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Багатовимiрнi трiадно-усiченi
симплекси

Розглянуто тип опуклих многогранникiв, якi
названо трiадно-усiченими симплексами. З
точки зору конструктивного об’єкту у ве-
кторних просторах розмiрностi чотири та
вище зазначенi многогранники є багатовимiр-
ними аналогами одного з класичних напiвпра-
вильних многогранникiв, а саме усiченого те-
траедру.

Представлено результати дослiджень
внутрiшньої геометричної структури та
комбiнаторних характеристик повної суку-
пностi граней трiадно-усiчених симплексiв у
векторних просторах довiльної розмiрностi.
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Multidimensional triangle-truncated
simplexes

The type of convex polytopes, called triangle-
truncated simplexes, is considered. As a con-
structive object in four and higher dimension’s
vector space such polytopes are multidimensional
analogues of one classical semi-regular polytopes
namely truncated tetrahedron.

In paper we present the results of investiga-
tions underlying geometrical structure and com-
binatorial characteristics of the complete assem-
blage of faces of triangle-truncated simplexes in
vector spaces of arbitrary dimensionality.
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1 Introduction

In the process of researches devoted to some
types of constructive fractal simplex-sets [1] in
four and higher dimension’s vector spaces the
direct involvement of the specified fractals wi-
th the truncated simplexes, representing multidi-
mensional analogs of one of classical semiregular
polytopes namely the truncated tetrahedron [2] as
constructive object, was revealed.

On the whole, many types of multidimensi-
onal truncated polytopes are for today not only
well-known, but also amply investigated [3, 4,
5, 6, 7]. At the same time, unlike three classi-
cal regular convex polytopes (multidimensional si-
mplex, cube and cocube), for which combinatori-
al characteristics of the complete assemblage of
i−faces, i = 0, n− 1, are defined in an explicit
form [3, 5, 7, 8, 9, 10, 11, 12], analogous expressi-
ons for the truncated polytopes, including the
triangle-truncated simplexes, in vector spaces of
arbitrary dimensionality to the author did not
meet. Numerical characteristics of the complete

assemblage of faces are known only for particular
types of the truncated polytopes of small dimensi-
ons.

Since the multidimensional triangle-truncated
simplexes turned out rather uncommon geometri-
cal objects with the complex underlying structure,
research of combinatorial characteristics of the last
can claim for a role of an independent task.

2 The geometrical structure and combi-
natorial characteristics of multidimensi-
onal triangle-truncated simplexes

Let’s enter the following definition of the multi-
dimensional triangle-truncated simplex in vector
space of arbitrary dimensionality.

Definition 2.1. The n−dimensional polytope,
n > 2, being a convex hull of 2C2

n+1 points (verti-
ces of the triangle-truncated simplex), partitioning
1−faces of the arbitrary n−dimensional simplex in
the 1 : 1 : 1 proportion, is called an n−dimensional
triangle-truncated simplex (ttSimpn).
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At the same time, from the point of view of
constructive object, this polytope can be consi-
dered as result of truncation of corresponding
multidimensional simplex.

Theorem 2.1. The n−dimensional triangle-
truncated simplex is a convex polytope, which
(n − 1)−faces are presented by equal quantity of
polytopes of two types, namely

— simplexes;
— triangle-truncated simplexes.
Thus quantity of i−faces, i = 0, n− 1,

of n−dimensional triangle-truncated simplex is
equally:

{
Ni(ttSimpn) = (n− i + 1) · Cn−i

n+1, i = 1, n− 1,

N0(ttSimpn) = 2Cn−1
n+1 .

(1)

This theorem gives complete description
of underlying geometrical structure and the
basic characteristics which unambiguously identi-
fy triangle-truncated simplexes in vector spaces of
arbitrary dimensionality as independent geometri-
cal objects.

Before to pass directly to proofs of Theorem
(2.1) by the method of direct count and method
of mathematical induction, will formulate a next
lemma.

Lemma 1. а) Each triangle-truncated si-
mplex which is the i−face, i = 1, n− 1, of
n−dimensional triangle-truncated simplex, n > 2,
belongs to the (n− i) triangle-truncated simplexes
being (i + 1)−faces of specified geometrical object.

б) Each simplex which is the i−face,
i = 0, n− 2, of n−dimensional triangle-truncated
simplex, n > 2, belongs to the (n− i− 1) triangle-
truncated simplexes being (i+2)−faces of specified
geometrical object.

The proof of this lemma is carried out
analogously to the proof of Lemma 1 [1] about
internal belonging of i−faces, i = 0, n− 1, of an
n−dimensional middle-truncated simplex, n > 2.

Let’s mark those statements of resulted lemma
it is used in process of the proof of Theorem (2.1)
by both a method of direct count and method of
mathematical induction.
Proof of Theorem (2.1) by a method of direct
count.

In case of n = 2, 3 this theorem is obviously
true as the two-dimensional triangle-truncated si-
mplex is a hexagon, three-dimensional — one of

classical semiregular polytopes namely a triangle-
truncated tetrahedron [2].

An underlying geometrical structure of
n−dimensional triangle-truncated simplex, n > 4,
on the whole is analogously to the underlying
geometrical structure of n−dimensional middle-
truncated simplex [1]. The single substantial di-
fference consists that unlike the second polytope,
which 2−faces are triangles, 2−faces of the first
are hexagons. The last causes different quantities
of 1− and 0−faces.

I, II stages. The quantity of i−faces,
i = n− 1, 2, of a polytope ttSimpn obviously
coincides with the quantity of corresponding faces
of a polytope mtSimpn and is defined analogously
(see I, II stages of the first proof of Theorem 1 [1]
according to approaches of common methodology
of definition combinatorial characteristics of
n−dimensional, n > 4, middle/triangle-truncated
simplex), i.e. Ni(ttSimpn) = (n − i + 1) ·
· Cn−i

n+1, i = n− 1, 2. Let’s mark that in the
process of definition of i−faces, i = n− 2, 2,
dependence of item a) of Lemma (1) is used.

Unlike an n−dimensional middle-truncated si-
mplex, representing the limiting case of truncati-
on initial, that entails degeneration of its 1−faces
being middle-truncated simplexes in points (i.e.
in fact in a 0−faces), 1−faces of n−dimensional
triangle-truncated simplex are presented both si-
mplexes and triangle-truncated simplexes as its
2−sides are hexagons. Thus, the quantity of
1−faces of a polytope ttSimpn also is defined
according to common methodological approaches
of definition combinatorial characteristics:

N1(ttSimpn) = Cn−2
n+1 ·

[
3 +

3
n− 1

]
= n · Cn−1

n+1 .

III stage. The quantity of vertices (0−faces)
of the triangle-truncated simplex ttSimpn coinci-
des with the doubled number of edges of an initial
set of construction, in which it is inscribed entered,
by definition: N0(ttSimpn) = 2 · Cn−1

n+1 .
As a result, we will receive the statement (1).
IV stage: verification of authenticity of

results. It is known that in case of convex
polytopes of an arbitrary dimension n > 2 the
formula of Euler-Poincare is true [3, 7, 9, 10, 12].

Proceeding from the got results in part of
combinatorial characteristics of the multidimensi-
onal triangle-truncated simplex, it is simple to

20



Вiсник Київського нацiонального унiверситету
iменi Тараса Шевченка
Серiя: фiзико-математичнi науки 2014, 1

Bulletin of Taras Shevchenko
National University of Kyiv

Series: Physics & Mathematics

make sure that in this case the formula of Euler-
Poincare really is true. ¤

Сorollary 1. i−faces, i = 1, n− 1, of the
n−dimensional triangle-truncated simplex are
presented by (n− i) ·Cn−i

n+1 simplexes and the Cn−i
n+1

triangle-truncated simplexes.

Also as well as in case of the middle-truncated
simplex [1] this corollary naturally follows from the
first proof of the Theorem (2.1).
Proof of Theorem (2.1) by a method of mathemati-
cal induction. In case of n = 2, 3 this theorem
is obviously true as the two-dimensional triangle-
truncated simplex is a hexagon, three-dimensional
— one of classical semiregular polytopes namely a
triangle-truncated tetrahedron [2].

Let’s suppose that in a vector space V n(<),
n > 4, an n−dimensional triangle-truncated si-
mplex has the following combinatorial characteri-
stics:

{
Ni(ttSimpn) = (n− i + 1) · Cn−i

n+1, i = 1, n− 1,

N0(ttSimpn) = 2Cn−1
n+1 .

Thus for i−faces, i = 0, n− 1, conditions of
the Lemma (1) are satisfied.

Let’s consider an (n + 1)−dimensional
triangle-truncated simplex in a vector space
V n+1(<), n > 4. We will prove that its combi-
natorial characteristics look like:

{
Ni(ttSimpn+1) = (n− i + 2) · Cn−i+1

n+2 , i = 1, n,
N0(ttSimpn+1) = 2Cn

n+2.
(2)

(n + 1)−dimensional triangle-truncated si-
mplex is entered in the (n + 1)−dimensional si-
mplex. Therefore, its n−faces are presented by
equal quantity of polytopes of two types: (n+2) si-
mplexes and (n + 2) triangle-truncated simplexes.
From here, Nn(ttSimpn+1) = 2 ·(n+2) = 2 ·C1

n+2.
Analogously to a case of (n + 1)−dimensional

middle-truncated simplex [1]: to define the quanti-
ty of i−faces, i = 0, n− 1, of (n+1)−dimensional
triangle-truncated simplex, it is necessary to defi-
ne the corresponding quantity of i−faces of (n+2)
n−dimensional middle-truncated simplexes whi-
ch agglutinate on (n − 1)−dimensional middle-
truncated simplexes.

The quantity of i−faces, i = 1, n− 1, each
of the (n+2) n−dimensional middle-truncated si-
mplexes is equally: Ni(ttSimpn) = (n−i+1)·Cn−i

n+1.

Thus each assemblage of i−faces of the specifi-
ed polytopes, i = 1, n− 1, is presented by (n − i)·
· Cn−i

n+1 simplexes and Cn−i
n+1 triangle-truncated si-

mplexes (see. Corollary (1)).
After agglutinating of the (n + 2)

n−dimensional triangle-truncated simplexes each
such i−dimensional simplex belongs to the (n− i)
polytopes ttSimpi+2, each i−dimensional triangle-
truncated simplex belongs to (n− i+1) polytopes
ttSimpi+1.

This statement can be proved analogously to
a case of the middle-truncated simplex [1] with use
of the corresponding dependences of Lemma (1).

Thus, as in the process of agglutinating of
the (n + 2) n−dimensional triangle-truncated si-
mplexes each i−face of such polytope being a si-
mplex is initially considered (n−i) times and each
i−face being a triangle-truncated simplex is consi-
dered (n− i+1) times, we will receive the followi-
ng expression for definition of quantity of i−faces,
i = 1, n− 1, of the (n + 1)−dimensional triangle-
truncated simplex:

Ni

(
tt
Simpn+1

)
=

= (n + 2) ·
[

(n− i) · Cn−i
n+1

n− i
+

Cn−i
n+1

n− i + 1

]
=

= (n− i + 2) · Cn−i+1
n+2 , i = 1, n− 1.

Thus specified i−faces, i = 1, n− 1, are obvi-
ously presented by (n − i + 1) · Cn−i+1

n+2 simplexes
and the Cn−i+1

n+2 triangle-truncated simplexes.
At determining the quantity of 0−faces of

(n + 1)−dimensional triangle-truncated simplex
it is necessary to consider that its 2−faces
being triangle-truncated simplexes represent the
hexagons, which 1−faces are presented by
six segments: three one-dimensional simplexes
and three one-dimensional triangle-truncated si-
mplexes.

As it is known that a common face of
polytopes like a simplex and triangle-truncated
simplex is the simplex (in this case zero-
dimensional, i.e. a point) it is necessary to
use dependence of the Lemma (1) for a zero-
dimensional simplex.

Following the Lemma (1), for each of (n + 2)
n−dimensional triangle-truncated simplexes it is
executed: Simp0 belongs to (n − 1) polytopes
ttSimp2.
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After agglutinating of (n + 2) n−dimensional
triangle-truncated simplexes on the (n − 1)−
dimensional triangle-truncated simplexes we have
the following dependence: zero-dimensional si-
mplex Simp0 belongs to n two-dimensional
triangle-truncated simplexes ttSimp2.

Thus, N0(ttSimpn+1) = 2 · Cn
n+2.

On the basis of foregoing, combinatorial
characteristics of the (n+1)−dimensional triangle-
truncated simplex in a vector space V n+1(<),
n > 4, really look like (2). ¤

Validity of the Corollary (1) is confirmed by
this proof also.

Сorollary 2. A degree of the arbitrary vertex of
n−dimensional triangle-truncated simplex, n > 2,
is equal to n.

Сorollary 3. The polytope, dual to the
n−dimensional triangle-truncated simplex, n > 2,
has the following combinatorial characteristics:

{
Nn−1 = 2 · Cn−1

n+1 ,

Ni = (i + 2) · Ci+1
n+1, i = n− 2, 0.

Thus the single case of self-duality of the
triangle-truncated simplex is the two-dimensional
triangle-truncated simplex.

3 Conclusion

The main result of presented matters is the
theorem about combinatorial characteristics of
multidimensional triangle-truncated simplexes,
which unambiguously identifies the last as
independent geometrical objects.

As the considered polytopes have a direct
connection with specific types of constructive
fractal simplex-sets, they can be of interest not
only to experts in the field of multidimensional
geometry, but also and the fractal analysis.
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