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Температурна залежність надплинної 

компоненти та спектр елементарних 

збуджень 
 

У рамках запропонованої самоузгодженої 

мікроскопічної моделі надплинної 

нерелятивістської Бозе-рідини 
4
He з подавленим 

за рахунок багаточастинкових ефектів 

одночастинковим конденсатом та інтенсивним 

парним когерентним конденсатом наведено 

розрахунок спектру елементарних збуджень. 

Цей результат та розраховані в роботі 

температурні поправки до швидкостей першого 

та другого звуків використано для отримання 

температурної залежності густини 

конденсату. 

Ключові слова: надплинність, мікроскопічна 

теорія, квазічастинковий спектр  
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Temterature dependence of superfluid 
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spectrum 

 
In frame of proposed selfconsistent 

microscopical model of the superfluid non-

relativistic Bose liquid 
4
He with suppressed due to 

many-particle effects single-particle condensate and 

intensive pair coherent condensate the ab initio 

calculation of the quasiparticle spectrum was 

demonstrated. This result together with temperature 

corrections for the first and second speeds of sound 

calculated in this paper where used to obtain 

temperature dependence of the condensate density. 
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In series of papers renormalized perturbation 

theory was used, it was built on combined 

hydrodynamic variables with analytic normal and 

anomalous self-energy functions and a nonzero SF 

order parameter, proportional to the density of the 

SF component. On the base of this theory a closed 

system of nonlinear integral equations for the normal 

and anomalous self-energy parts were obtained. 

Unlike in the Bogoliubov theory of a quasi-ideal 

Bose gas, were small parameter is the ratio of the 

number of supracondensate excitations to the 

number of particles in an intensive BEC, the ratio of 

the BEC density to the total particle density of the 

Bose liquid was used as a small parameter of the 

model. Quasiparticle spectrum, obtained within this 

approach, is in a good agreement with experimental 

spectrum of elementary excitations in superfluid 
4
He. And, as it was shown, the roton minimum in the 

spectrum is associated with negative minimum of 

the Fourier component of the pair interaction 

potential.  

This article holds a brief discussion on current 

status in the microscopic theory of superfluidity of 

the non-relativistic Bose liquid. In the basis of the 

theory, which describes superfluidity and 

superconductivity phenomena, lays an appearance, 

as additional complex macroscopic order parameter, 

of the wave function of bosons or fermionic Cooper 

pairs, which stays in the same quantum state, in 

other words - appearance of the coherent condensate 

is the foundation of the superfluid and 

superconductivity phenomena. In Bose-systems such 

condensate appears because of direct accumulation 

of bosons in the ground state, but in the Fermi-

systems due to the formation of the Cooper pairs of 

fermions. 

Great amount of experimental and theoretical 

investigations performed over last 80 years allowed 

to achieve a high level of understanding of the 

properties of non-relativistic superfluid state in a 

Bose liquid 
4
He. Most important achievements in the 

theory of superfluidity reached at a 

phenomenological level, in particular, for the 

description of the properties of superfluid 
4
He (so-

called Ne-II) on the basis of two-fluid Landau 

hydrodynamics, according to which the superfluid 

helium can be divided into two components  – the 

superfluid component with density 
s  and velocity 

,sv  that describes the non-dissipative motion of 
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quantum fluid and normal component with density 

n  and velocity ,nv  which describes dissipative 

flow of the gas of excitations (phonons and rotons). 

Numerical calculations of thermal conductivity and 

viscosity of superfluid helium, obtained according to 

this theory, are in good agreement with experiment. 

One of the greatest achievements of the 

phenomenological approach to the phenomenon of 

superfluidity is that Landau, basing on the 

temperature dependence of heat capacity of 

superfluid 4He on the basis of his superfluidity 

criteria for the quantum liquids predicted the form of 

the superfluid helium elementary excitation 

spectrum with a linear (phonon) dispersion law 

pcpE )(  for the small momentum 0p  and so 

called “roton” minimum for .0p  Later this form of 

the spectrum was brilliantly confirmed in the 

experiments for the scattering of the slow neutrons 

in the liquid helium. 

But in the frame of phenomenological theory of 

superfluidity exact calculation (from first principles) 

of the elementary excitations spectrum in superfluid 

Bose liquid with strong interaction between particles 

may not be possible. This is the task for the 

microscopic theory of superfluidity of Bose liquids. 

Theoretical study of the properties of superfluid 

Bose liquid 
4
He at the microscopic level hampered 

by a number of fundamental problems associated 

with the strong interaction between bosons and 

complex quantum structure of effective coherent 

condensate, which is the main part of the superfluid 

component, unlike of almost ideal Bose gas, where 

this role is played by single-particle Bose Einstein 

condensate (BEC). 

The first microscopic theory of superfluidity, 

based on a model of weakly non-ideal Bose gas, was 

proposed by N.N. Bogoliubov [1] more than 50 

years ago. Bogoliubov theory has been improved 

further and in the most of these improved models of 

superfluidity by the selection of variational 

parameters one can achieve a good agreement 

between theoretical and experimental spectrum of 

elementary excitations in superfluid 
4
He for a certain 

range of the momentum. But such agreement is more 

coincidental and is not true, because, as it was 

shown in the later experimental studies, a part of 

single-particle BEC in the superfluid 
4
He is small 

and ranges from 2 to 10 percent, which is the 

opposite to a condition of weak non-ideality of the 

Bose-gas in the Bogoliubov theory. Therefore in 

order to give an adequate microscopic description of 

the Bose-liquid superfluid properties the most 

promising is the Greens function method, which for 

the first time was used in the papers of S.T. Beliaev 

and widely developed in the future. 

Analysis of the modern experimental and 

theoretical works testifies to the fact that the study of 

unique phenomena of superfluidity of helium 
4
He is 

far from the end. There are number of contradictions 

between theory and experiment, which are related to 

both the hydrodynamics of superfluid Bose liquid 
4
He, and the form of quasi-particle spectra, which 

have not yet satisfactory explanation in frame of the 

microscopic theory (for more details see [2]). 

Firstly, experiments on inelastic scattering of 

slow neutrons in liquid helium, which confirmed the 

form of proposed by Landau curve for the spectrum 

of elementary excitations, indicated a weak 

temperature dependence of the spectrum, as the 

consequence the size of the “roton” gap Kr 65.8  

at minimum of )( pE , that determines the critical 

velocity of normal fluid, changes only to the value 

of Kr 24.5  near the temperature of the phase 

transition from superfluid to normal state, i.e. the so-

called  -point KT 17.2
. At the same time, for the 

spectrum of quasiparticles in the electronic Fermi 

liquid in superconductors superfluidity criterion 

holds for the phase below critical temperature 
cT , 

when there is a finite energy gap in the spectrum, 

and fail in the normal state at ,cTT   when gap in 

the spectrum becomes zero.  

Moreover, obtaining of the quasiparticle 

spectrum from the “first principles” also fails. Using 

the latest calculation methods such as Monte-Carlo it 

is possible to obtain a good agreement between 

calculated and experimental data almost for all range 

of momentum, but remains unclear the physical 

reason for the roton minimum in the quasiparticle 

spectrum of the Bose-liquid. 

Secondly, in the superfluid Bose-liquid, unlike 

the Bose gas, single-particle Bose-condensate (SPC) 

due to strong interaction between bosons must be 

significantly impoverished by the particles of zero 

energy and momentum (i.e. “depleted” condensate) 

even at 0T  temperature. Analysis of the 

experimental data from neutron scattering [3] and 

quantum evaporation of the helium atoms [4] shows 

that superfluid 
4
He at low temperature in the Bose-

condensate state contain less than 10% of the full 

density of liquid 
4
He, whereas density of the 

superfluid component at the temperatures ,1KT   

according to classical measurements of the viscosity 

of superfluid helium [5], almost equal to the liquid 

helium density. This means that against widespread 

conviction superfluidity of the Bose-liquid 
4
He 

cannot be connected only with Bose-condensation 
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phenomena. Microscopical structure of the 

superfluid component, as it was for the first time 

shown in [6], should have more complicated 

quantum nature in the form of effective coherent 

condensate. 

Our approach, based on the microscopic model of 

superfluidity of the Bose-liquid with depleted BEC 

and intensive pair coherent condensate (PCC), 

proposed by Pashitskij E.A. and Nepomnyashij 

Yu.A [6]. Such PCC may occur at sufficiently high 

“effective attraction” between bosons in some 

ranges of momentum due to the effects of the 

quantum diffraction of Bosons in the process of their 

interaction, and is similar to attraction between 

fermions near the Fermi surface. The ratio of BEC 

density to the full density of the liquid was taken as 

a small parameter (i.e. 10  ), in contrast to the 

Bogoliubov [1] theory were small parameter is taken 

as ratio of the number of supra-condensate 

excitations to the number of particles in the intensive 

BEC. Due to a small BEC density it is possible to 

derive a closed self-consistent system of integral 

equations for the normal and anomalous self-energy 

parts by cutting an infinite series of perturbation 

theory and keeping only a first order terms by small 

parameter 0
: 
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here V(p) – the Fourier component of the inoculating 

two-particle interaction potential of bosons, 
1)],()(1)[(),(  ppVpVpV  – the renormalized 

(“shielded”) due to many-particle collective effects 

Fourier component of non-local interaction, ),( p  – 

bosonic polarization operator, 
01 nnn   – the number 

of “supra-condensate” particles. Functions ),(11 p  

and ),(12 p , taking into account poles of single-

particle Green functions, are defined by the following 

expressions: 
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here ),,,(  kp  and )0,0,,(),( pp    – the vortex 

functions, which describes many-particle correlations; 

function ))(,( pEpA  defined as  
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and )( pE  – quasiparticle spectrum, which in our 

approximation have the following form 
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From the last expression, because of analiticity of 

the ),( p  functions follows the fact that 

quasiparticle spectrum is acoustic at 0p  and its 

structure at 0p  is strongly dependent from the 

properties of the renormalised two-particle interaction 

between bosons. In case when BEC is absent ( 00 n ) 

integral equation for the ),(12 p  function became 

homogeneous and degenerate over the phase of the 

function. Thus it is similar to the momentum space 

Bethe-Goldstone integral equation for a pair of 

particles with zero binding energy, which has a 

nontrivial solution 0  only in case of attraction 

0)( pV  in a sufficiently wide region of values of the 

transmitted momentum p. Follow this analogy, 

function ),(12 p  can be considered as order 

parameter for bosonic PCC, which describe 

condensation of bosonic pairs in the momentum space 

(identically to the Cooper condensate of the fermion 

pairs). 

In this connection, pair interaction between bosons 

was chosen in the form of regularized repulsion 

potentials in models of “hard” and “semitransparent 

spheres”, which Fourier components, due to 

diffraction of particles of one another, are oscillating 

and alternating functions of transmitted momentum 

,p  and can be determined by the spherical Bessel 

functions of zero and first orders. 

Many-particle collective effects in Bose liquid lead 

to a significant renormalization of the pair interaction, 

which determines the normal and anomalous self-

energy parts (Fig. 1). An important feature of the 

renormalized interaction is that, as was shown in [7], 

in those areas of the phase volume ),( p , were the 

real part of the bosonic polarization operator 

),(Re p  is negative, repulsion become weaker 

(when 0)( pV ) and attraction effectively increased 

(when 0)( pV ) (see Fig. 1). The key point in the 

behavior of the renormalized (screened) potential 

 )(, pEpV , as it was shown by the numerical 

calculations in [8], is that for all values of momentum 

0p  the real part of the bosonic polarization operator 

is negative ( 0),(Re  p , upper corner of Fig. 1) if 

quasiparticle spectrum is stable with respect to decay 

on a pairs of quasiparticles. 
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Fig. 1. Fourier components of the non-

renormalized (curve 1) and renormalized (curve 2) 

interactions in the model of “semitransparent 

spheres”. In the upper corner depicted the momentum 

dependence of the real part of the bosonic polarization 

operator.  

 

In the numerical calculations [8], based on the 

Fourier-component of the “hard spheres” potential 

papaVpV )sin()( 0 , were used a simplified model of 

the renormalized potential in the form 
 

 )sin()sin(),( 0 papapaVpV   , 

 

here constV  0 , and   – the value of the 

polarization operator on the mass surface )( pE  

averaged over the momentum ,p  which was taken as 

negative constant value in case if quasiparticle 

spectrum not decay. Resulting spectrum qualitatively 

agrees with experimental spectrum Eexp in superfluid 
4
He (Fig. 2), but numerical correspondence of the 

minimal and maximal values of quasiparticle energies 

are not satisfactory. In addition, calculated value of 

the speed of the first (hydrodynamical) sound 

c=2.0810
4
 cm/sec appeared to be lower than 

experimental value c=2.3610
4
 cm/sec, and total 

concentration of particles is higher – n=2.5710
22

 cm
–

3
; the value of the BEC particle concentration is lower 

nn %30   then obtained from experiment.  

Further calculations, carried in papers [9,10], show 

that oscillating pseudo-potential in the model of 

“semitransparent spheres”  
 

  3

0 )()cos()sin()(  papapapaVpV
 

 

is more appropriate than “hard sphere” potential both 

for the stability of the spectrum and its 

correspondence to the empirical spectrum in 
4
He. In 

the “semitransparent spheres” model the explicit 

momentum dependence of the polarization operator 

),( p  is used.  

 

 
 

Fig. 2. Solid curve - spectrum obtained in the 

model of “hard spheres”, dot curve - experimental 

data [11] - [14]. 

 

Iterative numerical calculations of the self-energy 

and bosonic polarization operator, the two-particle 

order parameter and the quasiparticle spectrum at 

0T  allowed to find conditions when theoretical 

spectrum )( pE  is in a good agreement with 

experimental spectrum of elementary excitations in 
4
He. The roton minimum of the quasiparticle spectrum 

)( pE  in the Bose liquid, as it was shown in [10], 

clearly associated with the first negative minimum of 

the Fourier-component renormalized potential. The 

only fitting parameter in these calculations was the 

amplitude of the starting pseudo-potential with the 

parameter 144.2  Aa , which is equal to the twice of a 

quantum radius of the 
4
He atom. For the calculations 

we take an experimental value of the BEC density 
322

0 1095.1%9  cmnn  [3, 4]. 

As a result, after numerical calculations it was 

possible to get a quite satisfactory agreement of the 

theoretical )( pE  and experimental )(exp pE  spectrum 

under condition 15.2  Ap  (Fig. 3, curve 1). In 

calculations of )( pE  the only fitting parameter was 

taken in order to satisfy a condition that quasiparticle 

phase velocity ppE )(  at 0p  coincide with 

hydrodynamical speed of sound sec/2361 mc   in the 

liquid 
4
He, which corresponds to the value 

KaVU 15524 3

00    for the amplitude of the 

“semitransparent spheres” potential at 144.2  Aa . In 

the range 15.2  Ap  theoretical spectrum )( pE  lies 

slightly above )(exp pE . This is, most likely, due to the 

fact that vertex function ),,( pk  which decay with 

increasing of the momentum p , was taken as constant 

5.1 . This value was obtained from the exact 

asymptotic of the polarization operator 
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.)0,0( 2mcn  In this connection vertex function on 

the interval 11 8.31.2   ApA  was approximated by 

the linear function, which slowly changed from 5.1  

to 1.1 . Spectrum, obtained within this 

approximation (Fig. 3, curve 2), is in good agreement 

with experimental curve for all range of the 

momentum. 

 

 
Fig. 3. Curve 1 – theoretical quasiparticle spectrum 

)( pE , obtained with model of the “semitransparent 

spheres” for the constant value of the vertex function 

5.1 . Curve 2 – theoretical quasiparticle spectrum 

)( pE , obtained with a model of the “semitransparent 

spheres” for the weakly decaying (from 5.1  to 

1.1 ) vertex function, on the interval 
11 8.31.2   ApA . In both cases the value of the 

fitting parameter is KaVU 15524 3

00   . Circles 

show experimental spectrum, obtained by inelastic 

neutron scattering in the liquid 
4
He [11-14], stars – 

show the results of the experiment [15] beyond the 

roton minimum 11 6.32   ApA . Inserted box shows 

weak oscillations of the spectrum with maximum 

KE 2.17max   at 199.2  Ap  and minimum KE 7.16min   

at 139.3  Ap . 

 

Self-consistency of the given model is confirmed 

by the value of the total particle density 
3221012.2  cmnteor
, which is close to the experimental 

value of the particle density 3221017.2  cmn
 
of the 

liquid 
4
He (when nn %90  ). On the other hand, 

independent calculation of the over-condensate 

density of particles 
1n for the given parameters gives a 

value of about n%93 , which also agrees with 

experiment under condition that BEC density is 

determined with accuracy of %.1  

Thus, proposed in [6] model of superfluid Bose 

liquid with a suppressed BEC and intensive PCC, 

which is based on renormalized perturbation field 

theory with combined variables [16], allow to cut an 

infinite series by the low BEC density and obtain 

“truncated”, closed system of nonlinear integral 

equations for the self-energy parts )2,1(),,(1  jpj  .  

On the other hand, the oscillating character of the 

renormalized Fourier component of the potential leads 

to a non-monotonic behavior of the momentum 

dependencies of the mass operators )2,1(),,(1  jpj   

and, as a result, to the appearance of the roton 

minimum in the spectrum of quasiparticles )( pE , 

which definitely connected with first deepest negative 

minimum of the renormalized Fourier component of 

the potential. Thus, for sufficiently large values of the 

amplitude of the initial potential 
0V  quasiparticles 

excitation spectrum become unstable in some domain 

of momenta ,0p  where 0)(2 pE .  

For the conclusion it is necessary to emphasize that 

mentioned property of the polarization operator 

0))(,(  pEp  is typical only for Bose-systems, 

where single-particle and many-particle spectrum are 

coincide and have a common zero energy reference 

point, unlike Fermi-systems, where single-particle 

excitation spectrum due to the Pauli principle is 

counted from the Fermi energy. Therefore, 

corresponding effective increasing of the negative 

values of the polarization operator cannot take place 

for the Fermi-liquid 
3
He, so formation of the Cooper 

pairs is possible only for non-zero values of the orbital 

momentum and a real Van der Waals attraction 

between fermions. Probably, this is the reason for the 

three order difference between critical temperatures of 

superfluid transition in 
4
He and 

3
He. 

Our calculation of the temperature dependence of 

superfluid component density is based on the model of 

the coherent structure of the condensate of the Bose 

liquid 
4
He. Temperature dependence of the superfluid 

component density in this model is given by the 

following expression [10] 
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In the last expression )(
~

qV  – the Fourier 

component of the renormalized due to many-particle 

effects a pair interaction potential. For the calculation 

of the temperature dependences we use a model 

potentials (“hard sphere” and “semitransparent 

sphere” potential), Aziz potential and expressions for 

the velocity of the first and second sounds in liquid 
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4
He and they temperature corrections, obtained in [18] 

from the solutions of a kinetic type equations: 
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Temperature dependence of the superfluid 

component, calculated in this paper is given on Fig. 4.  

 
Fig. 4. Temperature dependencies of the Bose-

liquid 
4
He superfluid density obtained in [10] (curve 

1); present calculations (curve 2); experimental data 

obtained by Andronikashvilli E.L. [20] (curve 3); 

result of Ginzburg V.L. [19] (curve 4).  

Conclusions 

 

In this paper using the elementary excitation 

spectum obtained in frame of proposed in [17] the 

selfconsistent microscopical model of the superfluid 

non-relativistic Bose liquid 
4
He and temperature 

corrections to the first and second speeds of sound 

calculated within approach proposed in [18] we obtain 

the temperature dependence of the condensate density 

of strongly interacting Bose-system. Our calculations, 

shown on Fig.4 are in qualitative agreement with 

experiment. 
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