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Posaasnymo mun onykaur MHO202PAHHUKIE, AKE
HA36GHO  MPIAOHO-YCIYENUMY  CUMNAEKCAMU. 3
MOYKU 30pY KOHCMPYKMUEH020 00°exmy y 6e-
KMOPHUT NPOCTOPAT PO3MIPHOCTIVE HOMUPY MG
BUWE 3A3HAMENT MHO202PAHHUKY € OG2AMOBUMID-
HUMU GHAA02GMU 00H020 3 KAGCUMHUT HANIGNDA-
BUADHUL MHO202PANHNUKIS, @ CAME YCIYEHO20 Me-
mpaedpy.

IIpedcmasaerno  pesysvmamu  Q0CAIOHCEHD
BHYMPIWHDOL 2€0MEMPUUHOL CMPYKMYPU Ma
KOMOTHAMOPHUL  TAPGKMEPUCTIUK NOBHOT CYKY-
nHocmi eparett MPIiadHO-YCIeHUT CUMNAEKCIE Y
BEKMOPHUT NPOCTNOPATL J0BLALHOT POSMIPHOCTII.

Kamowosi caosa: woncmpyxmuenutl 2eome-
mpuywHul 06’ckm, 6a2amosUMIPHUT GHAA02 YCi-
yenoeo  mempaedpy, mpiadro-ycivernud

NAEKC, KOMOTHATMOPHT TAPAKMEPUCTNUKL.
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1 Introduction

In the process of researches devoted to some
types of constructive fractal simplex-sets [1]| in
four and higher dimension’s vector spaces the
direct involvement of the specified fractals wi-
th the truncated simplexes, representing multidi-
mensional analogs of one of classical semiregular
polytopes namely the truncated tetrahedron [2]| as
constructive object, was revealed.

On the whole, many types of multidimensi-
onal truncated polytopes are for today not only
well-known, but also amply investigated [3, 4,
5, 6, 7). At the same time, unlike three classi-
cal regular convex polytopes (multidimensional si-
mplex, cube and cocube), for which combinatori-
al characteristics of the complete assemblage of
i1—faces, 1 = 0,n — 1, are defined in an explicit
form [3, 5, 7, 8, 9, 10, 11, 12], analogous expressi-
ons for the truncated polytopes, including the
triangle-truncated simplexes, in vector spaces of
arbitrary dimensionality to the author did not
meet. Numerical characteristics of the complete
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Multidimensional triangle-truncated
simplexes

The type of convex polytopes, called triangle-
truncated simplexes, is considered. As a con-
structive object in four and higher dimension’s
vector space such polytopes are multidimensional
analogues of one classical semi-regular polytopes
namely truncated tetrahedron.

In paper we present the results of investiga-
tions underlying geometrical structure and com-
binatorial characteristics of the complete assem-
blage of faces of triangle-truncated simplexes in
vector spaces of arbitrary dimensionality.
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assemblage of faces are known only for particular
types of the truncated polytopes of small dimensi-
ons.

Since the multidimensional triangle-truncated
simplexes turned out rather uncommon geometri-
cal objects with the complex underlying structure,
research of combinatorial characteristics of the last
can claim for a role of an independent task.

2 The geometrical structure and combi-
natorial characteristics of multidimensi-
onal triangle-truncated simplexes

Let’s enter the following definition of the multi-
dimensional triangle-truncated simplex in vector
space of arbitrary dimensionality.

Definition 2.1. The n—dimensional polytope,
n > 2, being a convex hull of 2C2_ | points (verti-
ces of the triangle-truncated simplex), partitioning
1—faces of the arbitrary n—dimensional simplex in
the1:1:1 proportion, is called an n—dimensional
triangle-truncated simplex (4 Simp™).
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At the same time, from the point of view of
constructive object, this polytope can be consi-
dered as result of truncation of corresponding
multidimensional simplex.

Theorem 2.1. The n—dimensional triangle-
truncated simplexr is a conver polytope, which
(n — 1)—faces are presented by equal quantity of
polytopes of two types, namely

— simplexes;

— triangle-truncated simplexes.

Thus quantity of i—faces, i 0,n—1,
of n—dimensional triangle-truncated simplex is
equally:

(1)

This theorem gives complete description
of underlying geometrical structure and the
basic characteristics which unambiguously identi-
fy triangle-truncated simplexes in vector spaces of
arbitrary dimensionality as independent geometri-
cal objects.

Before to pass directly to proofs of Theorem
(2.1) by the method of direct count and method
of mathematical induction, will formulate a next
lemma.

n—i

Ni(@Simp") = (n—i+1)-C} 1, i

=1,n—-1,

Lemma 1. a) Fach triangle-truncated si-
mplex which is the i—face, i 1,n—1, of
n—dimensional triangle-truncated simplex, n = 2,
belongs to the (n — i) triangle-truncated simplezes
being (i + 1)—faces of specified geometrical object.

6) Fach simplex which is the i—face,
1= 0,n — 2, of n—dimensional triangle-truncated
simplex, n > 2, belongs to the (n —i—1) triangle-
truncated simplexes being (1+ 2)—faces of specified
geometrical object.

The proof of this lemma is carried out
analogously to the proof of Lemma 1 [1] about
internal belonging of i—faces, i = 0,n — 1, of an
n—dimensional middle-truncated simplex, n > 2.

Let’s mark those statements of resulted lemma
it is used in process of the proof of Theorem (2.1)
by both a method of direct count and method of
mathematical induction.

Proof of Theorem (2.1) by a method of direct
count.

In case of n = 2,3 this theorem is obviously
true as the two-dimensional triangle-truncated si-
mplex is a hexagon, three-dimensional — one of
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classical semiregular polytopes namely a triangle-
truncated tetrahedron [2].

An underlying geometrical structure of
n—dimensional triangle-truncated simplex, n > 4,
on the whole is analogously to the underlying
geometrical structure of n—dimensional middle-
truncated simplex [1]. The single substantial di-
fference consists that unlike the second polytope,
which 2—faces are triangles, 2—faces of the first
are hexagons. The last causes different quantities
of 1— and 0—faces.

I, II stages. The quantity of i—faces,
i = n—1,2, of a polytope ;Simp™ obviously
coincides with the quantity of corresponding faces
of a polytope ,,,:Simp™ and is defined analogously
(see I, II stages of the first proof of Theorem 1 [1]
according to approaches of common methodology
of definition combinatorial characteristics of
n—dimensional, n > 4, middle/triangle-truncated

simplex), ie. Ny(uSimp") = (n — i + 1) -
ni1s 1 = n—1,2. Let’s mark that in the

process of definition of ¢—faces, ¢ n—2,2,
dependence of item a) of Lemma (1) is used.

Unlike an n—dimensional middle-truncated si-
mplex, representing the limiting case of truncati-
on initial, that entails degeneration of its 1—faces
being middle-truncated simplexes in points (i.e.
in fact in a 0—faces), 1—faces of n—dimensional
triangle-truncated simplex are presented both si-
mplexes and triangle-truncated simplexes as its
2—sides are hexagons. Thus, the quantity of
1—faces of a polytope pSimp™ also is defined
according to common methodological approaches
of definition combinatorial characteristics:

Cn—l

_ =2
=C ’ n+1-

Ni(uSimp™) = Cp i3

QU

ITI stage. The quantity of vertices (0—faces)
of the triangle-truncated simplex ¢Simp™ coinci-
des with the doubled number of edges of an initial
set of construction, in which it is inscribed entered,
by definition: Ny(xSimp™) =2 - CZ_T_%

As a result, we will receive the statement (1).

IV stage: verification of authenticity of
results. It is known that in case of convex
polytopes of an arbitrary dimension n > 2 the
formula of Euler-Poincare is true [3, 7, 9, 10, 12].

Proceeding from the got results in part of
combinatorial characteristics of the multidimensi-
onal triangle-truncated simplex, it is simple to
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make sure that in this case the formula of Euler-
Poincare really is true. (|

Corollary 1. i—faces, = of the
n—dimensional  triangle-truncated —simplex —are
presented by (n—1) - C’"ﬁ simplexes and the C}'{

triangle-truncated simplexes.

i Ln—1,

Also as well as in case of the middle-truncated
simplex [1] this corollary naturally follows from the
first proof of the Theorem (2.1).

Proof of Theorem (2.1) by a method of mathemati-
cal induction. In case of n = 2,3 this theorem
is obviously true as the two-dimensional triangle-
truncated simplex is a hexagon, three-dimensional
— one of classical semiregular polytopes namely a
triangle-truncated tetrahedron [2].
Let’s suppose that in a vector space V"™ (R),
> 4, an n—dimensional triangle-truncated si-
mplex has the following combinatorial characteri-
stics:

(n—z—l—l) i=T,n—1,

C'n—‘,-l

Ni (ttSimpn) n+17
No

(tt Szmp )

Thus for i—faces, i = 0,n — 1, conditions of
the Lemma (1) are satisfied.

Let’s consider an (n + 1)—dimensional
triangle-truncated simplex in a vector space
VPHL(R), n > 4. We will prove that its combi-
natorial characteristics look like:

n—i+1
Cn+2

(n—i+2)-
20n+2

Ni(Simp™tl) = ,i=1,n

{ No( Simp™t1) =
2)
(n + 1)—dimensional triangle-truncated si-
mplex is entered in the (n + 1)—dimensional si-
mplex. Therefore, its n—faces are presented by
equal quantity of polytopes of two types: (n+2) si-
mplexes and (n + 2) triangle-truncated simplexes.
From here, Ny, (¢ Simp™*t) = 2-(n+2) =2-C}
Analogously to a case of (n + 1)—dimensional
middle-truncated simplex [1]: to define the quanti-
ty of i—faces, i = 0,n — 1, of (n+1)—dimensional
triangle-truncated simplex, it is necessary to defi-
ne the corresponding quantity of i—faces of (n+2)
n—dimensional middle-truncated simplexes whi-
ch agglutinate on (n — 1)—dimensional middle-

truncated simplexes.

The quantity of i—faces, i = 1,n — 1, each
of the (n+2) n—dimensional mlddle-truncated si-

mplexes is equally: N; (4 Simp”) = (n—i+1)-C} 7.
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Thus each assemblage of i —faces of the specifi-

ed polytopes, i = 1,n—1, is presented by (n —1)-
- Cn g simplexes and C)/| triangle-truncated si-
mplexes (see. Corollary (1)).

After agglutinating of the (n + 2)
n—dimensional triangle-truncated simplexes each
such i—dimensional simplex belongs to the (n — i)
polytopes 4 Simp't2, each i—dimensional triangle-
truncated simplex belongs to (n —i+ 1) polytopes
ttSimle.

This statement can be proved analogously to
a case of the middle-truncated simplex [1] with use
of the corresponding dependences of Lemma (1).

Thus, as in the process of agglutinating of
the (n + 2) n—dimensional triangle-truncated si-
mplexes each i—face of such polytope being a si-
mplex is initially considered (n—1) times and each
i—face being a triangle-truncated simplex is consi-
dered (n—i+ 1) times, we will receive the followi-
ng expression for definition of quantity of i—faces,
i =1,n—1, of the (n + 1)—dimensional triangle-
truncated simplex:

NZ-( Sz’mp”H) =
tt , ,
(n—1)-Ciiy 1
— 2) .
(n+2) n—1 n—i1+1
=(n—i+2)-Crs i=Tn—1
Thus specified ¢:—faces, i = 1,n — 1, are obvi-
ously presented by (n —i+ 1) - C’Z +§+1 simplexes

and the C)' 5 1 triangle-truncated simplexes.

At determining the quantity of O0—faces of
(n + 1)—dimensional triangle-truncated simplex
it is necessary to consider that its 2—faces
being triangle-truncated simplexes represent the
hexagons, which 1—faces are presented by
six segments: three one-dimensional simplexes
and three one-dimensional triangle-truncated si-
mplexes.

As it
polytopes like a simplex and triangle-truncated
simplex is the simplex (in this case zero-
dimensional, i.e. a point) it is necessary to
use dependence of the Lemma (1) for a zero-
dimensional simplex.

Following the Lemma (1), for each of (n + 2)
n—dimensional triangle-truncated simplexes it is
executed: Simp" belongs to (n — 1) polytopes
ttSime.

is known that a common face of
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After agglutinating of (n + 2) n—dimensional
triangle-truncated simplexes on the (n — 1)—
dimensional triangle-truncated simplexes we have
the following dependence: zero-dimensional si-
mplex Simp°’ belongs to n two-dimensional
triangle-truncated simplexes 4 Simp?.

Thus, No(ySimp" ™) =2-CI,,.

On the basis of foregoing, combinatorial
characteristics of the (n+1)—dimensional triangle-
truncated simplex in a vector space V"F1(R),
n > 4, really look like (2). O

Validity of the Corollary (1) is confirmed by
this proof also.

Corollary 2. A degree of the arbitrary vertex of
n—dimensional triangle-truncated simplex, n > 2,
1s equal to n.

Corollary 3. The polytope, dual to the
n—dimensional triangle-truncated simplex, n = 2,
has the following combinatorial characteristics:

{

Thus the single case of self-duality of the
triangle-truncated simplex is the two-dimensional
triangle-truncated simplex.

No-1=2-Cpiy,
N;=(i+2)-CH, i=n—=2)0.

3 Conclusion

The main result of presented matters is the
of
simplexes,

last as

theorem about combinatorial characteristics
multidimensional triangle-truncated
which unambiguously identifies the
independent geometrical objects.

As the considered polytopes have a direct
connection with specific types of constructive
fractal simplex-sets, they can be of interest not
only to experts in the field of multidimensional
geometry, but also and the fractal analysis.
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