УДК 512.53

Тетяна В. Турка, к. ф.-м. наук ${ }^{1}$

Підгрупи напівгрупи відповідностей

${ }^{1}$ Донбаський державний педагогічний університет, 84116, Україна, Донецька обл., м. Слов'янськ, вул. Г. Батюка, 19,
e-mail: tvturka@mail.ru

Tetiana V. Turka, Ph. D. ${ }^{1}$
Subgroups of correspondences semigroup

${ }^{1}$ Donbass State Pedagogical University, 84116, Ukraine, Donetsk region, Slovyansk, Batyk str, 19.
e-mail: tvturka@mail.ru

Описано максимальні підгрупи напівгрупи відповідностей. Одержано необхідні і достатні умови, коли напівгрупа відповідностей буде об'єднанням груп.

Ключові слова: максимальна підгрупа, об'єднанняя груп.
There are described the maximal subgroups of semigroups of correspondences. Necessary conditions for an element of semigroup of correspondences to be an idempotent are declared. There are received necessary and efficient conditions for the semigroup of correspondences to be an union of groups. Also it is discussed then the semigroup of correspondences will be the sheaf.

Key words: maximal subgroup, union of groups.
Communicated by Prof. V.V. Kirichenko

Introduction

Let G be an universal algebra. As the subalgebra of $G \times G$ is viewed as a binary relation on G, so the set $S(G)$ of all subalgebras of $G \times G$ is a semigroup related to De Morgan's product of relations. The subgroup $S(G)$ is called the semigroup of correspondences of the algebra G. The problem of learning the semigroups of correspondences was set by Kurosh [2].

In the work [3] there is shown that when G is the group than the elements of the semigroup $S(G)$ can be identified by the fifths of the form $\left(H_{1}, G_{1}, H_{2}, G_{2}, \varphi\right)$, where

$$
H_{1} \triangleleft G_{1}<G, H_{2} \triangleleft G_{2}<G
$$

and φ is the isomorphism of the factorgroup G_{1} / H_{1} onto the factorgroup G_{2} / H_{2}. Herewith the related element of the semigroup $S(G)$ - as the subset out of $G \times G$ - has the form:

$$
\left(H_{1}, G_{1}, H_{2}, G_{2}, \varphi\right)=\bigcup_{a \in G_{1}}\left(a H_{1} \times \varphi\left(a H_{1}\right)\right)
$$

Sets of the form $a H_{1} \times b H_{2}$, where $b H_{2}=\varphi\left(a H_{1}\right)$, we shall call the blocks of elements $A=\left(H_{1}, G_{1}, H_{2}, G_{2}, \varphi\right)$.

1 Maximal Subgroups of Correspondences Semigroup

In [4] there are given the necessary and efficient conditions for the element $\left(H_{1}, G_{1}, H_{2}, G_{2}, \varphi\right)$ of the semigroup of correspondences to be idempotent. But they are too huge. There are far the simplest conditions but only necessary are given by the following theorem.
Theorem 1. Let G be a group. If the element $\left(H_{1}, G_{1}, H_{2}, G_{2}, \varphi\right)$ of the semigroup of correspondences $S(G)$ is idempotent, so there are fulfilled the following conditions:

1) $H_{1}\left(G_{1} \cap G_{2}\right)=G_{1}, \quad H_{2}\left(G_{1} \cap G_{2}\right)=G_{2}$;
2) for any $g \in G_{1} \cap G_{2} \quad \varphi\left(g H_{1}\right)=g H_{2}$.

Proof. Let the element

$$
A=\left(H_{1}, G_{1}, H_{2}, G_{2}, \varphi\right)
$$

be idempotent. Then for any block $a H_{1} \times b H_{2}$ from A we have:

$$
\left(a H_{1} \times b H_{2}\right) \circ\left(a H_{1} \times b H_{2}\right)=\left(a H_{1} \times b H_{2}\right)
$$

Hence

$$
b H_{2} \cap a H_{1}=\varnothing .
$$

Thus, for every adjacency class $a H_{1}$ of group G_{1} to subgroup H_{1} will be found such an element

$$
c \in a H_{1} \cap b H_{2} \subseteq G_{1} \cap G_{2}
$$

that $a H_{1}=c H$. But then

$$
H_{1}\left(G_{1} \cap G_{2}\right) \subseteq H_{1} G_{1}=G_{1}
$$

It can be similarly proved, that $H_{2}\left(G_{1} \cap G_{2}\right)=G_{2}$. This proves Condition 1).

For any $g \in G_{1} \cap G_{2}$ the element A has the blocks of the form $a H_{1} \times g H_{2}$ i $g H_{1} \times b H_{2}$. While $g \in g H_{1} \times g H_{2}$, then $g H_{1} \cap g H_{2} \neq \varnothing$, so

$$
\left(a H_{1} \times g H_{2}\right) \circ\left(g H_{1} \times b H_{2}\right)=\left(a H_{1} \times b H_{2}\right)
$$

On the other hand, from the idempotentness of the element A we have:

$$
\left(a H_{1} \times g H_{2}\right) \circ\left(a H_{1} \times g H_{2}\right)=a H_{1} \times g H_{2}
$$

So, A has the blocks $a H_{1} \times b H_{2}$ and $a H_{1} \times g H_{2}$. . The first components of blocks are similar, so $b H_{2}=g H_{2}$. There is similarly proved that $a H_{1}=g H_{1}$. But then

$$
\varphi\left(g H_{1}\right)=\varphi\left(a H_{1}\right)=b H_{2}=g H_{2}
$$

that proves Condition 2).

For any idempotent $e \in S$ let us define by G_{e} the maximal subgroup of S, for which e is the unit.

Theorem 2. Let G be the finite group, and the element $e=\left(H_{1}, G_{1}, H_{2}, G_{2}, \varphi\right)$ of the semigroup of correspondences $S(G)$ is the idempotent. Then

$$
\begin{aligned}
G_{e} & =\left\{\left(H_{1}, G_{1}, H_{2}, G_{2}, \psi \varphi\right) \mid \psi \in \operatorname{Aut}\left(G_{1} / H_{1}\right)\right\}= \\
& =\left\{\left(H_{1}, G_{1}, H_{2}, G_{2}, \varphi \psi\right) \mid \psi \in \operatorname{Aut}\left(G_{2} / H_{2}\right)\right\}
\end{aligned}
$$

In particular, if $G_{1}=G_{2}=G, \quad H_{1}=H_{2}=H$, $\varphi=\varepsilon$ is the identity automorphism, so

$$
G_{e}=\{(G, H, G, H, \psi) \mid \psi \in \operatorname{Aut}(G / H)\}
$$

Proof. It is easy to check that the element $f=\left(H_{1}, G_{1}, H_{1}, G_{1}, \varepsilon\right)$, where ε is the identity automorphism of the factor group G_{1} / H_{1}, will be the idempotent.

In [5] it was shown that the elements

$$
A^{\prime}=\left(H_{1}^{\prime}, G_{1}^{\prime}, H_{2}^{\prime}, G_{2}^{\prime}, \varphi^{\prime}\right)
$$

and

$$
A^{\prime \prime}=\left(H_{1}^{\prime \prime}, G_{1}^{\prime \prime}, H_{2}^{\prime \prime}, G_{2}^{\prime \prime}, \varphi^{\prime \prime}\right)
$$

belong to one class \mathcal{D} of the semigroup $S(G)$ then and only then when

$$
G_{1}^{\prime} / H_{1}^{\prime} \simeq G_{2}^{\prime} / H_{2}^{\prime} \simeq G_{1}^{\prime \prime} / H_{1}^{\prime \prime} \simeq G_{2}^{\prime \prime} / H_{2}^{\prime \prime}
$$

If $G_{1}^{\prime} / H_{1}^{\prime} \simeq F$, we shell say that the correspondent \mathcal{D} class is defined by the factor F.

That's why the idempotents e and f will be \mathcal{D} equivalent. According to the theorem by Green (see [1], theorem 4.7.5) the maximal subgroups G_{e} and G_{f} are isomorphic. That's why there is some sense at first to analyze the final part of the theorem.

Therefore, let $e=(G, H, G, H, \varepsilon)$, where ε is identity automorphism of the factorgroup G / H. In accordance with upshot 1 out of theorem 1 from [5] \mathcal{H} is the class $\mathcal{H}(e)$, which coincides with G_{e}, contains $|\operatorname{Aut}(G / H)|$ elements. That's why to prove the final part of the theorem it is enough to show that every element of the look $A=(G, H, G, H, \varphi)$, where $\varphi \in \operatorname{Aut}(G / H)$, belongs to G_{e}. We have:

$$
\begin{equation*}
(g H, \varphi(g H)) \circ(\varphi(g H), g H)=(g H, g H) \tag{1}
\end{equation*}
$$

On the other hand, if $g H \neq g^{\prime} H$, то $g H \cap g^{\prime} H=\varnothing$, where $\varphi(g H) \cap \varphi\left(g^{\prime} H\right)=\varnothing$ and

$$
\begin{equation*}
(g H, \varphi(g H)) \circ\left(\varphi\left(g^{\prime} H\right), g^{\prime} H\right)=\varnothing \tag{2}
\end{equation*}
$$

Out of the equalities (1) and (2) it follows that for the element

$$
A^{-1}=\left(G, H, G, H, \varphi^{-1}\right)
$$

there will be $A \circ A^{-1}=e$. That's why $A \in G_{e}$.
Now let $e=\left(G_{1}, H_{1}, G_{2}, H_{2}, \varphi\right)$ be the arbitrary idempotent. Out of the proved above it follows that

$$
\begin{equation*}
\left|G_{e}\right|=\left|\left\{\left(G_{1}, H_{1}, G_{2}, H_{2}, \varphi \psi\right) \mid \psi \in \operatorname{Aut}\left(G_{2} / H_{2}\right)\right\}\right| \tag{3}
\end{equation*}
$$

On the other hand, as for the element

$$
A=\left(G_{1}, H_{1}, G_{2}, H_{2}, \varphi \psi\right)
$$

and the idempotent $e=\left(G_{1}, H_{1}, G_{2}, H_{2}, \varphi\right)$ four $\left(G_{1}, H_{1}, G_{2}, H_{2}\right)$ is one and the same, so in accordance with upshot 1 out of theorem 1 with [5] $A \in \mathcal{H}(e)$. As $\mathcal{H}(e)=G_{e}$, so altogether with the equality (3) this finishes the proof of the theorem.

2 Association of Maximal Subgroups

Lemma 1. Let R be the cyclic group of the order free of squares, $N \unlhd R$ is the subgroup. Then there exists such a subgroup $M \leqslant R$, that $R=N \times M$.

Proof. As R is cyclic, so R contains the subgroup M of the order $|R| /|N|$. Except that, the numbers $|N|$ i $|R| /|N|$ are mutually simple. That's why $N \cap M=E$. On the other hand, $|N| \cdot|M|=|R|$. That's why $R=N \times M$.

Let us note that if R, N and M are the same as in the lemma, then elements of the subgroup M can be taken as the representatives of the classes of the adjacency of the group R by the subgroup N.

Theorem 3. Let G be the finite group. The semigroup of correspondences $S(G)$ will be the union of the groups only and only then when G is the cyclic group of the order free of squares.

Proof. Adequacy. Let G be the cyclic group of the order free of squares. Let us show that every element $A=\left(H_{1}, G_{1}, H_{2}, G_{2}, \varphi\right)$ of $S(G)$ is an element of the group.

All the factors of the cyclic group are cyclic, that's why

$$
G_{1} / H_{1} \simeq G_{2} / H_{2} \simeq C_{k}
$$

for some k. It follows from lemma 1 that the representatives of the class of the adjacency of the group G_{i} by the semigroup H_{i} can be taken the elements of some subgroup $B_{i} \leqslant G_{i}$ of the order k. In particular, $B_{1}, B_{2} \leqslant G$. But the group G contains only one subgroup of the order k. That's why $B_{1}=B_{2}$. Let $B_{1}=B_{2}=<a>$. Let the block of the group A with the first projection $H_{1} a$ have the form $H_{1} a \times H_{2} a^{r}$. As the class $H_{2} a^{r}$ is to be the forming element of the factorgroup G_{2} / H_{2}, so r is mutually simple with k. Besides, we have:

$$
A=\bigcup_{j=0}^{k-1}\left(H_{1} a^{j} \times H_{2} a^{j r}\right)
$$

That's why the isomorphism

$$
\varphi: G_{1} / H_{1} \rightarrow G_{2} / H_{2}
$$

acts as follows:

$$
\varphi\left(H_{1} a^{j}\right)=H_{2} a^{j r}
$$

Let us analyze now the element $A^{2}=A \circ A$:

$$
A^{2}=\bigcup_{j=0}^{k-1}\left(H_{1} a^{j} \times H_{2} a^{j r}\right) \circ \bigcup_{j=0}^{k-1}\left(H_{1} a^{j} \times H_{2} a^{j r}\right)
$$

It is easy to check that

$$
\begin{aligned}
& \left(H_{1} a^{j} \times H_{2} a^{j r}\right) \circ\left(H_{1} a^{t} \times H_{2} a^{y r}\right)= \\
& \quad=\left\{\begin{array}{l}
\varnothing, \text { if } j r \neq t ; \\
H_{1} a^{j} \times H_{2} a^{j r^{2}}, \text { if } j r=t
\end{array}\right.
\end{aligned}
$$

Really, let

$$
H_{2} a^{j r} \cap H_{1} a^{t} \neq \varnothing
$$

then

$$
h_{2} a^{j r}=h_{1} a^{t} \text { for some } h_{i} \in H_{i}, i=1,2
$$

Then $a^{j r-t}=h_{2}^{-1} h_{1}$, so that $a^{j r-t}$ belongs to the subgroup $H_{2} \cdot H_{1}$. But the order of the subgroup $<a\rangle$ is mutually simple with the order of each of the group H_{1} i H_{2}, and that's why with the order of the subgroup $\left|H_{2} \cdot H_{1}\right|$. That's why

$$
<a>\cap\left(H_{1} \cdot H_{2}\right)=E, a^{j r-t}=e
$$

and $a^{j r}=a^{t}$.
Besides, out of the mutual simplicity i k it outcomes that the congruence $x r \equiv t(\bmod k)$ has the only solution for the arbitrary t. That's why

$$
A^{2}=\bigcup_{j=0}^{k-1}\left(H_{1} a^{j} \times H_{2} a^{j r^{2}}\right)
$$

The isomorphism $\varphi: H_{1} a^{j} \mapsto H_{2} a^{j r}$ can be identified with automorphism $\varphi: a^{j} \mapsto a^{j r}$ of the group $<a>$. As $a^{j r^{2}}=\varphi^{2}\left(a^{j}\right)$, so $A^{2}=\left(H_{1}, G_{1}, H_{2}, G_{2}, \varphi^{2}\right)$.

By the induction on m it is analogically proved that

$$
A^{m}=\left(H_{1}, G_{1}, H_{2}, G_{2}, \varphi^{m}\right)
$$

But φ, as the automorphism of the finite group has the finite order q. That's why $\varphi^{q+1}=\varphi$ and $A^{q+1}=A$. So, it is generated by the element A the cyclic subsemigroup is the cyclic group of the order q, and the element A is a group. That is why $S(G)$ is the union of groups.

Necessity. It is enough to show that for every group G, that satisfies one of the conditions:
a) G is not cyclic;
b) G is cyclic and its order $|G|$ is divided into square p^{2} of a simple number p, semigroup of correspondences $S(G)$ is not the union of the groups.

For this it is enough to show that in each of these two cases the semigroup $S(G)$ contains the nongroup element.
a) Let the group G be not the cyclic one. Then there exists such a number k, that the group G contains 2 different cyclic subgroups of the order k. Let it be G_{1} and G_{2} and let $H=G_{1} \cap G_{2}$. There is the isomorphism: $G_{1} \rightarrow G_{2}$, which on the subgroup H acts identically. Let us view the element $A=\left(E, G_{1}, E, G_{2}, \varphi\right)$. Then $A^{2}=(E, H, E, H, \varepsilon)$, where ε is the identified automorphism of the group H. While transferring from A to A^{2} both of the projections have lessened so there does not exists such q that $A^{q}=A$. So, the element A is not of the group one.
b) Let $<a>$ be a cyclic subgroup of the order p^{2} із G. Let us take $\left.G_{1}=<a^{p}\right\rangle$, $G=<a>, \quad H_{1}=E, \quad H_{2}=<a>$. Then

Список використаних джерел

1. Ganyushkin O. Classical Finite Transformation Semigroups / O. Ganyushkin, V. Mazorchuk. - An Introduction - Springer-Verlag. - 2009. - 314 p.
2. Kypou А.Г. Общая алгебра (лекции 196970 учебного года) / А.Г. Курош. - Москва: Наука, 1974. - 160 с.
3. Ганюшкін О.Г. Порядок напівгрупи відповідностей скінченної групи / О.Г. Ганюшкін, Т.В. Турка // Вісник Київського університету. Серія: фіз.-мат. науки. - 2009. - №3. - С. 9-13.
4. Ганюшкін O. Про ідемпотенти напівгрупи відповідностей / О. Ганюшкін, Т. Турка // Труды института прикладной математики и механики НАН Украины. - Донецк 2012. - Т.24. - С. 68-77.
5. Tурка T. Відношення Гріна на напівгрупі відповідностей скінченної групи / Т. Турка // Вісник Київського університету. Серія: фіз.-мат. науки. - 2010. - №4. - С. 38-42.
$A=\left\{\left(a^{p k}, a^{k}\right) \mid 0 \leqslant k \leqslant p^{2}\right\}$ is the element out of $S(G)$. Besides, $A^{2}=\left\{\left(e, p^{k}\right) \mid 0 \leqslant k<p^{2}\right\}$.

But for the arbitrary $m>1$ the first projection of the element A^{m} will be equal to $\{e\}$. So, A is not the group element.

Corollary 1. If G is the group, so the semigroup of correspondences $S(G)$ will be the sheaf then and only then when $|G| \leqslant 2$.

Proof. The each element is a group, so according to theorem 2 the group G should be cyclic. If $|G|>2$, so the group G should have a nontrivial automorphism φ.

Let us choose such an element $g \in G$, that $\varphi(g) \neq g$. Let us view in $S(G)$ the element $A=\{(g, \varphi(g)) \mid g \in G\}$.

For this element $H_{1}=H_{2}=E, G_{1}=G_{2}=G$. Since $\varphi\left(g H_{1}\right)=\varphi(g) \neq g=g H_{2}$, so for A there is not fulfilled condition 2 of theorem 1. That's why A is not the idempotentне and i $S(G)$ is not the link.

If $|G| \leqslant 2$, it is easy to check that $S(G)$ is the link.

References

1. GANYUSHKIN, O., MAZORCHUK, V. (2009) Classical Finite Transformation Semigroups. An Introduction - Springer-Verlag.
2. KUROSH, A.G. (1974) Obshchaya algebra (lekzii 1969-70 uchebnogo goda). Moskva: Nauka.
3. GANYUSHKIN, O., TURKA, T. (2009) Poryadok napivgrupy vidpovidnostei skinchennoi grupy. Visnyk Kyivs'kogo universytetu. Seriya: fiz.-mat. nauky. № 3. pp. 9-13.
4. GANYUSHKIN, O., TURKA, T. (2012) Pro idempotenty napivgrupy vidpovidnostei. Trudy instituta prikladnoi matematiki i mehaniki NAN Ukrainy. V 24. - pp. 68-77.
5. TURKA, T. (2010) Vidnoshennya Grina na napivgrupi vidpovidnostei skinchennoi grupy. Visnyk Kyivs'kogo universytetu. Seriya: fiz.mat. nauky. № 4. - pp. 38-42.

Received: 12.12.2013

