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Загальний метод для виведення 
еволюційних рівнянь та моделювання 
нелінійних хвиль у шаруватих активних 
середовищах з об’ємними та 
поверхневими нелінійностями 

 
Розвинутий загальний метод для виведення 

нелінійних хвильових еволюційних рівнянь для 
шаруватих структур зі слабкою нелінійністю. 
Цей метод є дуже ефективним та придатним 
для електромагнітних хвиль в середовищах з 
нелінійностями різної фізичної природи, 
поверхневими та об’ємними, та просторовою 
дисперсією: в біанізотропних (кіральних) 
метаматеріалах, гіротропних середовищах, 
плазмі, включаючи космічну, двовимірному 
електронному газі (наприклад графені) та ін. 
нелінійних та активних середовищах в різних 
частотних діапазонах, від мікрохвильового до 
оптичного.  
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General method for the derivation of the 
evolution equations and modeling nonlinear 
waves in active layered structures with 
surface and volume nonlinearities 

 

The general method for the derivation of the 
nonlinear evolution equations for the layered 
structures with weak nonlinearitie is developed. 
This method is very effective and applicable for 
electromagnetic waves in media with 
nonlinearitiers of different physical nature, both 
volume and surface аnd spatial dispersion: bi-
anisotropic (chiral) metamaterials, gyrotropic 
media, plasma including space plasma, 2D electron 
gas (graphene etc.) and other nonlinear and active 
media at different frequency ranges, from GHz to 
optics. 
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Introduction 
The general method for the derivation of the 

nonlinear evolution equations in layered structures 
(NEELS) with weak nonlinearities is very effective 
and applicable for waves in nonlineaer media of 
different physical nature. Surface nonlinearities and 
nonlinear boundary conditions are accounted for. 
Nonlinearity in the auxiliary boundary conditions 
(ABC), connected with the spatial dispersion, is 
implemented. In the present paper, the development 
and new results of the application of the method 
NEELS for different media are presented and 
compared to the results obtained earlier [1-4].  

Nonlinear evolution equations for the waves in 
the layered bi-anisotropic structures with the 

volume and surface nonlinearities. Formulation 
of the problem 

Let us describe the details of the method for quite 
general problem of nonlinear waves in the layered 

bi-anisotropic structures [6, 5]. Consider the system 
shown in Fig. 1. Suppose that a layered structure has 
waveguiding properties, and linear eigenmodes 

corresponding to wavenumber 0k


and frequency 

0 are determined. These modes are characterized by 

the functions ( , )E Hf f
 

describing the distributions of 
the electric and magnetic fields in the direction (Z), 
normal to the interface between layers; linear 
dispersion relation 0 0 0( , , ) 0y xD k k   is known, 

where Y and X are the directions of the wave 
propagation in the layered structure and transverse 
direction, respectively (see Fig.1). Suppose that for 
the metamaterial layer, linear “homogenized” 
material equations are written in the form  

 eff effD E H  
   

, eff effB E H  
   

  (1) 

where ,E H
 

and ,D B
   are electric and magnetic 

fields and inductions, respectively,  
© Yu.G. Rapoport, 2014  
 281



Вісник Київського національного університету  
імені Тараса Шевченка  
Серія фізико-математичні науки  

2014, 1 Bulletin of Taras Shevchenko 
National University of Kyiv 

Series Physics & Mathematics 

 

 

, ,eff eff eff   
and eff


are tensors of electric 

permittivity, magnetic permeability, magnetic to 
electric and electric to magnetic coupling, 
respectively. Denote linear fields (solution of linear 
problem for some eigenmode of the structure shown 
in Fig. 1) by index “l”; in the Fourier presentation, 

 0
el

l h

fE
A

H f

  
        


  0 0( )i t k re  

 
  (2) 

where r


is the coordinates in the XY plane, 0A  is 
“the amplitude of input wave” which is used for the 
proper normalization of the nonlinear coefficient. 

 
Fig. 1. Layered nonlinear metamaterial waveguiding 
structure. The same coordinate system is used also 
for nonlinear dielectric with the spatial dispersion. 
For the nonlinear gyrotropic (ferrite) layer rotated 
system of coordinate is used where the following 
replacement is done:Y Z , Z X , X Y with 
respect to the system shown in Fig. 1, and bias 
magnetic field is directed along Z. The thickness of 
the layer is equal to L . 
 

Functions ,e hf


 describe the dependences of the linear 

fields on Z coordinate; they are obtained using 
(linear) boundary conditions and taking into account 
linear dispersion. Therefore 

. . 0 0( , , )e h e hf f k z
  

and ,| | 0e hf 


, when z   

(see Fig. 1). Suppose that the field of spectrally 
narrow wave packet is presented in the form  

 11
1

11

( , ) l

l

EE
A t r

HH

  
   

   


    (3) 

where 1A is slowly varying amplitude.  Therefore we 
neglect in the first approximation with the change of 
the field of the main harmonic in the transverse 
direction, what is valid in the case of small 
nonlinearity. Spectral narrowness of the wave packet 

is determined by the conditions 0   , 

0k k  , where  , k are the widths of 
frequency and wavenumber spectrums, respectively.  
Suppose that dyadics  included into (1) could be 
presented in the form  eff act     

, eff act     
, ,  

| | | |act   , eff act      , eff act   
  

, where 

| | | |act  
, | | | |act   , | | | act  |,  | | | act 

 
|. 

Index “act” corresponds to the (small) part of the 
tensors responsible for dissipative losses or gain of 

electromagnetic waves. The parts , , ,   
   of the 

corresponding tensors provide the energy 
conservation, in other words [6, 5], 

, ,         
    , where upper index“+” 

denotes Hermitian conjugation. Suppose we know 
also volume nonlinear electric and magnetic 

polarizations, NLP


and NLM


  (14e).   
 

Nonlinear evolution equations for an envelope 
amplitude accounting for spatial dispersion. 
Using the procedure similar to that described in 

[2-4], we get finally the following evolution equation 
in the integral form: 

 1 2 2 2 * *1
01 01 1 0 0 1 1 1

4
| | | | ( ) [Higher-Order Terms] | | ( )NL NL

l l

M PA
c w A A div PA ik q A A H E

t c t t

  
     

  

   
  (4)

Here: 

 

* * * *

* * * * * *
0

* * * *

[ ( ) ( ) ( ) ( ) ]

{[ ] [ ]} {[( ) ( )]}

( ) (

H H E E H E E H

E H E H H H E E H E E H

H act H H act H E ac

w f f f f f f f f

P f f f f k f f f f f f f f
k k k k

q f f f f f

   
   

   

  

   
   

   
   

       
   

  

         

             
   

       * * * * * * * *) ( ) ( )t E E act E E act H H act E H act E E act Hf f f f f f f f f f f        
             

  (5)
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0

2 2
2 2 21

01 01 1 01 12 2
0

* * * ( ) * ( ) * ( ) * ( )
1 1 1 1 1 1

1,20 0

| | [| | ] | | | |
2 2

4 4
( ) [ ]

n

gy y x

e e m mNL NL
l l lx x ly y ly y lx x z z

n

A i i Q
A V D D A A i A A

t y y x W

P M
H E dz E i E i H i H i

W t t W



 




   
    

   

 
     

  
  

  (6) 

 
/2

,( )
, /2

/2

|
L

SNLx ye
x y z L

L

P
i dz

t




 




 , ( )
1 (4 / ) m

tgn E c i  
 

 

/2
,( )

, /2

/2

|
L

SNLx ym
x y z L

L

M
i dz

t




 




 , ( )
1 (4 / ) e

tgn H c i 
 

  

1 1, ,n E H 
 

 are the normal to the corresponding 
interface and the “boundary jump” of the 
corresponding electric and magnetic fields, 
respectively,   - thickness of the near-interface 
layer which includes “surface nonlinearity”,  

,SNLx yP and ,SNLx yM are corresponding (or equivalent)  

components of surface nonlinear electric and 
magnetic polarizations, ( . )

, /2|e m
x y z Li  are equivalent to 

,SNLx yP and ,SNLx yM , respectively, nonlinear electric 

and magnetic surface currents; 0W wdz




  , 

Q qdz




  , and we used the relation 

0y y gyP dz V W




   ; gyV is the component of group  

velocity along the direction of propagation, and the 
energy is supposed to propagates in a positive Y 

direction; ,x yD are the coefficients of linear 

dispersion and diffraction, respectively [7, 2].   

 11
1

11

( , ) l

l

EE
A t r

HH

  
   

   


    (7) 

In all nonlinear terms in Eq. (6), the values 

proportional to the 0 0exp[ ( )]i t k r 
 

 are revealed, 
because, among possible nonlinear effects, an effect 
of self-interaction is of interest here.  

 
Magnetized gyrotropic and dielectric structures 

with the spatial dispersion and nonlinear 
auxiliary boundary conditions 

We present two examples of the media with 
nonlinearities in ABC, connected with the presence 
of the spatial dispersion [9-11, 7]. WE outline here 
semi-phenomenological approach for the evaluation 
of a contribution of corresponding surface 
nonlinearity into the total nonlinearity of the layered 
structure. The general form of the evolution equation 
in the parabolic approximation has the form [2], 
where, in distinction to [7], the term corresponding 
to the volume and with surface nonlinearities 

,NLV NVSF are revealed. 

 2 2 2 2 2 2 2 2
1 1 1 1 1/ / ( / 2)( / )(  / ) ( / 2)( / )(  / )g z y NLV NLSU t V U z i k U z i k U y F F                    (8)

Now the waves propagate along axis Z, which lies in 
the plane of a layer, while normal to the layer is 
directed along axis X (see also caption to the Fig. 1). 
Bias magnetic field is directed along axis Z therefore 
backward volume magnetostatic waves (BVMSW) 
propagate parallel to the bias field in ferrite films [8, 
2]. 1U is the amplitude of magnetostatic potential [2]. 
The following relation is obtained in [9]:  

 *[ ( )( ) ]LINk exch

k

F M
n n n

tM

x

   

 
  





      (9) 

where 


are the energy flows from the both sides 
of the interface, index “LIN” means a value 
corresponding to the system shown in Fig. 1 in the 

absence of nonlinearity. In the presence of 
nonlinearity we can use phenomenologically Eq. (9) 
where we need to put  

 ( ) ( ) ( )LIN NL

k k k

F F F

M M M

x x x

  
 

  
  
  

     (10) 

Function F in Eqs. (9), (10) is the potential energy 
of a ferromagnetic [9], and in fact, its part describing 
exchange interaction is included into RHS of (10), 
which includes, generally speaking, linear and 
nonlinear part (with the indexes “LIN” and “NL”, 
respectively). In the nonlinear part of (10), again, an 
effect of self-interaction and respectively, the field of 
the main harmonic is revealed in the nonlinear terms, 
as described in the previous section. Index “exch” in 
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the relation (9) is used to emphasize that Eq. (8) 
includes the exchange terms. Here F  has the form 
[9, formula (3.3.2)]. Suppose that constant of surface 
anisotropy is S . Let us write the nonlinear exchange 
ABC in the form [8]  

 1
1 0 1 0 1 /2(  / ) 0 x x NL x Lm x m M R  

        (11) 

where 1
0 1NLM R

  describes the contribution of the 
nonlinearity into boundary condition (11), and in the 
presence of only one (signal) wave, one can get [8]: 

 

(1)
1 0 1 1

(1)11
1 1

( )

( )

NL x z

xz
x z

R m m

mm
m m

x x





   


 
 

  (12) 

Accounting for (9),  it is possible to note that the 
last (nonlinear) term in (11) corresponds to the 
second (nonlinear) term in the RHS from (10). As a 
result one becomes able to evaluate the nonlinear 
term in the RHS of (9). This phenomenological 
approach yields, with the accuracy up to a certain 
value of order unity, the nonlinear term NLSF from 
the RHS in Eq. (8). The exact formula for this term 
[2] is written as 

 * *
1 1 /2 1 1 /2(1 / )(4 / )  [( ) +( ) ]NLS V M lx NL x L lx NL x LF W i m R m R          (13)

Let us now evaluate, using the outlined 
phenomenological approach, the surface nonlinear 
term for the waves in a layered nonlinear spatially 
dispersive dielectric.  Polaritons in spatially 

dispersive dielectrics, such as exciton dielectrics [10] 
or ferroelectrics  [11] are described by the 2nd order 
differential equation in time, such as 

 
2

2 2 2
2

[( ) ( ) ]i i i i i
t i i

i

P P P P PF
m m P C E

t y z t P t

  


    
         

    
  (14) 

Here , , , , , ,tP m C E F 
 

are polarization, effective 
mass, effective esxciton resonance frequency, proper 
constant, external electric field, coefficient of 
dissipative losses and effective potential energy of 
the unit mass, respectively, and a media is supposed 
to be  lossless. Effective potential energy in (14) has 
the form 

 2 2 21
[ ( ) ]

2 t i i
i

F m P C P EP   
 

  (15) 

Note that in the RHS of the identity in (14), 
variational derivative of F is included: It is possible 
to derive the following conservation law 
corresponding to the Eqs. (14):  

 2
0( ) ( )SDk

k

P
w F

t x t
  

    
  


  (16) 

where effective kinetic energy 0w and energy flux 

connected to spatial dispersion SD


are 

 2
0

1
( ) ,  

2
i

SDk
i

k

PP F
w m

Pt t
x

 
   

  



  (17) 

Finally, using the relations (9), (10), where the 
electric polarization replaces magnetic one, yields 

 

*

*
/2

[ ] [ ( ) ( ) ]

[ ( ) ]

LIN

LIN

NL k NL

k

S z L

F P
n n n

tP
x

P
NL

t

   



 
   








   


  (18) 

Corresponding to (18) contribution of the surface 
spatial dispersion dielectric (exciton/ferroelectric) 
nonlinear effect into the total nonlinearity in the 
relation describing NEELM is described by the term 

1 *
0 /2[ ( ) ]LINS z L

P
W NL

t







, which should be added into    

RHS of the Eq. (6), altogether with corresponding 
term connected to interface / 2z L  .  
 

The contribution of surface and volume 
nonlinearities in the formation of surface plasmon 

nonlinear structures and giant generation of 
resonant second harmonic  

     Let us introduce the variation of the plasma 
concentration, velocity, electric and magnetic fields, 

respectively, 1 1 1 1, , ,n v E H
   and * * * *

2 2 2 2, , ,n v E H
  . Here 

values with indices “1” correspond to surface 
nonlinear plasmon and are proportional to the slowly 
varying nonlinear amplitude, and values with index 
“2” describes corresponding linear wave in the same 
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system, but without any nonlinearity.  Upper index 
“*” means complex conjugation. Corresponding 
equations of motion in nonlinear plasma have the 
form  

 

   

 

 

1
1

1
1 1 1 11

1
1 0 1

1
1

1 4
  

1
 

x

n
div nv div nv

t
v e e

E v v v H
t m m

E
curl H en v env

c t c

H
curl E

c t




  


        


   




 


  
     

  


  (19) 

The similar to (19) equations (but without nonlinear 
terms) should be written for the linear components 
with indices “2”. Then the procedure [2-4] similar to 
the derivation of the energy conservation law [10, 9, 
7], is applied to the nonlinear surface plasmons. To 
account for the surface nonlinearity, the nonlinear 
motion of surface charges (with surface 
concentration Sn ) at 0z  should be treated. The 
equation of continuity is modified due to the 
presence of surface charges as follows:  

  1
1 10 0

0z S xz l z l

v
nv n v

t x   

 
  

 
  (20) 

We account for the boundary conditions at the 
interface ( 0z  ) “plasma-dielectric”, the presence of 
free carriers, and, respectively, surface charge and 
surface current surfj , namely 

 
1 10 0

0

4
,  y y xsurfz z

xsurf S x z

H H j
c

j en v


 



  

 


  (21) 

 
Using (21), one can get 

 

* *
1 2 2 1; 0 ; 0

*
2 0

4
z z z z

x S x z

E H E H

E en v
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   

  (22) 

In equation (22), denotations like ; 0[...]z z  mean 

Z-component of the vector […], taken at 0z   . 
Finally, the integral NEELM for surface plasmons is 
obtained in the form:  
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        
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  (23) 

The first term in RHS in Eq. (23) appears due to 
surface nonlinearity, caused by nonlinear motion of 
surface free charge. The next three terms are the 
parts of volume nonlinearity and correspond to 
substantional nonlinearity, nonlinear Lorenz force 
and concentration nonlinearity, respectively. Detail 
calculations showing some very interesting nonlinear 
effects have been presented in [4]. It was shown in 
particular that the contribution of the surface 
nonlinearity into the giant generation of the resonant 
second harmonic appeared to be three times larger 
than the volume one. 

Application of the method for the electromagnetic 
waves in the ionosphere and seismoionospheric 

phenomena 

Consider, for the sake of simplicity, TM mode 
with the components , ,y z xH E E , where the 

electromagnetic wave propagates along the X  axis, 
Z  is directed vertically upward (as before) and we 
consider 2D problem, / 0y   . Using the method 
of NEELS, we come to the relation [12]: 
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  (24) 
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In (24), 2 ;  , gf f V   are frequency and group 

velocity of the electromagnetic wave, respectively;   
are the perturbations (due to the seismogenic 
processes) of the tensor of dielectric permittivity,  
X component of the wavenumber of the 
electromagnetic wave and integral complex change 
of the electromagnetic wave phase, respectively;     

1 2 1 2, , ,X X Z Z are the coordinates of the region where 
the perturbation of the media parameters takes place,   

2 1 2 1,  X X X Z Z Z      are the characteristic 
dimensions of the region of perturbation in the  

,X Z directions, respectively; maxZ  is the 
characteristic width of the equivalent waveguide for 

the electromagnetic waves; ,E HF


 are the functions 

which describe the polarization of the electric and 

magnetic field components of the electromagnetic 
wave, respectively. The relation (3) can be used for 
the estimation of the change of phase and amplitude 
of electromagnetic waves in the “Earth-Ionosphere” 
waveguide before strong earthquakes (see details 
concerning this physical phenomena, f.e. in [13]). 
 

 Application of the method NEELS for the 
modeling spatio-temporal solitons and nonlinear 

wave structures in the controllable and active 
nonlinear gyrotropic and metamaterial 

waveguides: from GHz to optics 
The following dimensionless higher-order 

evolution equations for the electromagnetic 
controllable spatio-temporal wave structures can be 
obtained, using  the method NEELS:  

 

   

2 3 2 2
2

2 32 3 2 2

(3) 2 2 2
0

1 1
( ) (| | )

2 2

( ) | | | | | | 0R

i sgn i D
Z T T y y

sgn iS i
T T

      

          

    
    

    

          

  (25) 

In (25),  is normalized amplitude of the 
corresponding component of electromagnetic 
waveguiding mode (in particular an amplitude of 

yE component of the TM mode, (3)
2 3, , , , RS     are 

the normalized coefficients of dispersion, third order 
linear dispersion, cubic nonlinearity, self-steepening 
(nonlinear dispersion) and the time characterizing 
nonlinear Raman effect, respectively; 0, , ,D    are 
the coefficients of linear diffraction, linear 
losses/gain(for an active media) , transverse 
magnetooptic effect and nonlinear diffraction, 
respectively. Using Eq. (25), the magnetooptic 
control of solitons in metamaterials was 
demonstrated in [14]. The set of important new 
effects for optical active nonlinear metamaterial [15] 

waveguiding structures including magnetooptic and 
diffraction-management stabilization of spatio-
temporal (2+1) solitons/bullets [16] will be 
published elsewhere. 

 As it was shown in [1] (see also [2] concerning 
the details of the applications of the method NEELS 
to the magnetostatic waves in GLs/ferrite films), 
application of the method NEELS for the coupling of 
BVMSW in longitudinally-magnetized gyromagnetic 
layered structure/ferrite film leads to the system of 
the normalized equations for the parametric coupling 
of counterpropagating signal and idle pulses having 
equal carrier frequencies and equal by absolute 
values carrier wavenumbers:  
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t z z y
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V i iS iN U U U U Vh z t U

t z z y





                
                

  (26) 

Here 1,2 , , , , ,pmp rU D S N Vh  are normalized 

amplitudes of the signal and idle pulses, coefficient 
of diffraction and dispersion and cubic nonlinearity, 
and the amplitude of pumping wave having double 
frequency (respectively to the carrier pulse 
frequency). Application of the method NEELS yields 
all the coefficients in (26), in particular 

2 2
0 0/ ( / )[ ( 1) ]H MV i       , where ,H M are 

characteristic frequencies and 0,    diagonal and 

non-diagonal elements of the tensor  [8, 9, 2, 1] of 
a magnetized (saturated) ferrite, respectively (see 
also [2] concerning the values of other coefficients in 
(26)). New types of structures, in particular “knife-
shaped bullets” in narrow ferrite films are obtained. 
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The set of other new interesting effects of the 
structure formation in this active nonlinear system 
with parametric amplification will be reported in a 
separate paper. The system of equation similar to (4), 
(26) have been derived using the method NEELS but 
not presented explicitly in the conference paper [5] 
for the parametric pumping of counterpropagating 

electromagnetic signal and idle pulses in 
bianisotropic waveguide with active nonlinear 
bianisotropic  metamolecules (in the form of planar 
 -particles). The method of corresponding 
nonlinear homogenization of the bi-anisotropic 
metamaterial had been proposed in [5]. Now we 
present such a system, first:  

 

2 22
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 
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 
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    

    

    
    

  (27) 

In (27), 0 3,Q U are the parametric coupling 
coefficient and an amplitude of pumping field, 
respectively. Indexes “1, 2” correspond to the signal 
and incident pulses, respectively. A possibility of 
quasisoliton parametric amplification in the 
bianisotropic metamaterial waveguide had been 
shown using the system (27). 
 
Nonlinear transmission of electromagnetic waves 

through multilayered dielectric-graphene-
dielectric… metamaterials 

     Using the NEELS method, it is possible to derive 
nonlinear evolution equations for the 
electromagnetic waves propagating normally to the 
multilayered dielectric-graphene-dielectric… 
metamaterial structures, where the nonlinearity is 
associated with the graphene layers. In particular 

nonlinearity in the case is connected with the 
conducting surface current si in graphene [27]:  

 
2 1/2

1/2
20

(1 ) ,  / ( );

( ) ;  /

F F
s F

F

ev p
i eA p

p n E A t




     
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
  (28) 

Here 8 10 /Fv cm s  is the characteristic Fermi 

velocity of electrons in the graphene, Fp is the 
Fermi electron momentum; A is the vector-potential 
of electromagnetic wave. The analog of the effective 
mass is * / ~ (0.01 0.03)F F em p v m  . Nonlinear 
conductive current (28) can be used for the 
derivation of the NEELS under the transverse wave 
propagation as was described above, yielding the 
evolution equation [17]  
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  (29) 

In (29), ( ) ( / 2)( / )l d d      is the dielectric 

permittivity with the correction following from the 
temporal dispersion. The collision frequency  of 
electrons in the grapheme layers is taken into 
account here. The value of  is of about 

( 11 12 1(3 10 3 10 ) s   . Eq. (29) describes the 

focusing of nonlinear electromagnetic THz pulses in 
the multilayered structure both in transverse and 
longitudinal directions. The new effect of the 
nonlinear transformation to the “predominantly 
transmission” regime was presented in [17].  

Conclusions 

     We developed and presented the new method 
NEELM for the derivation of the nonlinear equations 
for envelope amplitudes of wave packets in layered 
systems included nonlinear gyrotropic layers and 
both volume and surface nonlinearities, media with 
spatial dispersion, from GHz to optic ranges. The 
proposed method is formulated in very general form. 
We believe that NEELM is the most effective 
contemporary methods for the derivation of the 
evolution equations for the waves in the multi-
layered systems which include materials and 
nonlinearities of different physical nature, such as 
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metamaterials, plasma, ionosphere, gyrotropic 
nonlinear media, multilayered  dielectric-graphene-
dielectric and bianisotropic/chiral metamaterials etc. 
The qualitatively new features in the behavior of the 
nonlinear pulse propagation in the layered systems 
are revealed. Higher-order nonlinear effects, 
retardation and surface nonlinearities including an 
effect caused by higher nonlinear modes [2] are 
incorporated into the proposed method.  

 
References 

1. Grimal'sky V., Rapoport Yu., Zaspel C., Slavin 
A.N. Numerical Modeling of  Wave Front 
Reversal for Two-Dimensional Spin  Wave  
Packets in Magnetic  Films // 8th  European 
Magnetic Materials and Applications 
Conference,  June 2000, Kiev, Ukraine: 
abstracts: - 2000. - P. 38-40. 

2. Rapoport Yu., Grimalsky V., Zaspel C., Method 
for the derivation of nonlineaer evolution 
equations in layered structures (NEELS): an 
example of nonlinear waves in gyrotropic layers, 
Bulletin of Taras Shevchenko National 
University of Kyiv, Ser. Physics. – 2012. –N 
14/15. - P. 72-76. 

3. Grimalsky V.V., Rapoport Yu.G. Modulational 
instability of surface plasma waves in the 
second-harmonic resonance region // Plasma 
Phys. Reports. -1998. - Vol. 24. – P. 980-983. 

4. Rapoport Yu.G., Grimalsky V.V. Nonlinear 
surface 2D plasmons and giant second harmonic 
generation // Days on Diffraction 2011, DD 
2011: international conference, May 30 -June 3, 
2011; St. Petersburg, Russia. - IEEE Conference 
Publications: proceedings. - 2011. - P. 168-173. 

5. Boardman A.D., Mitchell-Thomas R., Rapoport 
Yu.G., Weakly nonlinear waves in layered bi-
anisotropic metamaterials, 3d International 
Congress on Advanced Electromagnetic 
Materials in Microwaves and Optics: 
Metamaterials- Aug. 30-Sept. 4, 2009, London, 
UK. -P. 495-497.  

6. Tretyakov S., Barois P., Scharf T., Kruglyak V. 
Bergmair I., Eds. Nanostructured Metamaterials 
- Exchange between experts in electromagnertic 
and material science. Directorate-General for 
res.. - EUR 24409 EU, B-1050 Brussels. -  2010. 
– 137 p.  

7. Kadomcev B. B. Collective phenomena in 
plasma. –Moscow: Nauka. – 1988. -303 p. (in 
Russian).  

8. Gurevich A.G., Melkov G.A. Magnetization 
Oscillations and waves.- New York : CRS Press. 
- 1996. – 563 p. 

9. Ahiezer A. I., Baryakhtar V. G., Peletminskiy S. 
V. Spin Waves. –Moscow: Nauka. – 1967. – 368 
p. (in Russian). 

10. Agranovich V. M., Gunzburg V. L. Cristal optics 
accounting for spatial dispersion and exciton 
theory. – Moscow: Nauka. -  1965. – 367 p. (in 
Russian). 

11. Jardin J.-P., Moch P., Dvorak V. Polarization 
waves in dielectric films with spatial dispersion. 
// J. Phys.: Condens. Matter. – 2002. – V. 14. –P. 
1745-1763. 

12. Rapoport Yu. G., Gotynyan O. E., Ivchenko V. 
N., Hayakawa M.,  Grimalsky V. V., Koshevaya 
S. V., D. Juares – R. Modeling electrostatic-
photochemisrry seismoionospheric coupling in 
the presence of external currents. – Phys. Chem. 
Earth. 2006. –V. 31. – No 4-9.  – P. 437-446. 

13. Martinenko S.I., Fuks I.M., Shubova R.S. 
Ionospheric electric-field influence on the 
parameters of VLF signals connected with 
nuclear accidents and earthquakes. // Journ. 
Atmos. Electricity..- 1996.- V. 16. – P. 259-269. 

14. Boardman, A.D., Hess O., Mitchell-Thomas, 
R.C., Rapoport, Y.G., Velasco, L. Temporal 
solitons in magnetooptic and metamaterial 
waveguides, Photonics and Nanostructures - 
Fundamentals and Applications, V. 8. - N. 4. – 
2010. - P. 228-243. 

15. Boardman  A.D. ,  Grymalsky V. V, Kivshar Yu. 
S., Koshevaya  S.V., Lapine  M., Litchinitser 
N.M., Malnev  V.N.,Noginov  M. , Rapoport Yu. 
G., Shalaev V.M.. Active and tunable 
metamaterials / // Lasers  Photonics Rev. – 2010. 
– V. 5. – N 2. –P. 287-307.  

16. Buttner O., Bauer M., Demokritov S.O., 
Hillebrands B., Kivshar Yu.S., Grimalsky V.V., 
Rapoport Yu., Slavin A.N. Linear and nonlinear 
diffraction of dipolar spin waves in yttrium iron 
garnet films observed by space- and time –
resolved Brillouin light scattering // Phys. Rev. 
B. – 2000. – Vol. 61. - N 17: - P.11576-11587. 

17. Rapoport Yu., Grimalsky V., Iorsh I., Kalinich 
N., Koshevaya S., Castrejon-Martinez Ch., 
Kivshar Yu. S. Nonlinear reshaping of THz 
pulses with graphene metamaterials, // Pis’ma v 
ZhETF, - 2013. -vol. 98, N. 8, pp. 561 – 564. 
 

Надійшла до редколегії 13.01.14  

288


	time1.pdf
	Algebra.pdf
	Borysenko_2014a.pdf



