I' {xj }'} = —iplx—y)

1J‘ dp
) ene-p°

X [L—lx =yl +|x — y|efuesanly==]¥ (16)

where L is the spatial size of the system. As it goes

to infinity, the Green's function (16) tends to

d:p iaq | sy ':
< Gi(xy) = j—(Zﬁ} (w—p) g PLE }}exp[—Encﬂ

% |x — y|sin? ? — in';ﬂ(x —y)sin(ug)],  (17)

where :r1',;13' =N/L is the one-dimensional
concentration of impurities.

Let us discuss the physical meaning of the
averaged Green's function (17). It is known [6,7]
that the averaged Green's function in the first order
of perturbation theory in impurity potential produces
only a correction to the chemical potential. Clearly,
the averaged Green's function (17) is in agreement
with this conclusion. On the other hand, the second
order contribution of perturbation theory in impurity
potential should produce [6,7] nonzero width of the
states which this function describes. Obviously,
expanding the averaged Green's function (17) in the
second order in impurity potential we find that the
corresponding contribution is real. Therefore, this
second order contribution indeed generates a nonzero
width for the states which this Green's function
describes.

It is instructive to calculate the second order
contribution in impurity potential using the exact
Green’s function (15) and compare it with the second
order contribution of perturbation theory to the self-
energy of the LLL states given by Eq.(11).
Expanding the Green's function (15) in the second
order in impurity potential, we obtain

{2 2 ﬂ:p il s
G, }(XJ}’} = —Haj A (w —p) g~ ipley]

259



Bicnux Kuiscvkozo HayionanbHo2o yHigepcumemy 2014,1

imeni Tapaca Lllesuenxa
Cepis Qizuxo-mamemamuyni HayKu

x [5 (8(x —x;) — 6(y —x,) )2, (18)

As usual in the impurity diagram technique [6,7],
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< :‘_"r;ﬂ(x —y) == —uﬁngﬂ

87 —iplx—3) |y s
':4.'r]":n.l—'p]'€ =yl (20)

only scattering on the same impurity should be of coyrse, this contribution completely agrees with

retained in the second order contribution. Then we
find
—iplx—y)

(2) 2 dp
67009 = i | Gt

X [{E{x —x}-:}— H(}’_x}'})]z' (19)

Averaging over impurity position in Eq.(19), we
obtain
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