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Introduction

Let G be an universal algebra. As the subalge-
bra of G x G is viewed as a binary relation on G,
so the set S(G) of all subalgebras of G x G is a
semigroup related to De Morgan’s product of rela-
tions. The subgroup S(G) is called the semigroup
of correspondences of the algebra G. The problem
of learning the semigroups of correspondences was
set by Kurosh [2].

In the work [3] there is shown that when G
is the group than the elements of the semigroup
S(G) can be identified by the fifths of the form
(H1,G1, Ha,Go, @), where

Hi <Gy <G, Hy<Gy <G,

and ¢ is the isomorphism of the factorgroup
G/ Hj onto the factorgroup G2/ Hs. Herewith the
related element of the semigroup S(G) — as the
subset out of G x GG — has the form:

(Hla Gla H27 G25 QO) =

U (aHy x p(aH)).
a€G1

Sets of the form aH; X bHs, where
bHy = p(aH7), we shall call the blocks of elements
A= (H1,G1,Ha, Gz, 9).
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1 Maximal Subgroups of
Correspondences Semigroup

In [4] there are given the necessary and efficient
conditions for the element (Hi,G1, Ha, G2, ¢) of
the semigroup of correspondences to be idempo-
tent. But they are too huge. There are far the
simplest conditions but only necessary are given
by the following theorem.

Theorem 1. Let G be a group. If the element
(Hi,G1, Ho,Ga, @) of the semigroup of correspon-
dences S(G) is idempotent, so there are fulfilled
the following conditions:

1) Hl(GlﬂGz):Gl, HQ(G1ﬂG2)=G2;
2) for any g € G1NG2 @(gH1) = gHo.
Proof. Let the element
A= (HlaGlaHZaG%(p)

be idempotent.
from A we have:

Then for any block aH; x bHs

((lHl X bHQ) o (aH1 X bHQ) = (aH1 X bHQ)

Hence
bHyNaH, = @.

Thus, for every adjacency class aH; of group Gy
to subgroup Hi will be found such an element

ceaH1NbHy C Gi NGy,
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that aHy = ¢H. But then
H1(G1 N Gz) C HiG1 =Gy,

It can be similarly proved, that Ho(G1 N G2) = Ga. |}
This proves Condition 1).

For any g € Gy N G2 the element A has the
blocks of the form aHy x gHs i gHy x bHs. While
g € gHy X gHo, then gH1 N gHy # &, so

(aH1 X gHg) o (ng X bHQ) = (CLHl X bHQ).

On the other hand, from the idempotentness of
the element A we have:

(aH1 X gH2) ] (aH1 X gHg) = (IHl X gHg.

So, A has the blocks aH; x bHy and
aHy x gHs.. The first components of blocks are
similar, so bHy = gHy. There is similarly proved
that aH1 = gH,. But then

¢(gH1) = p(aH1) = bHy = gH>,

that proves Condition 2). O

For any idempotent e € S let us define by G,
the maximal subgroup of .S, for which e is the unit.

Theorem 2. Let G be the finite group, and the
element e = (Hy, Gy, Ha,Ga, ) of the semigroup
of correspondences S(G) is the idempotent. Then

Ge = {(H1,G1, Ha, Go, )| € Aut(G1/Hy)} =

= {(Hi, Gy, Ha, G2, ) [t € Aut(G2/Ha)}.
In particular, if Gi=Gs=G, Hy=Hs=H,

p = € is the identity automorphism, so
Ge={(G.H,G,H,¢¥)[¢ € Aut(G/H)}.

Proof. It is easy to check that the element
f=(H1,G1,H1,Gq,¢), where € is the identity au-
tomorphism of the factor group G1/Hq, will be the
idempotent.

In [5] it was shown that the elements

Al = (Hi, llvHé7 ,2790/)
and

A" = (Hi/7 ,1/7Hé/7 /21790”)
belong to one class D of the semigroup S(G) then
and only then when

V/Hy ~ Gy/Hy ~ GY/H{ ~ Gy/Hj.
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If G| /H| ~ F, we shell say that the correspondent
D class is defined by the factor F.

That’s why the idempotents e and f will be
D equivalent. According to the theorem by Green
(see [1], theorem 4.7.5) the maximal subgroups
G. and Gy are isomorphic. That’s why there is
some sense at first to analyze the final part of the
theorem.

Therefore, let e = (G, H,G, H,¢), where ¢ is
identity automorphism of the factorgroup G/H.
In accordance with upshot 1 out of theorem 1
from [5] H is the class H(e), which coincides
with G, contains |Aut(G/H)| elements. That’s
why to prove the final part of the theorem it
is enough to show that every element of the
look A= (G,H,G, H,y), where ¢ € Aut(G/H),
belongs to G.. We have:

(gH,p(gH)) o (p(gH),gH) = (gH,gH). (1)

On the other hand, if gH # ¢H, o
gHNg'H = &, where o(gH) N¢(¢'H) = & and

(9H,o(gH)) o (¢(¢'H),dH)=2.  (2)

Out of the equalities (1) and (2) it follows that for
the element

Ail = (G7 H? Ga H7 9071)

there will be Ao A~! = e. That’s why A € G,.

Now let e = (G1, H1,G9, Ha, ) be the arbi-
trary idempotent. Out of the proved above it fol-
lows that

|Ge| = {(G1, H1, G2, Ha, )i € Aut(Ga/Ha)}|.
(3)

On the other hand, as for the element
A= (G17 H1> G27 H27 <P¢)

and the idempotent e = (G1, Hi, Ga, Ha, @) four
(G1,Hy,Ga, H) is one and the same, so in ac-
cordance with upshot 1 out of theorem 1 with [5]
A € H(e). As H(e) = G, so altogether with
the equality (3) this finishes the proof of the the-
O

orem.
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2 Association of Maximal Subgroups

Lemma 1. Let R be the cyclic group of the order
free of squares, N < R is the subgroup. Then there
exists such a subgroup M < R, that R= N x M.

Proof. As R is cyclic, so R contains the subgroup
M of the order |R|/|N|. Except that, the numbers
|IN| i |R|/|N| are mutually simple. That’s why
NN M = E. On the other hand, |N|-|M| = |R|.
That’s why R= N x M. O

Let us note that if R, N and M are the same
as in the lemma, then elements of the subgroup M
can be taken as the representatives of the classes

of the adjacency of the group R by the subgroup
N.

Theorem 3. Let G be the finite group. The semi-
group of correspondences S(G) will be the union of
the groups only and only then when G is the cyclic
group of the order free of squares.

Proof. Adequacy. Let G be the cyclic group of
the order free of squares. Let us show that ev-
ery element A = (Hi,G1, Ha, G2, ¢) of S(G) is an
element of the group.

All the factors of the cyclic group are cyclic,
that’s why

Gl/Hl ~ GQ/HQ ~ Ck

for some k. It follows from lemma 1 that the rep-
resentatives of the class of the adjacency of the
group G; by the semigroup H; can be taken the
elements of some subgroup B; < G; of the order k.
In particular, B1, Bs < G. But the group G con-
tains only one subgroup of the order k. That’s why
B = By. Let By = By =< a >. Let the block of
the group A with the first projection Hja have the
form Hia x Hoa". As the class Hoa" is to be the
forming element of the factorgroup Ga/Ha, so r is
mutually simple with k. Besides, we have:

k—1
U (Hlaj X HQCLjT).
7=0

A=

That’s why the isomorphism
(Yol G1/H1 — GQ/HQ
acts as follows:

o(Hya?) = Hoa'" .
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Let us analyze now the element A%2 = Ao A:

k—1 k-1
A2 = U (Hlaj X Hgajr) o U (Hlaj X Hgajr).
=0 §=0

It is easy to check that

(Hlaj X Hgajr) o (Hlat X HgayT) =

)9, ifjr £t
N Hyd? x HgajTQ, ifjr =t.
Really, let
Hgajr N Hlat + 9,
then

hoa'" = hia' for some h; € H;, i=1,2.

Then /"t = h;lhl, so that a’"~* belongs to the
subgroup Hs - Hi. But the order of the subgroup
< a > is mutually simple with the order of each of
the group H; i Ha, and that’s why with the order
of the subgroup |Hs - H|. That’s why

<a>N(H, -H)=E.,d"'=e
and a’" = a.
Besides, out of the mutual simplicity i k it
outcomes that the congruence xr = t( mod k) has
the only solution for the arbitrary ¢. That’s why

k—1
U (Hlaj X HQCLer).
7=0

A? =

The isomorphism ¢ : Hja’ +— Hsa/" can
be identified with automorphism ¢ :
of the group <a>. As o = ©%(a’), so
A2 = (Hl, Gl, Hg, GQ, (,02).

By the induction on m it is analogically proved
that

al — al”

A™ = (Hl, Gl, H2a G27 %Om) .

But ¢, as the automorphism of the finite group
has the finite order ¢q. That’s why ¢! = ¢ and
A9t = A, So, it is generated by the element A
the cyclic subsemigroup is the cyclic group of the
order ¢, and the element A is a group. That is
why S(G) is the union of groups.
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Necessity. It is enough to show that for every A = {(aP*,a*) | 0 < k < p?} is the element out of

group G, that satisfies one of the conditions:

a) G is not cyclic;

b) G is cyclic and its order |G| is divided into
square p? of a simple number p, semigroup of cor-
respondences S(G) is not the union of the groups.

For this it is enough to show that in each of
these two cases the semigroup S(G) contains the
nongroup element.

a) Let the group G be not the cyclic one. Then
there exists such a number k, that the group G
contains 2 different cyclic subgroups of the order
k. Let it be G7 and G and let H = G1 N Gs.
There is the isomorphism: G; — G2, which
on the subgroup H acts identically. Let us
view the element A = (E,G1,E,Ga,¢). Then
A%? = (E,H,E, H,¢), where ¢ is the identified au-
tomorphism of the group H. While transferring
from A to A% both of the projections have less-
ened so there does not exists such ¢ that A? = A.
So, the element A is not of the group one.

b) Let < a > be a cyclic subgroup of
the order p? i3 G. Let us take Gy =< a? >,
G=<a> H = FE, Hy =< a >. Then
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S(G). Besides, A% = {(e,p") | 0 < k < p?}.

But for the arbitrary m > 1 the first projec-
tion of the element A™ will be equal to {e}. So,
A is not the group element. O

Corollary 1. If G is the group, so the semigroup
of correspondences S(G) will be the sheaf then and
only then when |G| < 2.

Proof. The each element is a group, so according
to theorem 2 the group G should be cyclic. If
|G| > 2, so the group G should have a nontrivial
automorphism ¢.

Let us choose such an element ¢ € G, that
©(g) #g. Let us view in S(G) the element
A ={(g,0(9))lg € G}

For this element H1 = Hy = E, G = Go = G.
Since p(gH1) = ¢(g) # g = gHa, so for A there is
not fulfilled condition 2 of theorem 1. That’s why
A is not the idempotentre and i S(G) is not the
link.

If |G| < 2, it is easy to check that S(G) is the

link. O
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