Bicnux Kuiscvkoeo nayionanvhozo yHieepcumemy 2014, 2
imeni Tapaca Lllesuenxa

Cepis ¢hizuxo-mamemamuuni HayKu

Bulletin of Taras Shevchenko
National University of Kyiv
Series Physics & Mathematics

YK 004.75

O. V. Hordiichuk', postgraduate Copaiitayk O. B.!, acmipant

A congestion control algorithm for video
multicasting in peer-to-peer networks

AJITOPUTM KOHTPOJIIO NepeBAHTAKEHb A
HIMPOKOMOBHOI Nepeayi Biieo B 0THOPAHTOBUX
Mepeskax
" Taras Shevchenko National University of Kyiv, !
83000, Kyiv, Glushkova st., 4d,

KuiBchkuil HamioHambHUI yHIBEpCHTET iMeEHi
Tapaca IlleBuenka, 83000, m. KuiB, np-t. I'nmymkoBa
4n,

e-mail: oleg.gordiychuck@gmail.com e-mail: oleg.gordiychuck@gmail.com

Iepesanmadicennss KOMN IOMEPHUX MeEPENHC BUHUKAE 6HACTIOOK GIONPAGKU NAKemiq, KINbKiCMb SKUX
nepesuwjye NPonycKHy 30amHicme Hanpamy nepeoaui. Yepes ye neeua KinbKicme naxemie He 00Xo0uns 00
ooepaicysaua abo Hao0xooums i3 3HaA4HOI0 3ampumkoio. [eupiuenns yux npooiem UKOPUCIOBYIOMbCS
aneopummu KOHMPOAI0 MAa YHUKHEHHSA Nepesanmaiceib 8 Mepeixcax, AKi 3acmoco8yiomscs Yy npomoKoLax
NPUKIAOHO20 DIBHS.

B oaniii cmammi npononyemuvca HO8Ull anzopumm KOHMPONIO NepeSaHmadCeHsb, AKUll nepedac Oaui
AKoMoea OLnbWitl KibKOCmi OmpumMy8ayié i 6 mou dce 4ac MIHIMI3Y€E KiIbKICMb 8MpayeHux naxkemis ma
3amMpumMKy nepeoadi, wo € NPUHYUNOBUM MOMeHmMOM Oas eideompanciayin. Ha eiominy 6i0 icHytouux
PO3PO6OK OaHUll ANOPUMM BUKOPUCMOBYE IHQOpMAYil0 NpPO NepesaHmadcenHs oopaszy 6i0 Yycix
OmMpUMYIOUUX 8y31i8, WO HAO0AE 3MO2y Oilbuwl epeKmusHo BUKOPUCMOBYBAMU MepexCcy 3d pPAXyHOK
00'exmugnoi oyinku nasanmadgicensv. Takooic 3anponoHosanuii nioxio He nompeodye 000amKo8oi 3amMpUMKU
nepeo 8iONpasKoio KOXCHO20 NAKEMmY, Wo NOKPAWYE AKICMb cepeicy 0a KiHYesux Kopucmysauie ma nadae
3MO2Y BUKOPUCIOBYB8AMU 11020 8 0OHOPAH208UX MepexCax 0epedonodionozo muny 01s 8i0eo mpaHcaayill.

Knrouosi cnosa: koumpons nepesanmasicens, YHUKHEHHS NePEeBAHMANCENb, 0OHOPAH208I MepediCi,
WUPOKOMOBHA nepedatda.

A network congestion occurs due to transmitting amount of packets that is bigger than link’s bandwidth.
That’s why some of packets are lost or arrived with significant delay. Congestion control and avoidance
algorithms are used for solving these problems and implemented as application layer protocols.

In this paper proposed a new congestion control algorithm that sends data to as much as possible
receivers and at the same time an amount of lost packets and transmission delay are minimized that is very
important for video streaming. Such approach provides more efficient bandwidth utilization by using
impartial assessment of the network load unlike existing solutions and also it doesn’t need additional delay
before sending every packet that improves the QoE (quality of experience) for end users and this enables its
usage in a tree-like peer-to-peer networks for video streaming.

Key Words: congestion control, congestion avoidance, peer-to-peer networks, multicasting.

CrarTio peacTaBuB A.T.H., pod. [loropinuii C. /.

Introduction There are different schemes for solving this

problem that implemented in network protocols. The

The network congestion is an old problem that
appeared at the same time as the Internet. It’s
happened due to limited capabilities of the routing
hardware that transmits data with abnormal sending
rate. If transmission rate exceeds hardware limits
then each new packet is pushed to a waiting queue
and when it’s full then packet is dropped. That’s why
there is a need for an algorithm that provides
efficient and fast data transmission.

© O.B. I'opaiitayx, 2014

most widespread is a congestion control in TCP\IP.
It has been improving during developing of the
Internet and that’s why there are lot of
implementations like Tahoe and Reno, Vegas,
CUBIC, Westwood+ and others [1]. The main idea
of this congestion control algorithm is to provide fast
data transmission with fair network bandwidth usage
among all applications. All implementations of
TCP\IP congestion avoidance mechanism use only

112

Bicnux Kuiscbroeo nayionanbno2o yHieepcumemy
imeni Tapaca Lllesuenxa
Cepis ¢hizuxo-mamemamuuni HayKu

the packet loss as an indicator of the network
overloading. But this approach is not good for all
network types. For example, LTE, 3G and ADSL
routers have big waiting queues and in this case
congestion detection happens much later (depending
on the queue size) than a real event occurs. The
algorithm that proposed in this paper also uses the
packet loss event as the indicator of the network
congestion, but on the other hand it reacts more
smoothly.

A solution of the big queue problem was
proposed in LEDBAT [2] scheme that is used in
uTP. In this approach each time a sender transmits
new packet it stores current machine time t; in
microseconds in the special field. After packet
arrives the receiver calculates difference d = t; —
t,, where t, is a current time and sends this value
back to the sender. Although clocks of the sender
and the receiver are not synchronized and this task is
not even solvable with microseconds accuracy, the
minimum value of d (d;,;,) represents a situation
when the waiting queue is empty. That’s why if
compare each new value d with d,,;, it’s possible to
estimate router’s queue size. The LEDBAT uses this
heuristic for the congestion control and tries not to
exceed the queue size for more than 100ms. The
solution described here also uses such approach for
detecting the network congestion.

There is also a hybrid solution that is called TCP
friendly rate control (TFRC) [3]. It uses a throughput
equation that is based on different parameters like a
round-trip time, a loss event rate, a retransmission
timeout and others. This protocol is much smoother
than classical TCP congestion control.

Besides protocols described above there are
different other congestion avoidance solutions like
DCCP [4] that can use different algorithms and
Sprout [5] that uses stochastic forecasts for achieving
high throughput and low delay, but only for cellular
networks, where big waiting queue are used. In this
paper considered the algorithm that rely on receiving
speed rather on forecasts because it has more
accurate information about network congestion due
to receiving information from different sources.

Although there were different attempts to solve
this problem, all of them are not well suitable for live
streaming in peer-to-peer networks because of their
delivery time constraints. This paper proposes a new
congestion control algorithm that has a goal to
transmit as much as possible data for the shortest
period of time. It doesn’t provide fairness for other
streams and tries to capture all available bandwidth,
however at the same time it doesn’t overload router
and keeps the waiting queue free.

2014, 2

Bulletin of Taras Shevchenko
National University of Kyiv
Series Physics & Mathematics

Congestion detection and virtual network
queue

As it was mentioned before the network
congestion occurs when routers traffic exceeds its
bandwidth capabilities. The main indicator of
network congestion is a packet loss. Each router
maintains its queue using some algorithm such as
random early detection [6], weighted random early
detection (an improved type of previous algorithm),
Blue [7] or tail-drop [8] that are called in general as
active queue management. The tail-drop approach
drops all packets that couldn’t be pushed into the
queue. Random early detection drops random
packets instead of those that come last. It helps to
make data transmission fairer as congestion will be
detected earlier than the waiting queue becomes full.

A variety of the queue management mechanisms
is a main problem for any congestion avoidance
algorithm as it’s impossible to detect what kind of
algorithm is used in current situation. An only
possible way to detect network congestion is to
collect data about lost packets and transmission
delay. But not all lost packets indicate the congestion
as in all types of wireless networks (wi-fi, bluetooth,
EDGE, 3G and LTE) this event may occur due to
physical characteristics of an environment. That’s
why classical TCP\IP implementations as well as
other algorithms have poor performance in networks
where errors are possible. The same problem
concerns the network delay estimation. Not all
routers have so big waiting queue that congestion
algorithm could detect it and at the same time
doesn’t garble it with a network noise. Again the
wireless networks may not have stable environment
and measurement of delay may be inaccurate. For
example, node with EDGE modem may have
difference between upper and lower bound of the
round trip time wup to several seconds. In
consequence to these facts there is no detection
scheme that works excellent in all possible cases of
the network congestion.

A possible solution is to use another indicator of
the congestion that doesn’t affect the packet loss
problem. It’s known that congestion occurs when
sending rate is bigger than receiving rate and usage
of this fact is enough for a correct guess. But in fact
we can’t estimate sending and receiving rate and
make correct assumption because this information
holds on opposite side. Information about receiving
rate should be sent back to the sender. Due to the fact
that round trip time could reach hundreds of

113

Bicnux Kuiscbroeo nayionanbno2o yHieepcumemy
imeni Tapaca Lllesuenxa
Cepis ¢hizuxo-mamemamuuni HayKu

milliseconds this information couldn’t be used in
such way.

The congestion algorithm may use a virtual queue
instead. The sender puts every packet into its virtual
queue and it holds there until the acknowledgement
packet (ACK) is received. In case when the
acknowledgement hasn’t received in time (the
packet’s age reached a retransmission timeout, RT),
the sender erases the packet from the queue and
resends it again. This process is described in figure 1
and 2. This is very similar to a sending window in
TCP\IP congestion control mechanism, but unlike
“window” approach the virtual queue doesn’t have
limits in size and sender doesn’t increase or decrease
it. Instead it just simulates a real situation at the
queue of router that is a bottleneck of the
transmission.

Figure 1. The virtual queue, where blue colored
packets represent situation when sender has received
an acknowledgement for them and red-colored is a
lost packet.

D=~~~

Figure 2. The virtual queue after previous state. Here
the lost packet (marked as purple) is erased from the
head and pushed to the tail and green-colored
packets are new coming.

Local congestion control

While the virtual queue can’t evaluate exact size
of the router’s queue, it is very useful for the
congestion control. If the virtual queue grows during
constant data transmission it means that link is
overloaded and speed should decrease, because more
and more packets are not delivered. Besides this fact
if the virtual queue becomes smaller in size it means
that additional bandwidth is available. But if sending
rate is not constant the situation becomes more
complicated. In this case if rate increases the queue’s
size may also increase in two cases — just as normal
reaction on a rate change and if the congestion
occurs. That’s why the size of virtual network queue
couldn’t be used as a good congestion indicator. As
it was mentioned in previous chapter the network
overloading could be detected when packet is lost or

2014, 2

Bulletin of Taras Shevchenko
National University of Kyiv
Series Physics & Mathematics

sending delay is more than a threshold, but at the
same time these approaches have major
disadvantages that aren’t acceptable for video
multicasting due to their inaccuracy.

A possible solution is to use a mixed approach —
properties of the virtual queue and congestion
indicators such as the delay and the packet loss. Let’s
look at the so known bandwidth-delay product
formula:

q
b=1 (1)

Here b is a maximum possible bandwidth or a
sending rate on the link in bytes per second, g is a
queue size in bytes and r is a round-trip time in
seconds. It’s not hard to notice that the bigger size
has queue — the more data could be delivered to the
destination and that from some moment increasing
this value will not affect on the actual amount of
delivered data. On the other hand it’s possible to
predict the queue size if the sending rate increases or
decreases. Let b; and b, are different sending rates
of the same link, then size of the second queue could
be represented by the following transformations:

ﬁ _ N

b, T1iq;

_ qi7m2by
r1bg

q2 =q:C (2)
Using this formula the congestion control could

be applied as following: every time the sending rate

. by .. .

increased b—z times then the resulting queue should
1

2

b, ..
2 times. At each
r1by

step the congestion control algorithm sets the value:

3)

This continues until formula 2 is true. Such
approach guarantees that congestion will be found by
not more than [logz bj] steps, where b; is the
maximum possible sending rate. Otherwise if the
congestion occurred, it could be eliminated if reduce
bandwidth to a next value:

increase no more then by ¢ =

br+1 = 2by by =1

b — Ark+1Tk
ke+1 Tk+149kbk

4)

For every next step this algorithm schedules at 7y,
seconds after, which guarantees that it can
adequately notice changings in the network.

But it should be mentioned that formula 1 is not
correct for cases where packet loss is a normal
behavior of the current link and doesn’t related to the
network congestion. Also some noise could appear

114

Bicnux Kuiscbroeo nayionanbno2o yHieepcumemy
imeni Tapaca Lllesuenxa
Cepis ¢hizuxo-mamemamuuni HayKu

due to CPU load or other factors while measuring
value r. That’s why the following statement should
replace formula 2:

1-A<2 <144

q1¢

)

The value of A represents a possible error. As for
multicasting even small probability of packet loss is
considerable and at the same time the noise could be
very noticeable, the A should be compromise. For
example, A= 0.15 could be such value for the wi-fi
link with moderate signal. More accurate value could
be achieved by a direct measuring of packet loss
probability that could be done by using multicast
congestion control described in the next section.

Also it’s possible to use a LEDBAT delay
measurement congestion control [2] together with
the proposed algorithm. Such approach increases
efficiency of bandwidth utilization. Reducing
sending delay is not described here, because it’s
beyond the scope of this article.

The main difference between proposed algorithm
and the TCP\IP congestion control is that on the one
hand it rapidly increases the bandwidth and on the
other hand it smoothly decreases it if the network is
overloaded. Besides these properties it’s also
designed for multicasting, as each new packet
shouldn’t wait, until it will be sent. Instead it
transmits immediately, which guarantees low
delivery delay.

Multicasting congestion control

While the local congestion control algorithm is
quite efficient, it could be improved by using
information from multiple sources. A video stream
has a property that is called a bitrate w — it’s a speed
of link in bytes per second. It could be constant or
variable. Nevertheless it has some average value
during all streaming that is known before actual start.
Some multicasting peer-to-peer solutions like
ChunkySpread [9] and Tailcast [10] uses a tree
topology for data delivery. It’s very useful to divide
stream into j substreams, because it means that
sender can transmit data to several receivers with
different speed. For example, packets with identifiers
1,1+j,1+2j,... belong to the substream #]I,
packets with identifiers 2,2 + j,2 + 2j, ... belong to
the substream #2 and so on. In this case each
substream has bitrate equal to %

In peer-to-peer video streaming networks one of
the most important task is to use as much as possible
of available bandwidth of each participant, because
in any type of the swarm (mesh or tree) the main

2014, 2

Bulletin of Taras Shevchenko
National University of Kyiv
Series Physics & Mathematics

index is an end-user receiving delay. It means the
difference between a time when packet produced and
delivered to the destination. If a video data divided
into many substreams it’s possible to use nearly all
available bandwidth of the peer. But it’s also
important to transmit data to the same peers during
living in the swarm, because effect of “changing
hands” needs additional time that impacts on the
QoE (Quality of Experience) for the end-user. In
congestion control algorithms, that are proposed in
existing works, it’s nearly impossible, but using the
algorithm proposed here it’s an easy task for any
peer-to-peer tree topology.

For this the virtual queue idea and controlling
algorithm is extended. Instead of local congestion
control the peer can choose its sending rate
according to information received from several
destinations at the same time. In such systems the
bottleneck is at the sending side, because peers that
haven’t enough receiving capabilities leave the
network soon due to inability to watch the video
stream. That’s why a global approach that combines
ideas described in previous chapter and retrieving
information from different sources may be used that
could be described as an algorithm that could be set
by the next methods:

function GetOldestFreeNeighbor(N,s)
begin
for i:=1 to |N| do
for j:=1 to s do
begin
if N[i].substreams[j] then
return pair(i,j);
end
return null;
end

function GetY oungestBusyNeighbor(N,s)
begin
for i:=|N| to 1 do
for j:==s to 1 do
begin
if N[i].substreams[j] then
return pair(i,j);
end
return null;
end

event OnBandwidthIncreased(N,b,s)
begin
for i:=1 to b do
begin
p:=GetOldestFreeNeighbor(N,s);

115

Bicnux Kuiscbroeo nayionanbno2o yHieepcumemy
imeni Tapaca Lllesuenxa
Cepis ¢hizuxo-mamemamuuni HayKu

if p != null then
N[p.first].substreams[p.second] = true;
end
end

event OnBandwidthDecreased(N,b,s)
begin
for i:=1 to b do
begin
p:=GetY oungestBusyNeighbor(N,s);
if p != null then
begin
N[p.first].substreams[p.second] = false;
end
end
end

event OnPacketReceived(N,stream_index,packet)
begin
for i:=1 to [N| do
if N[i].substreams[stream_index] then
begin
Send(N[i],packet);

end

end

Here N is a set of neighbors; N also contains a
field “substreams” — a boolean array, where each
value indicates if this neighbor should receive
packets of provided substream or no; b — number of
substreams count that could be increased or
decreased during current congestion control.
OnBandwidthlncrease is called each time when the
additional bandwidth is avaliable that’s determined
by (5) and the value b is calculated using (3);
OnBandwidthDecrease is called each time when the
congestion occurs that’s also determined by (5) and
value b is calculated using (4); OnPacketReceived is
called each time when a new packet is generated by a
video source or received from another peer.

Combining the local congetsion control algorithm
from the previous chapter and the multicasting peer-
to-peer algorithm provides an efficient solution. It
eliminates necessity of using TCP\IP and at the same
time it could be implemented over the UDP protocol.
But it also could be implemented as a transport level
protocol and embed into operational system.

This algorithm solves the problem of delayed
delivery as the sending rate is always chosen
according to an avaliable bandwidth and also solves
the problem of frequent changings of destination

2014, 2

Bulletin of Taras Shevchenko
National University of Kyiv
Series Physics & Mathematics

peers that leads to a better quality of expierence for
end users.

Conclusion

In this paper presented a new congestion control
algorithm and its implemantion for a tree-based peer-
to-peer network. Separately existing algorithms were
examined with their benefits and drawbacks. It has
shown that on the one hand most of them have
problems in slow detecting and reacting on the
network congestion that make them impossible to
use in peer-to-peer video streaming. And at the same
time some useful ideas such as the detection of
sending delay could be reused in the algorithm
proposed here.

The virtual network queue is a kind of “sending
window” that represents a delayed situation on the
real router queue and doesn’t have limits in size.
This approach results to a better congestion
detection, because it doesn’t depend on the packet
loss that happend due to the network environment. It
is used for constructing the congestion control
algorithm that is based on the idea of comparing
current queue size within expectable value.
Achieving optimal sending rate and congestion
avoidance that is done by the binary search algorithm
and the exact overloading estimation leads to a
smooth control of the sending rate. Special attention
payed to the possible packet loss and noise during
estimation - the proposed algorithm is extended with
additional error check for considering such behavior.

All in all the multicasting congestion control
algorithm is proposed. This solution extends the idea
of the local congestion control to a global level,
where several sources (neighbors) of congestion are
used for the management. Diversity of sources
provides more accurate estimation of the network
overloading that leads to a better link utilization.

The results could be used in a tree-base peer-to-
peer networks and moreover it guarantees that every
packet will be deliverd in a shortest period of time. It
leads to a better quality of expierience for end users
and makes possible to significantly reduce a delivery
delay in such systems. It was specially designed for a
Tailcast topology that has been implemented by the
author before. However, exact performance
evaluation should be additionaly done and it’s a
target for the future researches.

116

Bicnux Kuiscbroeo nayionanbno2o yHieepcumemy

imeni Tapaca Lllesuenxa
Cepis ¢hizuxo-mamemamuuni HayKu

10.

Cnucok BUKOPUCTAHUX JZKEPEJI

Grieco L. A., Mascolo S. Performance
evaluation and comparison of Westwood+,
New Reno, and Vegas TCP congestion
control //ACM SIGCOMM Computer
Communication Review. — 2004. — T. 34. —

Ne. 2. —C. 25-38.
Rossi D. et al. LEDBAT: the new BitTorrent
congestion control protocol //Computer

Communications and Networks (ICCCN),
2010 Proceedings of 19th International
Conference on. — IEEE, 2010. - C. 1-6.
Padhye J., Widmer J. TCP friendly rate
control (TFRC): Protocol specification. —
2003.

Kohler E., Handley M., Floyd S. Designing
DCCP: Congestion control without reliability
//ACM SIGCOMM Computer
Communication Review. — ACM, 2006. — T.
36.—Ne. 4. - C. 27-38.

Winstein K. et al. Stochastic forecasts achieve
high throughput and low delay over cellular
networks //Proc. USENIX NSDI. — 2013. —T.
13.

Floyd S., Jacobson V. Random early
detection gateways for congestion avoidance
//Networking, IEEE/ACM Transactions on. —
1993. - T. 1. — Ne. 4. — C. 397-413.

Feng W. et al. BLUE: A new class of active
queue management algorithms //Ann Arbor. —
1999. - T. 1001. - C. 48105.

Brandauer C. et al. Comparison of tail drop
and active queue management performance
for bulk-data and web-like internet traffic
//Computers and Communications, 2001.
Proceedings. Sixth IEEE Symposium on. —
IEEE, 2001. — C. 122-129.

Venkataraman V., Yoshida K., Francis P.
Chunkyspread: Heterogeneous unstructured
tree-based peer-to-peer multicast //Network
Protocols, 2006. ICNP'06. Proceedings of the
2006 14th IEEE International Conference on.
—1EEE, 2006. — C. 2-11.

Hordiichuk O. Tailcast-A Distributed
Multicast System with Low End-User Delays.
/I Theoretical and Applied Aspects of
Cybernetics. Proceedings of the 3rd
International ~ Scientific =~ Conference of
Students and Young Scientists, 2013, C. 279-
286.

117

2014, 2

10. HORDIICHUK O.

Bulletin of Taras Shevchenko
National University of Kyiv
Series Physics & Mathematics

References

. GRIECO, L. A, MASCOLO, S., (2004)

Performance evaluation and comparison of
Westwood+, New Reno, and Vegas TCP
congestion control. In ACM SIGCOMM
Computer Communication Review. T. 34. —
Ne. 2. —pp. 25-38.

. ROSSI, D. et al. (2010) LEDBAT: the new

BitTorrent congestion control protocol. In
Computer Communications and Networks
(ICCCN), Proceedings of 19th International
Conference on. — [EEE, 2010. — pp. 1-6.

PADHYE, J., WIDMER, J. (2003) TCP

friendly rate control (TFRC): Protocol

specification.

. KOHLER, E., HANDLEY, M., FLOYD S.

(2006) Designing DCCP: Congestion control
without reliability. In ACM SIGCOMM
Computer Communication Review. — ACM,
T.36.— Ne. 4. — pp. 27-38.

. WINSTEIN, K. et al. (2013) Stochastic

forecasts achieve high throughput and low
delay over cellular networks. In Proc.
USENIX NSDI. —p. 13.

. FLOYD, S., JACOBSON, V. (1993) Random

early detection gateways for congestion
avoidance. In Networking, IEEE/ACM
Transactions on. T. 1. — Ne. 4. — pp. 397-
413.

. FENG, W. et al. (1999) BLUE: A new class

of active queue management algorithms.
Ann Arbor.

. BRANDAUER, C. et al. (2001) Comparison

of tail drop and active queue management
performance for bulk-data and web-like
internet traffic. In Computers and
Communications. Proceedings. — pp. 122-
129.

. VENKATARAMAN, V., YOSHIDA, K,

FRANCIS, P. (2006) Chunkyspread:
Heterogeneous unstructured tree-based peer-
to-peer multicast. In Network Protocols,.
ICNP'06. Proceedings of the 2006. — pp. 2-
11.

(2013), Tailcast-A
Distributed Multicast System with Low End-
User Delays. In Theoretical and Applied
Aspects of Cybernetics. Proceedings of the
3rd International Scientific Conference of
Students and Young Scientists, pp. 279-286.

Haniiinna mo peakomnerii 22.04.14

	visnik_2_contents.pdf
	Algebra_tutyl.pdf

