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In series of papers renormalized perturbation
theory was used, it was built on combined
hydrodynamic variables with analytic normal and
anomalous self-energy functions and a nonzero SF
order parameter, proportional to the density of the
SF component. On the base of this theory a closed
system of nonlinear integral equations for the normal
and anomalous self-energy parts were obtained.
Unlike in the Bogoliubov theory of a quasi-ideal
Bose gas, were small parameter is the ratio of the
number of supracondensate excitations to the
number of particles in an intensive BEC, the ratio of
the BEC density to the total particle density of the
Bose liquid was used as a small parameter of the
model. Quasiparticle spectrum, obtained within this
approach, is in a good agreement with experimental
spectrum of elementary excitations in superfluid
“*He. And, as it was shown, the roton minimum in the
spectrum is associated with negative minimum of
the Fourier component of the pair interaction
potential.

This article holds a brief discussion on current
status in the microscopic theory of superfluidity of
the non-relativistic Bose liquid. In the basis of the
theory, which describes superfluidity and
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superconductivity phenomena, lays an appearance,
as additional complex macroscopic order parameter,
of the wave function of bosons or fermionic Cooper
pairs, which stays in the same quantum state, in
other words - appearance of the coherent condensate
is the foundation of the superfluid and
superconductivity phenomena. In Bose-systems such
condensate appears because of direct accumulation
of bosons in the ground state, but in the Fermi-
systems due to the formation of the Cooper pairs of
fermions.

Great amount of experimental and theoretical
investigations performed over last 80 years allowed
to achieve a high level of understanding of the
properties of non-relativistic superfluid state in a
Bose liquid “He. Most important achievements in the
theory  of  superfluidity reached at a
phenomenological level, in particular, for the
description of the properties of superfluid “He (so-
called Ne-Il) on the basis of two-fluid Landau
hydrodynamics, according to which the superfluid
helium can be divided into two components — the
superfluid component with density p_and velocity

v., that describes the non-dissipative motion of
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guantum fluid and normal component with density
p, and velocity v, , which describes dissipative

flow of the gas of excitations (phonons and rotons).
Numerical calculations of thermal conductivity and
viscosity of superfluid helium, obtained according to
this theory, are in good agreement with experiment.
One of the greatest achievements of the
phenomenological approach to the phenomenon of
superfluidity is that Landau, basing on the
temperature dependence of heat capacity of
superfluid 4He on the basis of his superfluidity
criteria for the quantum liquids predicted the form of
the superfluid helium elementary excitation
spectrum with a linear (phonon) dispersion law
E(p) = pc for the small momentum p—0 and so

called “roton” minimum for p = 0. Later this form of

the spectrum was brilliantly confirmed in the
experiments for the scattering of the slow neutrons
in the liquid helium.

But in the frame of phenomenological theory of
superfluidity exact calculation (from first principles)
of the elementary excitations spectrum in superfluid
Bose liquid with strong interaction between particles
may not be possible. This is the task for the
microscopic theory of superfluidity of Bose liquids.
Theoretical study of the properties of superfluid
Bose liquid “He at the microscopic level hampered
by a number of fundamental problems associated
with the strong interaction between bosons and
complex quantum structure of effective coherent
condensate, which is the main part of the superfluid
component, unlike of almost ideal Bose gas, where
this role is played by single-particle Bose Einstein
condensate (BEC).

The first microscopic theory of superfluidity,
based on a model of weakly non-ideal Bose gas, was
proposed by N.N. Bogoliubov [1] more than 50
years ago. Bogoliubov theory has been improved
further and in the most of these improved models of
superfluidity by the selection of variational
parameters one can achieve a good agreement
between theoretical and experimental spectrum of
elementary excitations in superfluid *He for a certain
range of the momentum. But such agreement is more
coincidental and is not true, because, as it was
shown in the later experimental studies, a part of
single-particle BEC in the superfluid “He is small
and ranges from 2 to 10 percent, which is the
opposite to a condition of weak non-ideality of the
Bose-gas in the Bogoliubov theory. Therefore in
order to give an adequate microscopic description of
the Bose-liquid superfluid properties the most
promising is the Greens function method, which for
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the first time was used in the papers of S.T. Beliaev
and widely developed in the future.

Analysis of the modern experimental and
theoretical works testifies to the fact that the study of
unique phenomena of superfluidity of helium “He is
far from the end. There are number of contradictions
between theory and experiment, which are related to
both the hydrodynamics of superfluid Bose liquid
“He, and the form of quasi-particle spectra, which
have not yet satisfactory explanation in frame of the
microscopic theory (for more details see [2]).

Firstly, experiments on inelastic scattering of
slow neutrons in liquid helium, which confirmed the
form of proposed by Landau curve for the spectrum
of elementary excitations, indicated a weak
temperature dependence of the spectrum, as the
consequence the size of the “roton” gap A, =8.65K

at minimum of E(p), that determines the critical

velocity of normal fluid, changes only to the value
of A =524K near the temperature of the phase

transition from superfluid to normal state, i.e. the so-
called 2-point T, =2.17K . At the same time, for the

spectrum of quasiparticles in the electronic Fermi
liquid in superconductors superfluidity criterion
holds for the phase below critical temperature T,

when there is a finite energy gap in the spectrum,
and fail in the normal state at T >7_, when gap in

the spectrum becomes zero.

Moreover, obtaining of the quasiparticle
spectrum from the “first principles” also fails. Using
the latest calculation methods such as Monte-Carlo it
is possible to obtain a good agreement between
calculated and experimental data almost for all range
of momentum, but remains unclear the physical
reason for the roton minimum in the quasiparticle
spectrum of the Bose-liquid.

Secondly, in the superfluid Bose-liquid, unlike
the Bose gas, single-particle Bose-condensate (SPC)
due to strong interaction between bosons must be
significantly impoverished by the particles of zero
energy and momentum (i.e. “depleted” condensate)
even at T=0 temperature. Analysis of the
experimental data from neutron scattering [3] and
quantum evaporation of the helium atoms [4] shows
that superfluid “He at low temperature in the Bose-
condensate state contain less than 10% of the full
density of liquid “He, whereas density of the
superfluid component at the temperatures T <1K,

according to classical measurements of the viscosity
of superfluid helium [5], almost equal to the liquid
helium density. This means that against widespread
conviction superfluidity of the Bose-liquid *He
cannot be connected only with Bose-condensation
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superfluid component, as it was for the first time
shown in [6], should have more complicated
guantum nature in the form of effective coherent
condensate.

Our approach, based on the microscopic model of
superfluidity of the Bose-liquid with depleted BEC
and intensive pair coherent condensate (PCC),
proposed by Pashitskij E.A. and Nepomnyashij
Yu.A [6]. Such PCC may occur at sufficiently high
“effective attraction” between bosons in some
ranges of momentum due to the effects of the
quantum diffraction of Bosons in the process of their
interaction, and is similar to attraction between
fermions near the Fermi surface. The ratio of BEC
density to the full density of the liquid was taken as
a small parameter (i.e. p,/p <<1), in contrast to the

Bogoliubov [1] theory were small parameter is taken
as ratio of the number of supra-condensate
excitations to the number of particles in the intensive
BEC. Due to a small BEC density it is possible to
derive a closed self-consistent system of integral
equations for the normal and anomalous self-energy
parts by cutting an infinite series of perturbation
theory and keeping only a first order terms by small
parameter p /p:
Z,,(&, p) = ngA(e, PV (&, p) +nV (0) + vy, (£, P),
I, (¢, P) =NoAle, PV (&, P) + v, (&, D),
here V(p) — the Fourier component of the inoculating
two-particle interaction potential of  bosons,
Ve, p)=V(p)1-V(p)I(e,p)]*—  the  renormalized
(“shielded”) due to many-particle collective effects
Fourier component of non-local interaction, I(e, p) —

bosonic polarization operator, n =n-n, — the number
of “supra-condensate” particles. Functions v, (¢, p)
and v, (g, p), taking into account poles of single-

particle Green functions, are defined by the following
expressions:

wa(e, p) =—1/2[ d°k(27) T (e, p, k, E(k)) x
<V (p -k, & — E()|Ak, E())E* (k) 1]
v (e, p) = -1/2[d°k(27) T (2, p.k, E()E(K) x
xV (p-k,&—E(K))x
x[n Ak, E(R)V (K, E(K)) +yy, (K, E(K))]
here T'(¢, p.k,w) and A(e, p) =I'(¢, p,0,0) — the vortex

functions, which describes many-particle correlations;
function A(p,E(p)) defined as

A(p,E(p)) = nyA(p,E(P))V (p,E(p)) + p?/2m +
+ 5, (P, E(P)) — w1, (0,0) + v, (0,0),

approximation have the following form
A E B -1/2
am={ (p.E(p)) ZJ
[nsACp, E(PIV (p, E(P)) + w2, (P, E(p))]

+ 12y (P E(P)) ~ v (P, E(P)))
From the last expression, because of analiticity of
the w(e,p) functions follows the fact that

quasiparticle spectrum is acoustic at p—0 and its
structure at p=0 is strongly dependent from the
properties of the renormalised two-particle interaction
between bosons. In case when BEC is absent (n, =0)

integral equation for the (¢, p) function became

homogeneous and degenerate over the phase of the
function. Thus it is similar to the momentum space
Bethe-Goldstone integral equation for a pair of
particles with zero binding energy, which has a
nontrivial solution w =0 only in case of attraction

V (p) <0 in a sufficiently wide region of values of the

transmitted momentum p. Follow this analogy,
function ,(s,p) can be considered as order

parameter for bosonic PCC, which describe
condensation of bosonic pairs in the momentum space
(identically to the Cooper condensate of the fermion
pairs).

In this connection, pair interaction between bosons
was chosen in the form of regularized repulsion
potentials in models of “hard” and “semitransparent
spheres”, which Fourier components, due to
diffraction of particles of one another, are oscillating
and alternating functions of transmitted momentum
p, and can be determined by the spherical Bessel
functions of zero and first orders.

Many-particle collective effects in Bose liquid lead
to a significant renormalization of the pair interaction,
which determines the normal and anomalous self-
energy parts (Fig. 1). An important feature of the
renormalized interaction is that, as was shown in [7],
in those areas of the phase volume (g, p), were the
real part of the bosonic polarization operator
Rell(p,w) IS negative, repulsion become weaker
(when v(p)>0) and attraction effectively increased
(when v(p)<0) (see Fig. 1). The key point in the
behavior of the renormalized (screened) potential
V(p,E(p)), as it was shown by the numerical
calculations in [8], is that for all values of momentum
p >0 the real part of the bosonic polarization operator
is negative (ReIT(p,w)<0, upper corner of Fig. 1) if

quasiparticle spectrum is stable with respect to decay
on a pairs of quasiparticles.
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Fig. 1. Fourier components of the non-

renormalized (curve 1) and renormalized (curve 2)
interactions in the model of “semitransparent
spheres”. In the upper corner depicted the momentum
dependence of the real part of the bosonic polarization
operator.

In the numerical calculations [8], based on the
Fourier-component of the “hard spheres” potential
V(p) =V,sin(pa)/pa, were used a simplified model of

the renormalized potential in the form
V(p, ) =V, sin(pa)/(pa+asin(pa)),

here o =-VIT1=const, and Il — the value of the
polarization operator on the mass surface o =E(p)
averaged over the momentum p, which was taken as

negative constant value in case if quasiparticle
spectrum not decay. Resulting spectrum qualitatively
agrees with experimental spectrum E, in superfluid
*He (Fig. 2), but numerical correspondence of the
minimal and maximal values of quasiparticle energies
are not satisfactory. In addition, calculated value of
the speed of the first (hydrodynamical) sound
c=2.08x10" cm/sec appeared to be lower than
experimental value c¢=2.36x10"cm/sec, and total
concentration of particles is higher — n=2.57x10% cm™
% the value of the BEC particle concentration is lower
n, =3%n then obtained from experiment.

Further calculations, carried in papers [9,10], show
that oscillating pseudo-potential in the model of
“semitransparent spheres”

V(p) =V,(sin(pa) - pacos(pa))/(pa)*

is more appropriate than “hard sphere” potential both
for the stability of the spectrum and its
correspondence to the empirical spectrum in “He. In
the “semitransparent spheres” model the explicit
momentum dependence of the polarization operator
I1(p,w) IS used.

Fig. 2. Solid curve - spectrum obtained in the
model of “hard spheres”, dot curve - experimental
data [11] - [14].

Iterative numerical calculations of the self-energy
and bosonic polarization operator, the two-particle
order parameter and the quasiparticle spectrum at
T=0 allowed to find conditions when theoretical
spectrum E(p) is in a good agreement with
experimental spectrum of elementary excitations in
*He. The roton minimum of the quasiparticle spectrum
E(p) in the Bose liquid, as it was shown in [10],
clearly associated with the first negative minimum of
the Fourier-component renormalized potential. The
only fitting parameter in these calculations was the
amplitude of the starting pseudo-potential with the
parameter a=2.44A*, which is equal to the twice of a
quantum radius of the *He atom. For the calculations
we take an experimental value of the BEC density
n, = 9%n =1.95x10%cm [3, 4].

As a result, after numerical calculations it was
possible to get a quite satisfactory agreement of the
theoretical E(p) and experimental g_ (p) spectrum

under condition p<25A* (Fig. 3, curve 1). In
calculations of E(p) the only fitting parameter was

taken in order to satisfy a condition that quasiparticle
phase velocity E(p)/p at p—0 coincide with

hydrodynamical speed of sound ¢, ~236m/sec in the
liquid “He, which corresponds to the value
U, =V,/4m®=1552K for the amplitude of the
“semitransparent spheres” potential at a=2.44A". In
the range p>25A" theoretical spectrum E(p) lies
slightly above Eeo(P) - This is, most likely, due to the
fact that vertex function r(k,p), which decay with
increasing of the momentum p, was taken as constant

r=15. This value was obtained from the exact
asymptotic of  the polarization operator
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11(0,0) = —n/mc?. In this connection vertex function on
the interval 2.1A" <p<3.8A™* was approximated by

the linear function, which slowly changed from r=15
to r=11. Spectrum, obtained within this
approximation (Fig. 3, curve 2), is in good agreement

with experimental curve for all range of the
momentum.
E(p), K 1
20}
Wz
16l ~ T
12+ 4 g (\"33,}\ 17.25 Elp)
8 | Y% 171
/ 16.7 P, A’
4 L £ 3 3.5
- -1
p, A

05 1 15 2 25 3 35
Fig. 3. Curve 1 — theoretical quasiparticle spectrum
E(p), obtained with model of the “semitransparent
spheres” for the constant value of the vertex function
r=15. Curve 2 — theoretical quasiparticle spectrum
E(p), obtained with a model of the “semitransparent

spheres” for the weakly decaying (from =15 to
r=11) vertex function, on the interval
21A'<p<38A™. In both cases the value of the

fitting parameter is u, =v,/4m®=1552K. Circles

show experimental spectrum, obtained by inelastic
neutron scattering in the liquid “He [11-14], stars —
show the results of the experiment [15] beyond the
roton minimum 2A* < p<3.6A™. Inserted box shows

weak oscillations of the spectrum with maximum
En =17.2K atp=299A™ and minimum E_ =16.7K

at p=3.39A™.

Self-consistency of the given model is confirmed
by the wvalue of the total particle density
n_ =2.12x102cm2, Which is close to the experimental

teor

value of the particle density n=2.17x10%cm> of the
liquid “He (when n,=9%n). On the other hand,
independent calculation of the over-condensate
density of particles n, for the given parameters gives a
value of about 93%n, which also agrees with

experiment under condition that BEC density is
determined with accuracy of +19.

Thus, proposed in [6] model of superfluid Bose
liquid with a suppressed BEC and intensive PCC,
which is based on renormalized perturbation field
theory with combined variables [16], allow to cut an
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infinite series by the low BEC density and obtain
“truncated”, closed system of nonlinear integral
equations for the self-energy parts s, (s, p),(j =1,2)-

On the other hand, the oscillating character of the
renormalized Fourier component of the potential leads
to a non-monotonic behavior of the momentum
dependencies of the mass operators s (s, p),(j =12)

and, as a result, to the appearance of the roton
minimum in the spectrum of quasiparticles E(p),

which definitely connected with first deepest negative
minimum of the renormalized Fourier component of
the potential. Thus, for sufficiently large values of the
amplitude of the initial potential v, quasiparticles

excitation spectrum become unstable in some domain
of momenta p 0, where E?(p)<0.

For the conclusion it is necessary to emphasize that
mentioned property of the polarization operator
I1(p,E(p)) <0 is typical only for Bose-systems,

where single-particle and many-particle spectrum are
coincide and have a common zero energy reference
point, unlike Fermi-systems, where single-particle
excitation spectrum due to the Pauli principle is
counted from the Fermi energy. Therefore,
corresponding effective increasing of the negative
values of the polarization operator cannot take place
for the Fermi-liquid *He, so formation of the Cooper
pairs is possible only for non-zero values of the orbital
momentum and a real Van der Waals attraction
between fermions. Probably, this is the reason for the
three order difference between critical temperatures of
superfluid transition in “He and *He.

Our calculation of the temperature dependence of
superfluid component density is based on the model of
the coherent structure of the condensate of the Bose
liquid “He. Temperature dependence of the superfluid
component density in this model is given by the
following expression [10]

2 _wMf_yO]
p  VON| VvOn|' ’

here

1, dq 5 A, —Dp (C1q) B, [C2QJ
T)=-= v th S9 | 4 B2 ot 29| |
vol)=—3] (2z) (Q){ cq oar ) Teg T

~ 1199 Gy Pz gotn[ G4 |- Bie popy[ &4
ws(T)= > I oy v (q){ o coth( o j o coth[ or H
In the last expression v() - the Fourier

component of the renormalized due to many-particle
effects a pair interaction potential. For the calculation
of the temperature dependences we use a model
potentials (“hard sphere” and “semitransparent
sphere” potential), Aziz potential and expressions for
the velocity of the first and second sounds in liquid
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*He and they temperature corrections, obtained in [18]
from the solutions of a kinetic type equations:

29 p,
e - i i 14 2222

16 p
c? 33
EX(q)=ciq? =3‘3[1—8’;"]q2,
Temperature dependence of the superfluid

component, calculated in this paper is given on Fig. 4.

ol p

1,0 s
0,8
0,6

0,4

0,21

1,0 15 2,0217K25

Fig. 4. Temperature dependencies of the Bose-
liquid “He superfluid density obtained in [10] (curve
1); present calculations (curve 2); experimental data
obtained by Andronikashvilli E.L. [20] (curve 3);
result of Ginzburg V.L. [19] (curve 4).

Conclusions

In this paper using the elementary excitation
spectum obtained in frame of proposed in [17] the
selfconsistent microscopical model of the superfluid
non-relativistic Bose liquid “He and temperature
corrections to the first and second speeds of sound
calculated within approach proposed in [18] we obtain
the temperature dependence of the condensate density
of strongly interacting Bose-system. Our calculations,
shown on Fig.4 are in qualitative agreement with
experiment.
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