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У статті досліджено моделі скінченних 1-кубітовіх квантових автоматів у припущенні, що 

асоційовані унітарні оператори визначають обернення сфери Блоха навколо осі ординат, а 

вимірювання стану здійснюється лише в останній момент часу. Об’єктом дослідження є моделі 

MO-1QFA та k QFA )2( k , які здійснюють перетворення чистого початкового стану автомата, а 

також їх узагальнення L-QFA та L- k QFA )2( k , які здійснюють перетворення змішаного 

початкового стану автомата (тобто скінченної множини можливих початкових станів, кожний з 

котрих може мати місце з заданою ймовірністю). Предметом дослідження є мови, які вказані 

моделі розпізнають або  з заданою ймовірністю, або з заданою похибкою. Структуру цих мов 

охарактеризовано у термінах фактор-множин, які визначено на основі вказаної властивості 

унітарних операторів. Встановлено критерії, при котрих вказані мови є скінченними множинами. 

Ключові слова: скінченні 1-кубітові квантові автомати, обернення сфери Блоха навколо осі 

координат.
 

 

In the given paper there are investigated models of finite 1-qubit quantum automata under assumption 

that associated unitary operators are rotations of the Bloch sphere around the y -axe, and measurement of a 

state is produced at final instant only. The objects of investigation are models MO-1QFA and k QFA )2( k  

intended for transformation of pure initial state of an automaton, and their generalizations L-QFA and L-

k QFA )2( k , intended for transformation of initial mixed state of an automaton (i.e. for some finite set of 

admissible initial states, each of which can take the place with given probability). The subjects of 

investigation are languages accepted by investigated models either with given probability, or with given 

error. The structure of these languages is characterized in terms of the factor-sets that are determined by 

considered assumptions on unitary operators. Criteria under which characterized languages are finite ones 

are established. 

Key Words: finite 1-qubit quantum automata, rotations of the Bloch sphere around some coordinate 

axe. 

 

Статтю представив професор Буй Д.Б. 
 

Introduction. 

There were proposed a variety of finite quantum 

automata (QA) models (in what follows the word 

“finite” is omitted) intended to recognize languages 

in the given input alphabet [1-6]. Main efforts of 

researchers in QA theory are directed to determine 

the class of languages accepted by this or the other 

model of QA, to compare recognizing capacities of 

different models of QA each with the others, as well 

as with classic deterministic or probability automata, 

or to establish criteria of states equivalency for QA. 

In [7] some QA models were characterized under 

assumption that unitary operators commute each 

with the others. Languages accepted by these models 

of QA either with given probability, or with given 

mistake were characterized in terms of the input 

factor-set determined via the above pointed property 

of unitary operators. 

In the given paper we investigate some simple 

QA models, such that unitary operators are rotations 

of the Bloch sphere [8] around fixed coordinate axe, 

i.e. they commute each with the others. 

It what follows it is supposed that for any number 


 R  unitary operator 


U  is defined via identity 
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5.0sin0.5 cos
U ,                 (1) 

i.e. unitary operator 


U  )(


 R  maps any unit 

vector 2
| C  to the unit vector )| ( 


U  

represented by the point obtained by rotating of the 

radius vector from the center of the Bloch sphere to 

the point |  through the angle 5,0  around the 

y -axe. 

It is worth to note that for any numbers 


 R

21
,  there hold identities 

)4(mod )( 21211221  
 UUUUUU . 

In the given paper some models of QA are 

investigated under the following three assumptions: 

1. The set of basic states is }1|,0{|
2

 BQ  

(where 
T

)0,1( 0|   and 
T

)1,0( 1|  ), and the set of 

accepting states 
acc

Q  is some one-element subset of 

the set Q , i.e. either }0{| 
acc

Q , or }1{| 
acc

Q . 

2. Measurement of a state of QA is produced at 

final instant only. 

3. For considered finite alphabet A  some 

injection )4;0(:  A  is fixed, and with each 

letter Aa   it is associated unitary operator 
)( a

U


 

defined by formula (1). 

The rest of the paper is organized as follows. 

Chapter 1 consists of technical results. In chapter 2 

investigated models of QA are defined. In chapter 3 

languages accepted by investigated models of QA 

either with given probability, or with given mistake 

are characterized. The last chapter consists of some 

conclusion remarks. 

1. Technical results. 

Let A  be any finite alphabet, Nk  be some 

fixed integer, and }1,0{: AP  be some fixed 

predicate. We set 

}0)(|{
0

 aPAaA , 

}1)(|{
1

 aPAaA , 

k
k

i

ikik
AAA

1

1

1
01

)(







A  

and 

&&|{
1,,

kllAaa
lkPA




NS  

&))(1,,1(&
1

Aakli
i
   

})(,,2(&
0

Aalkli
i
  .           (2) 

It is worth to note that there hold the following 

two statements: 

1. For any integer Nk  it holds inclusion 

kPA

k
AA

,,

1

01
S


 (if 1k  we get that 

1

)1(
AA  and 




11,,
A

PA
S , and thus inclusion 

kPA
A

,,1
S  holds). 

2. For any integer 2k  there hold identities 








kPA

k

i

iki
AA

,,

1

2
01

S  and 
kPA

k
A

,,1
S . 

Let )4;0(:
)(

 
k

A  be some fixed injection. 

For any string 
kPAl

aa
,,1

S  we set 

)()(
~

1

1

1
1 






kii

kl

i
l

aaaa   .            (3) 

Equivalence 
kPA ,,

  on the set 
kPA ,,

S  defined by 

formula 


kPA

ww
,,21

),(   

)4 (mod )(
~

)(
~

21
 ww    ),(

,,21 kPA
ww S   (4) 

determines the factor-set 
kPAkPA ,,,,

/ S , such that for 

each element 
kPAkPA

B
,,,,

/ S  there exists unique 

number )4;0[  
B

 such that 

)}4)(
~

)((|{
,,

kwkwB
BkPA

 


ZS .   (5) 

Let }|{
)(

)()(

k
Uk Aa

aA



U  be the set of unitary 

operators, where 
)( a

U  }(
)( k

Aa   is defined by 

formula (1). For any string 
kPAl

aa
,,1

S  we set 









1

1
)()(

~
11

kl

i
aaaa kiil

UU
 

.             (6) 

Thus, the set of unitary operators )( k
A

U  generates 

the set of unitary operators 

}|{
~

,,1)(
~

1
)( kPAlaa

aaU
l

k S
A

 


U . 

Since for any string 
kPAl

aa
,,1

S  it holds identity 

)4(mod )(
~

)(
~

11  ll aaaa
UU


 ,             (7) 

we get that 

}|{
~

,,1)4)(mod(
~

1
)( kPAlaa

aaU
l

k S
A

 
 

U ,   (8) 

and formulae (4), (5) and (8) imply that 

}/|{
~

,,,,)( kPAkPA
BU

B
k 


S

A
U .         (9) 

Now we consider in detail the case, when 1k . 

We get that 
1

)1(
AA , 




11,,
A

PA
S  and 

)1()1(

~

AA
UU  .                       (10) 

Formulae (3) and (6) imply that for any string 

1,,1 PAl
aa S  there hold identities 

)()(
~

1
1 i

l

i
l

aaa  


                 (11) 

and 





l

i
aaa il

UU
1

)()(
~

1  
.                 (12) 

Since 



11,,

A
PA

S , then 
1,,21 PA

ww S  for any 

strings 
1,,21

,
PA

ww S , and formulae (11) and (12) 

imply that 

)(
~

)(
~

)(
~

)()(
~

122121 wwwwww
UUUUU


 .     (13) 
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Thus, ),
~

( )1( 
A

U  is commutative semigroup and 

formulae (7), (11) and (12) imply that the following 

theorem holds. 

Theorem 1. For any finite alphabet A  and any 

predicate }1,0{: AP  the semigroup ),
~

( )1( 
A

U  is 

isomorphic to the semigroup ),( G , where 

&))((|)4(mod ))({(
1

1




  Z
a

Aa
a

mAaamG   

)}0)((&
)1(


a

Aa m                    (14) 

and 

)4(mod )(
2121

gggg    ),(
21

Ggg  .  (15) 

Corollary 1. For any finite alphabet A  and any 

predicate }1,0{: AP  the semigroup ),
~

( )1( 
A

U  is a 

finite group if and only if all numbers 


 )(a
 

)(
)1(

Aa   are rational ones. 

Proof. Since 
1

)1(
AA , then we get that 

 4)(0  a  )(
1

Aa  , and 

4
)(

0 


 a
  )(

1
Aa  . 

It is evident that formula (14) can be reduced to 

formula 

&)((|)4(mod ) 
)(

{(
1

1




  Z
a

Aa
a

mAa
a

mG



 

)}0)((&
)1(


a

Aa m                    (16) 

Let all numbers 


 )( a
 )(

1
Aa   be rational ones. 

Then we get that 
)2(

)1(
)(

a

a

k

ka





 )(

1
Aa  , where 

N
)2()1(

,
aa

kk , 
)2()1(

4
aa

kk   and 1},{GCD
)2()1(


aa

kk . 

Thus, formula (16) implies that 







1

&))((|)4(mod ){(
1)2(

)1(

Aa
a

a

a

a
mAa

k

k
mG Z  

)}0)((&)4)((&
1

)2(

1


aaa
mAakmAa .  (17) 

Formula (17) in its turn implies that the following 

three conditions hold: 

1. The set G  is a finite one. 

2. G0  (since we get that it holds identity 






1

0)4(mod )4(
)2(

)1(

)2(

Aa
a

a

a

k

k
k ). 

3. For any element G

k

k
mb

Aa
a

a

a
 

 1

)4(mod )(
)2(

)1(

 

there exists the inverse element Gb  . This 

element is defined by identity 






1

)4(mod ))4((
)2(

)1(

)2(

Aa
a

a

aa

k

k
mkb ). 

Thus, the semigroup ),( G  is a finite group. 

Let there exists some 
1

Aa  , such that 


 )( a
 is 

an irrational number. 

Let us consider the sequence 

Nm
am )}4))(mod({(              (18) 

of elements of the set G . 

Let us suppose that the sequence (18) is finite 

one. Then there exist integers N
21

, mm  )(
21

mm  , 

such that 

 )4(mod )()4(mod )(
21

 amam  

 0)4(mod ))()((
21

 amm  

 )4)())(((
21

kammk N  

)
4)(

)((

21
mm

ka
k







N , 

i.e. 


 )( a
 is rational number. We get a contradiction. 

Thus, the sequence (18) of elements of the set G  

is infinite. This factor implies that the semigroup 

),( G  is infinite. 

Q.E.D. 

Now we consider factor-set 
1,,1,,

/
PAPA

S . 

Let 
1,,1,,21

/,
PAPA

BB S . Then for any strings 

11
Bw   and 

22
Bw   we get 

 )4(mod ))(
~

)(
~

()4(mod )(
~

2121
 wwww  

 )4(mod ))4(mod )(
~

)4(mod )(
~

(
21

 ww  

)4(mod )(
21


BB

 .                 (19) 

Since 
1,,21 PA

ww S , then formula (19) implies 

that for any elements 
1,,1,,21

/,
PAPA

BB S  there 

exists single element 
1,,1,,

/
PAPA

B S  such that 

inclusions BBB 
21

 and BBB 
12

 hold. 

This factor implies that we get some commutative 

semigroup ),/
1,,1,,


PAPA
(S , where operation   is 

defined as follows 

 BBBBBB
PPA 211,,1,,21

)(/,,( S

)
21

BBB  . 

Formula (19) implies that for any elements 

1,,1,,21
/,

PAPA
BB S  it holds identity 

)4(mod )(
2121


BBBB


 ,         (20) 

i.e. for any elements 
1,,1,,21

/,
PAPA

BB S  

)4(mod )(
2121

 BBBB
UU





.            (21) 
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Theorem 2. For any finite alphabet A  and any 

predicate }1,0{: AP  the semigroups ),
~

( )1( 
A

U  and 

),/
1,,1,,


PAPA
(S  are isomorphic. 

Proof. Formula (7)-(9) imply that we can define 

some mapping 

)1(

~
/:

1,,1,, A
S U

PAPA
f   

by identity 

B
UBf


)(   )/(

1,,1,, PAPA
B S .      (22) 

Formula (5) implies that for any elements 

1,,1,,21
/,

PAPA
BB S  such that 

21
BB   we get 

)()(
21

21

BfUUBf
BB




, 

i.e. the mapping f  is some injection. Formula (9) 

implies that the mapping f  is some surjection. 

Thus, the mapping f  is some bijection. 

Formula (21) and (22) imply that for any 

elements 
1,,1,,21

/,
PAPA

BB S  we get 


 )4(mod )(21

2121

)(
 BBBB

UUBBf


  

)()(
21

2121

BfBfUUU
BBBB


 

. 

We get that the mapping f  is some bijection, 

such that identity )()()(
2121

BfBfBBf   holds 

for any elements 
1,,1,,21

/,
PAPA

BB S . This factor 

implies that the mapping f  determines some 

isomorphism of the semigroup ),/
1,,1,,


PAPA
(S  on 

the semigroup ),
~

( )1( 
A

U . Thus, ),/
1,,1,,


PAPA
(S  and 

),
~

( )1( 
A

U  are isomorphic semigroups. 

Q.E.D. 

2. Investigated models of QA. 

We would deal with the following models of QA. 

MO-1QFA is any 1-way 1-head quantum Turing 

machine (QTM) ),|,|,,(
0

  hXQ , such that 

2
BQ  is the set of basic states, X  is finite input 

alphabet, some unit vector 2

0
| C  is pure initial 

state, some vector 
2

| Bh  is accepting state, and 

)4;0(:  X  is some injection. It is supposed that 

}|{
)(

XxU
x




U  is the set of unitary operators, 

such that 
)( x

U


 )( Xx   is defined by formula (1). 

Let a string 
 Xw  be written in the input tape 

of MO-1QFA  . At initial instant QTM   exists 

in the state 
0

|   and its head observes the first 

symbol of the string w . 

If QTM   exists in the state |  and observed 

symbol is Xx   then the state |  is transformed 

in the state )| (
)(


 x

U  and the head moves by one 

cell to the right. If QTM   exists in the state |  

and observed symbol is   then the state |  is 

measured in the basis 
2

B  and   halts. 

If in the result of this measurement we get 

accepting state h|  then a string w  is accepted, 

otherwise it is rejected. 

For any input string 
 Xxxw

l


1
 we set 





l

i
i

xw
1

)()(
~

 . 

Formulae (1) implies that for any input string 


 Xxxw
l


1

 holds identity 

)()()(
~

1xxw
UUU

l 
                   (23) 

Thus, probability that MO-1QFA   accepts a 

string 
 Xxxw

l


1
 equals to 

2

0)(
~

0
|| ||| ),| ( 




 wacc
UPwP ,      (24) 

where | | hhP
acc

  ( t
 hh |  |  and t  is the 

Hermitian conjugation), and   || || | || . 

L-QFA differs from MO-1QFA so much that it 

deals with some initial mixed state 
niii N

 )},| {(  , 

such that 
2

| C
i

  )(
n

i N  are pair-wise different 

unit vectors, 0
i

  )(
n

i N , and 1
 ni

i
N

 . The 

number 
i

  )(
n

i N  is referred as probability that at 

initial instant QTM   exists in the state 
i

| . 

Measurement of the state in the basis 
2

B  is when 

the head observes the symbol  . 

If in the result of this measurement we get 

accepting state h|  then a string 
 Xw  is 

accepted, otherwise it is rejected. 

Thus, probability that L-QFA   accepts a string 


 Xw  equals to 







n

n
i

iiiii
ww

N
N

),(|),)},| ({(  PP .  (25) 

k QFA )( Nk  is any 1-way k -head QTM 

),|,|,,(
0

  hXQ , such that 
2

BQ  is the set 

of basic states, X  is finite input alphabet, some unit 

vector 2

0
| C  is pure initial state, some vector 

2
| Bh  is accepting state, )4;0(X:    is some 

injection, where 

k
k

i

iki
XX 








1

1

X , 

and j
  )( Nj  is the string 

timesj  

 . 

It is supposed that }Xu|{
)u(




UU  is the set of 

unitary operators, such that 
)u(

U  )Xu(   is defined 

by formula (1). 
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Let a string 
 Xw  be written in the input tape 

of k QFA )( Nk   . At initial instant QTM   

exists in the state 
0

|   and its k  heads observe first 

k  symbols of the string 1


k
w . 

If QTM   exists in the state |  and observed 

fragment is Xu   then the state |  is transformed 

in the state )| (
)u(




U  and all heads move 

simultaneously by one cell to the right. If QTM   

exists in the state |  and observed fragment is k
  

then the state |  is measured in the basis 
2

B  and 

  halts. 

If in the result of this measurement we get 

accepting state h|  then a string w  is accepted, 

otherwise it is rejected. 

For any input string 
 Xxxw

l


1
 we set 




)(
~ 1k

w  


















































klif

xxxx

klifxxxx

klifxx

l

kli

ilk

li

kl

i
kii

l

i

ilk

lili

l

i

ilk

li

                                                  

,)()(

     ,)()(

              1     ,)(

2

1
1

1
1

2

1

1

1













. 

Formulae (1) implies that for any input string 


 Xxxw
l


1

 holds identity 


 )(

~ 1k
w

U


 

















































klifUU

klifUU

klifU

ilk
li

kii

ilk
li

li

ilk
li

xx

l

l-ki

kl

i
xx

l

i
xxxx

l

i
xx

   , 

                ,

                     1     ,

)(
2

1

1
)(

2
)()(

1
)(

1
1

1

1













. (26) 

Thus, probability that k QFA )( Nk    accepts 

a string 
 Xw  equals to 

2

0)(
~0

|| ||| ),| ( 1  





k
wacc

UPwP .    (27) 

It is evident that if 1k  then the model k QFA is 

just the model MO-1QFA. Thus in what follows the 

model k QFA )( Nk  would be considered under 

supposition that 2k . 

Similarly to the case when the model L-QFA was 

defined as some generalization of the model MO-

1QFA we can define the model L- k QFA )2( k  in 

the following way. L- k QFA )2( k  differs from 

k QFA so much that it deals with some initial mixed 

state 
niii N

 )},| {(  , such that 
2

| C
i

  )(
n

i N  

are pair-wise different unit vectors, 0
i

  )(
n

i N , 

and 1
 ni

i
N

 . Thus, probability that L- k QFA 

)2( k    accepts a string 
 Xw  is defined by 

formula (25) under supposition that ),| (
0

w


P  is 

defined by formula (27). 

Any model of QA can be interpreted either as 

acceptor of a language with given probability, or as 

acceptor of a language with given mistake. Formally, 

the language 


 XL  is accepted: 

1) with probability p  )15.0(  p , if any string 

Lw   is accepted with probability not less then p , 

while any string Lw   is accepted with probability 

not exceeding p1 ; 

2) with mistake );(
21

pp  )10(
21
 pp , if any 

string Lw   is accepted with probability not less 

then 
2

p , while any string Lw   is accepted with 

probability not exceeding 
1

p . 

Formula (2) implies that for any integer 2k  

only some partial semigroup can be determined by 

the factor-set 
kPAkPA ,,,,

/ S  as well as by the set of 

unitary operators 
)(

~
k

A
U . Moreover, formula (6) 

implies that these partial semigroups are not 

isomorphic. Besides, partial semigroup determined 

by the factor-set 
)(

~
k

A
U  is not isomorphic to the 

semigroup ),( G . 

These factors characterize essential inherent 

difference between models MO-1QFA and k QFA 

)2( k  from algebraic point of view. 

It is worth to note that if all numbers 


 )( a
 

)X( a  are rational ones then the factor-set 

kPAkPA ,,,,
/ S  as well as the set of unitary operators 

)(

~
k

A
U are finite ones. 

3. Main results. 

In accordance with [9] for any set S  which 

elements are subsets we would use denotation  S  

instead of 
Ss

s


, where it is convenient. 

Firstly, we characterize the sets of languages 

accepted by models MO-1QFA and L-QFA defined 

in Section 2.  

In terms of Section 1 in this case we get that 

}{ XA , and the predicate }1,0{: AP  is 

defined in the following way: 1)( xP  )( Xx   and 

1)( P . 

Thus, we get that X
)1(

A  and 


 X
PA 1,,

S . 
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Equivalence 
1,, PA

  on the set 
X  would be 

denoted by 
1

~ , and we get that 

}~/|{
~

1


 XBU

BX 
U .           (28) 

For any element 
1

~\


 XB  we set 

2

00
|| ||| ),| ( 




 B
UPB

acc
P .     (29) 

Theorem 3. MO-1QFA   accepts a language L  

with probability p  )15.0(  p  if and only if the 

following two identities hold 

}),| ( | ~/{
0M1

pBXBL 


P  

and 

}1),| (|~/{\
0M1

pBXBLX 


P . 

Proof. Formulae (7), (11), (12) and (23) imply 

that for any element 
11,,

~/
PA

B S  and any string 

Bw   there hold identities 

B
UUU

ww 


)4(mod )(
~

)(
~ .              (30) 

Formulae (24), (29) and (30) in its turn imply that 

for any element 
11,,

~/
PA

B S  and any string Bw   

it holds identity 

),| (),| (
00

wB 


 PP .            (31) 

Formula (31) and definition of a language 

accepted with given probability by MO-1QFA imply 

that theorem 3 holds. 

Q.E.D. 

Corollary 1 and theorem 3 imply that the 

following corollary holds. 

Corollary 2. If all numbers 


 )( a
 )( Xa   are 

rational ones then a language accepted with any 

given probability by MO-1QFA   is union of some 

elements of finite factor-set 
1

~\


X . 

Theorem 4. MO-1QFA   accepts a language L  

with mistake );(
21

pp  )10(
21
 pp  if and only if 

the following two identities hold 

}),| ( | ~/{
20M1

pBXBL 


P  

and 

}),| (| ~/{\
10M1

pBXBLX 


P . 

Proof. Formula (31) and definition of a language 

accepted with given mistake by MO-1QFA imply 

that theorem 4 holds. 

Q.E.D. 

Corollary 1 and theorem 4 imply that the 

following corollary holds. 

Corollary 3. If all numbers 


 )( a
 )( Xa   are 

rational ones then a language accepted with any 

given mistake by MO-1QFA   is union of some 

elements of finite factor-set 
1

~\


X . 

Theorem 5. L-QFA   accepts a language L  

with probability p  )15.0(  p  if and only if the 

following two identities hold 

}),| ( | ~/{
21

pBXBL

ni
iMi

 




N

 P  

and 

}),| ( ~/{\
11

pBXBLX

ni
iM

 




N

 P
i . 

Proof. By definition of L-QFA   formula (31) 

can be applied for this model. 

Formulae (25), (27) and (31), and definition of a 

language accepted with given probability by L-QFA 

imply that theorem 5 holds. 

Q.E.D. 

Corollary 1 and theorem 5 imply that the 

following corollary holds. 

Corollary 4. If all numbers 


 )( a
 )( Xa   are 

rational ones then a language accepted with any 

given probability by L-QFA   is union of some 

elements of finite factor-set 
1

~\


X . 

Theorem 6. A language L  is accepted with 

mistake ),(
21

pp  )10(
21
 pp  by L-QFA   if 

and only if the following two identities hold 

}),| ( | ~/{
21

pBXBL

ni
iMi

 




N

 P  

and 

}),| ( ~/{\
11

pBXBLX

ni
iM

 




N

 P
i . 

Proof. Formulae (25) and (31), and definition of 

a language accepted with given mistake by L-QFA 

imply that theorem 6 holds. 

Q.E.D. 

Corollary 1 and theorem 6 imply that the 

following corollary holds. 

Corollary 5. If all numbers 


 )( a
 )( Xa   are 

rational ones then a language accepted with any 

given mistake by L-QFA   is union of some 

elements of finite factor-set 
1

~\


X . 

Now we characterize the sets of languages 

accepted by models k QFA )2( k  and L- k QFA 

)2( k  defined in Section 2. 

In terms of Section 1 in this case we get that 

}{ XA  and the predicate }1,0{: AP  is 

defined in the following way: 1)( xP  )( Xx   and 

1)( P . 
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Thus, we get that X
)(


k
A , i.e. 

k
k

i

ikik
XX 








1

1

)(
A , where j

  )( Nj  is the 

string 

timesj  

 , and 
1

,,




k

kPA
XS . 

Equivalence 
kPA ,,

  on the set 1


k
X  would be 

denoted by 
k

~ , and we get that 

}~/|{
~

1

1

X




k
XBU

B
U .         (32) 

For any element 
k

k
XB ~\

1
  we set 

2

00
|| ||| ),| ( 




 B
UPB

acc
P .     (33) 

Theorem 7. k QFA )2( k    accepts a 

language L  with probability p  )15.0(  p  if and 

only if the following two identities hold 

}),| ( | ~/{
0M

1
pBXBL

k

k



P  

and 

}1),| (|~/{\
0M

1
pBXBLX

k

k



P . 

Proof. Formulae (7), (11), (12) and (23) imply 

that for any element 
k

k
XB ~/

1
  and any string 

Bw   there hold identities 

B
UUU

ww 


)4(mod )(
~

)(
~ .              (34) 

Formulae (24), (33) and (34) in its turn imply that 

for any element 
k

k
XB ~/

1
  and any string 

Bw   it holds identity 

),| (),| (
00

wB 


 PP .            (35) 

Formula (35) and definition of a language 

accepted with given probability by k QFA )2( k  

imply that theorem 7 holds. 

Q.E.D. 

Theorem 7 implies that the following corollary 

holds. 

Corollary 6. If all numbers 


 )( a
 )X( a  are 

rational ones then a language accepted with any 

given probability by k QFA )2( k    is union of 

some elements of finite factor-set 
k

k
X ~\

1
 . 

Theorem 8. k QFA )2( k    accepts a 

language L  with mistake ),(
21

pp  )10(
21
 pp  

if and only if the following two identities hold 

}),| ( | ~/{
20M

1
pBXBL

k

k



P  

and 

}),| (|~/{\
10M

1
pBXBLX

k

k



P . 

Proof. Formula (35) and definition of a language 

accepted with given mistake by k QFA )2( k  

imply that theorem 7 holds. 

Q.E.D. 

Theorem 8 implies that the following corollary 

holds. 

Corollary 7. If all numbers 


 )( a
 )X( a  are 

rational ones then a language accepted with any 

given mistake by k QFA )2( k    is union of 

some elements of finite factor-set 
k

k
X ~\

1
 . 

Theorem 9. L- k QFA )2( k    accepts a 

language L  with probability p  )15.0(  p  if and 

only if the following two identities hold 

L  

}),| ( | ~/{
1

pBXB

ni
iMik

k
 





N

 P  

and 




LX \  

}1),| ( ~/{
1

pBXB

ni
iMk

k
 





N

 P
i . 

Proof. By definition of L- k QFA )2( k  formula 

(35) can be applied for this model. 

Formulae (25), (27) and (35), and definition of a 

language accepted by L- k QFA )2( k  with given 

probability imply that theorem 9 holds. 

Q.E.D. 

Theorem 9 implies that the following corollary 

holds. 

Corollary 8. If all numbers 


 )( a
 )X( a  are 

rational ones then a language accepted with any 

given probability by L- k QFA )2( k    is union 

of some elements of finite factor-set 
k

k
X ~\

1
 . 

Theorem 10. L- k QFA )2( k    accepts a 

language L  with mistake ),(
21

pp  )10(
21
 pp  

if and only if the following two identities hold 

}),| ( | ~/{
2

1
pBXBL

ni
iMik

k
 





N

 P  

and 




LX \  

}),| ( ~/{
1

1
pBXB

ni
iMk

k
 





N

 P
i . 

Proof. Formulae (25), (27) and (35), and 

definition of a language accepted by L- k QFA 

)2( k  with given mistake imply that theorem 10 

holds. 

Q.E.D. 

Theorem 10 implies that the following corollary 

holds. 

Corollary 9. If all numbers 


 )( a
 )X( a  are 

rational ones then a language accepted with any 
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given mistake by L- k QFA )2( k    is union of 

some elements of finite factor-set 
k

k
X ~\

1
 . 

Conclusions. 

In this paper the simplest models of 1-qubit QA 

are investigated. These models of QA are determined 

by assumptions that measurement of a state is 

produced at final instant only, and associated unitary 

operators are rotations of the Bloch sphere around 

the y -axe (and thus, associated unitary operators 

commute each with the others). Investigated models 

of 1-qubit QA are MO-1QFA, L-QFA, k QFA 

)2( k  and L- k QFA )2( k  (we think that the last 

model was not considered earlier at all, and is firstly 

determined in the given paper). 

The structure of languages accepted either with 

given probability, or with given mistake is 

characterized for investigated 1-qubit models of QA 

in terms of the factor-set determined by considered 

assumptions on unitary operators. Criteria under 

which characterized languages are finite ones are 

established. 

It is evident that we get similar results if 

instead of rotations of the Bloch sphere around the 

y -axe we consider rotations of this sphere either 

around the x -axe, or around the z -axe. Indeed, 

rotations of the Bloch sphere around the x -axe are 

unitary operators of the form 













 







0.5 cos5.0sin

5.0sin0.5 cos

i

i
V ,        (36) 

and rotations of the Bloch sphere around the z -axe 

are unitary operators of the form 






















 0.5

0.5

0

0

i

i

e

e
W .             (37) 

Thus, if we substitute instead of formula (1) 

either formula (36), or formula (37), we get the same 

results as the ones established in the given paper. 

More complicated cases take the place if the set 

of associated unitary operators consists of rotations 

of the Bloch sphere around different coordinate axes. 

Investigation of these cases in detail determines 

some trend for future investigation. 
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