Іваненко Д.О. ${ }^{1}$
Друга похідна логарифмічної функції вірогідності для моделі заданої СДР керованим процесом Леві
${ }^{1}$ Київський національний університет імені Тараса Шевченка, факультет радіофізики, електроніки та комп'ютерних систем, 01601, Київ, вул. Володимирська 64, e-mail: ida@univ.net.ua
D.O. Ivanenko ${ }^{1}$

Second derivative of the log-likelihood in the model given by a Lévy driven SDE'S

[^0]Методами числення Малявена отримано представлення для другої похідної по параметру логарифмічної функиії вірогідності побудованої на дискретних спостереженнях процесу заданого лінійним стохастичним диферениіальним рівнянням, керованим процесом Леві.

Ключові слова: ММВ, функиія вірогідності, СДР, регулярний статистичний експеримент, ЛАН.

By means of the Malliavin calculus, integral representation for the second derivative of the loglikelihood function are given for a model based on discrete time observations of the solution to equation $\mathrm{d} X_{t}=a_{\theta}\left(X_{t}\right) \mathrm{d} t+\mathrm{d} Z_{t}$ with a Lévy process Z.

If we have a logarithm of transition kernel for Markov chain and can calculate two its derivatives w.r.t. parameter, we can find the maximum likelihood estimate (MLE) and its asymptotic normal distribution. But in our case the support of transition probability density depend on parameter and we can't, in principle, to obtain a precise formula for the logarithm of joint density and its derivatives.

The likelihood function in our model is highly implicit. In this paper, we develop an approach which makes it possible to control the properties of the likelihood and log-likelihood functions only in the terms of the objects involved in the model: the function $a_{\theta}(x)$, its derivatives, and the Lévy measure of the Lévy process Z.

Key Words: MLE, Likelihood function, Lévy driven SDE, Regular statistical experiment, LAN.
Статтю представив д.ф.-м.н. Козаченко Ю.В.

Introduction

Let Z be a Lévy process without a diffusion component; that is,
$Z_{t}=c t+\int_{0}^{t} \int_{|u|>1} u \nu(\mathrm{~d} s, \mathrm{~d} u)+\int_{0}^{t} \int_{|u| \leqslant 1} u \tilde{\nu}(\mathrm{~d} s, \mathrm{~d} u)$,
where ν is a Poisson point measure with the intensity measure $\mathrm{d} s \mu(\mathrm{~d} u)$, and $\tilde{\nu}(\mathrm{d} s, \mathrm{~d} u)=$ $\nu(\mathrm{d} s, \mathrm{~d} u)-\mathrm{d} s \mu(\mathrm{~d} u)$ is respective compensated Poisson measure. In the sequel, we assume the Lévy measure μ to satisfy the following:
H. (i) for some $\kappa>0$,

$$
\int_{|u| \geqslant 1} u^{2+\kappa} \mu(d u)<\infty
$$

(ii) for some $u_{0}>0$, the restriction of μ on $\left[-u_{0}, u_{0}\right]$ has a positive density

$$
\sigma \in C^{2}\left(\left[-u_{0}, 0\right) \cup\left(0, u_{0}\right]\right) ;
$$

Consider stochastic equation of the form

$$
\begin{equation*}
\mathrm{d} X_{t}^{\theta}=a_{\theta}\left(X_{t}^{\theta}\right) \mathrm{d} t+\mathrm{d} Z_{t} \tag{1}
\end{equation*}
$$

where $a: \Theta \times \mathbb{R} \rightarrow \mathbb{R}$ is a measurable function, $\Theta \subset \mathbb{R}$ is a parametric set.

In [1] it was proved that under conditions of smoothness and growth of a_{θ} the Markov
process X given by (1) has a transition probability density p_{t}^{θ} w.r.t. the Lebesgue measure. Besides, according to [1] this density has a derivative $\partial_{\theta} p_{t}^{\theta}(x, y)$. The extension of the asymptotic methods of mathematical statistics is used as a key tool the second derivative of the log-likelihood ratio w.r.t. parameter. The purpose of this paper is to give a Malliavin-type integral representation of this derivative.

1 Main results

We denote by P_{x}^{θ} the distribution of this process in $\mathbb{D}([0, \infty))$ with $X_{0}=x$, and by E_{x}^{θ} the expectation w.r.t. this distribution. Respective finite-dimensional distribution for given time moments $t_{1}<\cdots<t_{n}$ is denoted by $\mathrm{P}_{x,\left\{t_{k}\right\}_{k=1}^{n}}^{\theta}$. On the other hand, solution X to Eq. (1) is a random function defined on the same probability space $(\Omega, \mathcal{F}, \mathrm{P})$ with the process Z, which depends additionally on the parameter θ and the initial value $x=X(0)$. We do not indicate this dependence in the notation, i.e. write X_{t} instead of e.g. $X_{x, t}^{\theta}$, but it will be important in the sequel that, under certain conditions, X_{t} is L_{2}-differentiable w.r.t. θ and is L_{2}-continuous w.r.t (t, x, θ).

In the sequel we will show that, under appropriate conditions, Markov process X admits a transition probability density $p_{t}^{\theta}(x, y)$ w.r.t. Lebesgue measure, which is continuous w.r.t. $(t, x, y) \in(0, \infty) \times \mathbb{R} \times \mathbb{R}$. Then (see [2]), for every $t>0, x, y \in \mathbb{R}$ such that

$$
\begin{equation*}
p_{t}^{\theta}(x, y)>0 \tag{2}
\end{equation*}
$$

there exists a weak limit in $\mathbb{D}([0, t])$

$$
\mathrm{P}_{x, y}^{t, \theta}=\lim _{\varepsilon \rightarrow 0} \mathrm{P}_{x}^{\theta}\left(\cdot| | X_{t}-y \mid \leqslant \varepsilon\right)
$$

which can be interpreted naturally as a bridge of the process X started at x and conditioned to arrive to y at time t. We denote by $\mathrm{E}_{x, y}^{t, \theta}$ the expectation w.r.t. $\mathrm{P}_{x, y}^{t, \theta}$.

In what follows, C denotes a constant which is not specified explicitly and may vary from place to place. By $C^{k, m}(\mathbb{R} \times \Theta), k, m \geqslant 0$ we denote the class of functions $f: \mathbb{R} \times \Theta \rightarrow \mathbb{R}$ which has continuous derivatives

$$
\frac{\partial^{i}}{\partial x^{i}} \frac{\partial^{j}}{\partial \theta^{j}} f, \quad i \leqslant k, \quad j \leqslant m
$$

In [1] it was proved that under the conditions of following Theorem $\partial_{\theta} p_{t}^{\theta}(x, y)$ has a Malliavintype integral representation

$$
\begin{equation*}
\partial_{\theta} p_{t}^{\theta}(x, y)=g_{t}^{\theta}(x, y) p_{t}^{\theta}(x, y) \tag{3}
\end{equation*}
$$

with
$g_{t}^{\theta}(x, y)= \begin{cases}\partial_{\theta} \log p_{t}^{\theta}(x, y)=\mathrm{E}_{x, y}^{t, \theta} \Xi_{t}^{1}, & p_{t}^{\theta}(x, y)>0, \\ 0, & \text { otherwise } .\end{cases}$
The goal of this section is to obtain the same representation for second derivative, i.e.

$$
\begin{equation*}
\partial_{\theta \theta}^{2} p_{t}^{\theta}(x, y)=G_{t}^{\theta}(x, y) p_{t}^{\theta}(x, y) \tag{5}
\end{equation*}
$$

with

$$
\begin{align*}
& G_{t}^{\theta}(x, y)= \\
& \begin{cases}\partial_{\theta \theta}^{2} \log p_{t}^{\theta}(x, y)+g_{t}^{\theta}(x, y)^{2}= \\
=\mathrm{E}_{x, y}^{t, \theta} \Xi_{t}^{2}, & p_{t}^{\theta}(x, y)>0 \\
0, & \text { otherwise }\end{cases} \tag{6}
\end{align*}
$$

The functionals Ξ_{t}^{1} and Ξ_{t}^{2}, involved in expressions for g and G, will be introduced explicitly in the proof below; see formulas (19) and (21).

Theorem 1. Let $a \in C^{3,2}(\mathbb{R} \times \Theta)$ have bounded derivatives $\partial_{x} a, \partial_{x x}^{2} a, \partial_{x \theta}^{2} a, \partial_{x x x}^{3} a, \partial_{x \theta \theta}^{3} a, \partial_{x x \theta}^{3} a$, $\partial_{x x x \theta}^{4} a$ and for all $\theta \in \Theta, x \in \mathbb{R}$

$$
\begin{equation*}
\left|a_{\theta}(x)\right|+\left|\partial_{\theta} a_{\theta}(x)\right|+\left|\partial_{\theta \theta}^{2} a_{\theta}(x)\right| \leqslant C(1+|x|) \tag{7}
\end{equation*}
$$

Then the transition probability density has a second derivative $\partial_{\theta \theta}^{2} p_{t}^{\theta}(x, y)$, which is continuous w.r.t. $(t, x, y, \theta) \in(0, \infty) \times \mathbb{R} \times \mathbb{R} \times \Theta$, and (5) holds true.

Remark 1. By statement of Theorem, the logarithm of the transition probability density has a second continuous derivative w.r.t. θ on the open subset of $(0, \infty) \times \mathbb{R} \times \mathbb{R} \times \Theta$ defined by inequality $p_{t}^{\theta}(x, y)>0$ and, on this subset, admits the integral representation

$$
\begin{equation*}
\partial_{\theta \theta}^{2} \log p_{t}^{\theta}(x, y)=\mathrm{E}_{x, y}^{t, \theta} \Xi_{t}^{2}-\left(E_{x, y}^{t, \theta} \Xi_{t}^{1}\right)^{2} \tag{8}
\end{equation*}
$$

Remark 2. For every $\gamma<1+\kappa / 2$ there exists constant C which depends on t and γ only, such that

$$
\begin{equation*}
\mathrm{E}_{x}^{\theta}\left|\partial_{\theta} g_{t}^{\theta}\left(x, X_{t}^{\theta}\right)\right|^{\gamma} \leqslant C(1+|x|)^{\gamma} \tag{9}
\end{equation*}
$$

2 Proof of Theorem 1

We need to repeat some notations and statements defined in Section 3 [1]. Fix $u_{1} \in$ $\left(0, u_{0}\right)$, where u_{0} comes from \mathbf{H} (ii), and introduce a C^{2}-function $\varrho: \mathbb{R} \rightarrow \mathbb{R}^{+}$with bounded derivative, such that

$$
\varrho(u)= \begin{cases}u^{2}, & |u| \leqslant u_{1} \\ 0, & |u| \geqslant u_{0}\end{cases}
$$

Denote by $Q_{c}(x), c \in \mathbb{R}$ the value at the time moment $s=c$ of the solution to Cauchy problem

$$
q^{\prime}(s)=\varrho(q(s)), \quad q(0)=x
$$

Then $\left\{Q_{c}, c \in \mathbb{R}\right\}$ is a group of transformations of \mathbb{R}, and $\left.\partial_{c} Q_{c}(x)\right|_{c=0}=\varrho(x)$.

Definition 1. A functional $F \in L_{2}(\Omega, \mathcal{F}, \mathrm{P})$ is called stochastically differentiable, if there exists an $L_{2}(\Omega, \mathcal{F}, \mathrm{P})$-limit

$$
\begin{equation*}
\hat{\mathrm{D}} F=\lim _{c \rightarrow 0} \frac{1}{c}\left(\mathcal{Q}_{c} F-F\right) \tag{10}
\end{equation*}
$$

The closure D of the operator $\hat{\mathrm{D}}$ defined by (10) is called the stochastic derivative. The adjoint operator $\delta=\mathrm{D}^{*}$ is called the divergence operator or the extended stochastic integral.

Remark 3. $\operatorname{dom}(\mathrm{D})$ is dense in $L_{2}(\Omega, \mathcal{F}, \mathrm{P})$, hence δ is well defined. In addition, $\operatorname{dom}(\delta)$ is dense in $L_{2}(\Omega, \mathcal{F}, \mathrm{P})$, hence $\hat{\mathrm{D}}$ is closable. The operator δ itself is closed as an adjoint one; e.g. Theorem VIII. 1 in [3].

Denote $\chi(u)=-\frac{(\sigma(u) \varrho(u))^{\prime}}{\sigma(u)}, u \neq 0$.
Proposition 1. 1. Let $\varphi \in C^{1}\left(\mathbb{R}^{d}, \mathbb{R}\right)$ have bounded derivatives and $F_{k} \in \operatorname{dom}(\mathrm{D}), k=\overline{1, d}$. Then $\varphi\left(F_{1}, \ldots, F_{d}\right) \in \operatorname{dom}(\mathrm{D})$ and

$$
\begin{equation*}
\mathrm{D}\left[\varphi\left(F_{1}, \ldots, F_{d}\right)\right]=\sum_{k=1}^{d}\left[\partial_{x_{k}} \varphi\right]\left(F_{1}, \ldots, F_{d}\right) \mathrm{D} F_{k} \tag{11}
\end{equation*}
$$

2. The constant function 1 belongs to $\operatorname{dom}(\delta)$ and

$$
\begin{equation*}
\delta(1)=\int_{0}^{T} \int_{\mathbb{R}} \chi(u) \tilde{\nu}(\mathrm{d} s, \mathrm{~d} u) \tag{12}
\end{equation*}
$$

3. Let $G \in \operatorname{dom}(\mathrm{D})$ and

$$
\begin{equation*}
\mathrm{E}(\delta(1) G)^{2}<\infty \tag{13}
\end{equation*}
$$

Then $G \in \operatorname{dom}(\delta)$ and $\delta(G)=\delta(1) G-\mathrm{D} G$.

The proofs of this Proposition and Remark 3 can be found in [1].

Lemma 1. Under the conditions of Theorem 1 X_{t}^{θ} is thrice stochastically differentiable and

$$
\begin{gather*}
\mathrm{D}^{j} X_{t}^{\theta}=\sum_{i=0}^{j-1} \frac{(i+1)^{j-i+1}}{i!} \int_{0}^{t} \mathrm{D}^{j-i-1}\left(\mathcal{E}_{t} \mathcal{E}_{s}^{-1}\right) \\
\int_{\mathbb{R}} \varrho(u)\left(\varrho(u)^{i}\right)^{(i)} \nu(\mathrm{d} s, \mathrm{~d} u), j=\overline{1,3} \tag{14}
\end{gather*}
$$

where $\mathcal{E}_{t}:=\exp \left\{\int_{0}^{t} \partial_{x} a_{\theta}\left(X_{\tau}^{\theta}\right) \mathrm{d} \tau\right\}$,

$$
\begin{align*}
& \mathrm{D}^{n} \mathcal{E}_{t}=\sum_{k=0}^{n-1} \sum_{j=0}^{n-k-1} C_{n-1}^{k} C_{n-k-1}^{j} \mathrm{D}^{k} \mathcal{E}_{t} \times \\
& \quad \int_{0}^{t} \mathrm{D}^{j}\left(\partial_{x x}^{2} a_{\theta}\left(X_{\tau}^{\theta}\right)\right) \mathrm{D}^{n-k-j} X_{\tau}^{\theta} \mathrm{d} \tau, n=1,2 \tag{15}
\end{align*}
$$

Remark 4. The expressions for $\mathrm{D}^{n}\left(\partial_{x x}^{2} a_{\theta}\left(X_{t}^{\theta}\right)\right)$ and $\mathrm{D}^{n}\left(\mathcal{E}_{t} \mathcal{E}_{s}^{-1}\right)$ can be found by the first statement of Proposition 1 (and formula (15) respectively).

Remark 5. Under additional conditions about smoothness and growth of a_{θ} the formulas (14) and (15) are equitable if j is more than 3 and n is more than 2.

The case $j=1,2$ and $n=1$ was considered in [1]. The proof of (14) as $j \geqslant 3$ provides by induction using the argument of proof of relation (27) [1], and based on Theorem II.2.8.5 [4]. The same arguments that in Section 3.2 [1] give (see details in proof of relations (27), (31) and (32) [1]):

$$
\begin{array}{r}
\mathrm{D}^{2} \partial_{\theta \theta} X_{t}^{\theta}=\int_{0}^{t} \mathrm{D}^{2}\left(\mathcal{E}_{t} \mathcal{E}_{s}^{-1}\right) \partial_{\theta} a_{\theta}\left(X_{s}^{\theta}\right) \mathrm{d} s+ \\
2 \int_{0}^{t} \mathrm{D}\left(\mathcal{E}_{t} \mathcal{E}_{s}^{-1}\right) \partial_{x \theta}^{2} a_{\theta}\left(X_{s}^{\theta}\right) \mathrm{D} X_{s}^{\theta} \mathrm{d} s+ \\
\mathcal{E}_{t} \int_{0}^{t} \mathcal{E}_{s}^{-1}\left(\partial_{x x \theta}^{3} a_{\theta}\left(X_{s}^{\theta}\right)\left(\mathrm{D} X_{s}^{\theta}\right)^{2}+\right. \\
\left.\partial_{x \theta}^{2} a_{\theta}\left(X_{s}^{\theta}\right) \mathrm{D}^{2} X_{s}^{\theta}\right) \mathrm{d} s \tag{16}
\end{array}
$$

$$
\begin{align*}
& \partial_{\theta \theta}^{2} X_{t}^{\theta}=\mathcal{E}_{t} \int_{0}^{t} \mathcal{E}_{s}^{-1}\left(\left[\partial_{\theta \theta}^{2} a_{\theta}\right]\left(X_{s}^{\theta}\right)+\right. \\
& \left.2\left[\partial_{x \theta}^{2} a_{\theta}\right]\left(X_{s}^{\theta}\right) \partial_{\theta} X_{s}^{\theta}+\left[\partial_{x x}^{2} a_{\theta}\right]\left(X_{s}^{\theta}\right)\left(\partial_{\theta} X_{s}^{\theta}\right)^{2}\right) \mathrm{d} s \tag{17}
\end{align*}
$$

$$
\begin{gather*}
\mathrm{D} \partial_{\theta \theta}^{2} X_{t}^{\theta}=2 \mathcal{E}_{t} \int_{0}^{t} \mathcal{E}_{s}^{-1}\left(\partial_{x x}^{2} a_{\theta}\left(X_{s}^{\theta}\right) \partial_{\theta} X_{s}^{\theta}+\right. \\
\left.\left[\partial_{x \theta}^{2} a_{\theta}\right]\left(X_{s}^{\theta}\right)\right) \mathrm{D} \partial_{\theta} X_{s}^{\theta} \mathrm{d} s+ \\
\mathcal{E}_{t} \int_{0}^{t} \mathcal{E}_{s}^{-1}\left(2 \partial_{x x \theta}^{3}\left[a_{\theta}\right]\left(X_{s}^{\theta}\right) \partial_{\theta} X_{s}^{\theta}+\right. \\
\left.\partial_{x x x}^{3} a_{\theta}\left(X_{s}^{\theta}\right)\left(\partial_{\theta} X_{s}^{\theta}\right)^{2}+\left[\partial_{x \theta \theta}^{3} a_{\theta}\right]\left(X_{s}^{\theta}\right)\right) \mathrm{D} X_{s}^{\theta} \mathrm{d} s \tag{18}
\end{gather*}
$$

Similarly to proof the moment bounds for $\partial_{\theta} X_{t}^{\theta}, \mathrm{D}\left(\partial_{\theta} X_{t}\right), \mathrm{D} X_{t}^{\theta}, \mathrm{D}^{2} X_{t}^{\theta}$, proved in Section 3.3 [1], we get the same one for $\partial_{\theta \theta}^{2} X_{t}^{\theta}, \mathrm{D}\left(\partial_{\theta \theta}^{2} X_{t}^{\theta}\right)$, $\mathrm{D}^{2}\left(\partial_{\theta} X_{t}^{\theta}\right)$ and $\mathrm{D}^{3} X_{t}^{\theta}$. Note that the assumption on the derivatives $\partial_{x} a, \partial_{x x}^{2} a, \partial_{x x x}^{3} a$ is used in Section 3.2 [1] to get the existence of the derivatives $\mathrm{D} X_{t}, \mathrm{D}^{2} X_{t}, \mathrm{D}^{3} X_{t}$. The addition assumption on $\partial_{x \theta}^{2} a_{\theta}$ similarly gives the existence of derivative $\mathrm{D}\left(\partial_{\theta} X_{t}^{\theta}\right)$.

Proof of Theorem 1. In the theorem 1 [1] it was proved that the transition probability density has a derivative $\partial_{\theta} p_{t}^{\theta}(x, y)$, which is continuous w.r.t. $(t, x, y, \theta) \in(0, \infty) \times \mathbb{R} \times \mathbb{R} \times \Theta$, and functional Ξ_{t}^{1}, from its representation given by the formula

$$
\begin{equation*}
\Xi_{t}^{1}=\frac{\left(\partial_{\theta} X_{t}^{\theta}\right) \delta(1)}{\mathrm{D} X_{t}^{\theta}}+\frac{\left(\partial_{\theta} X_{t}^{\theta}\right) \mathrm{D}^{2} X_{t}^{\theta}}{\left(\mathrm{D} X_{t}^{\theta}\right)^{2}}-\frac{\mathrm{D}\left(\partial_{\theta} X_{t}^{\theta}\right)}{\mathrm{D} X_{t}^{\theta}} \tag{19}
\end{equation*}
$$

Note that X_{t} is twice L_{2}-differentiable w.r.t. parameter θ, see (17) for its derivative. In addition, $\mathrm{D} X_{t}^{\theta}, \mathrm{D}^{2} X_{t}^{\theta}$, and $\mathrm{D} \partial_{\theta} X_{t}^{\theta}$, are L_{2}-differentiable w.r.t. θ, and all these derivatives satisfy moment bounds similar to (35) [1] (moment bounds for $\left.\mathrm{D} X_{t}^{\theta}\right)$. Now it is easy to prove that Ξ_{t}^{1} is $L_{2^{-}}$ differentiable w.r.t. θ (the explicit formula of the derivative is omitted). One can just replace $\mathrm{D} X_{t}$ in the denominator in the formula (19) by $\mathrm{D} X_{t}+\varepsilon$, prove that this new functional is L_{2}-differentiable w.r.t. θ using the chain rule, and then show using (36) [1] (negative order moment bounds for $\left.\mathrm{D} X_{t}^{\theta}\right)$ that both this functional and its derivative w.r.t. θ converge (locally uniformly) in L_{2} as $\varepsilon \rightarrow 0$, respectively, to Ξ_{t}^{1} and to the functional $\partial_{\theta} \Xi_{t}^{1}$ which comes from the formal differentiation of (19). This argument also shows that Ξ_{t}^{1} and $\partial_{\theta} \Xi_{t}^{1}$ depend continuously (in L_{2}) on x, t, θ. Therefore, we can take a derivative at the right hand side in (3), which gives
$\partial_{\theta \theta}^{2} p_{t}^{\theta}(x, y)=p_{t}^{\theta}(x, y) \mathrm{E}_{x, y}^{t, \theta} \partial_{\theta} \Xi_{t}^{1}+p_{t}^{\theta}(x, y) g_{t}^{\theta}(x, y)^{2}$.

This function is continuous w.r.t. (t, x, y, θ) because $p_{t}^{\theta}, g_{t}^{\theta}$, and $\partial_{\theta} \Xi_{t}^{1}$ depend continuously (in L_{2}) on x, t, θ, and relation

$$
\begin{equation*}
\mathrm{P}_{x}^{\theta}\left(X_{t}=y\right)=0, \quad x, y \in \mathbb{R}, \quad t>0, \quad \theta \in \Theta \tag{20}
\end{equation*}
$$

holds true (by representation (3)).
To prove (5), we use moment bounds for $\partial_{\theta} X_{t}^{\theta}, \quad \partial_{\theta \theta}^{2} X_{t}^{\theta}, \quad \mathrm{D}\left(\partial_{\theta} X_{t}\right), \quad \mathrm{D}\left(\partial_{\theta \theta}^{2} X_{t}^{\theta}\right), \quad \mathrm{D}^{2}\left(\partial_{\theta} X_{t}^{\theta}\right)$, $\mathrm{D} X_{t}^{\theta}, \mathrm{D}^{2} X_{t}^{\theta}$ and $\mathrm{D}^{3} X_{t}^{\theta}$ to get, similarly to the proof of (37) [1] (integral representation for p_{t}^{θ}), that

$$
\frac{\left(\partial_{\theta} X_{t}^{\theta}\right)^{2}}{\mathrm{D} X_{t}^{\theta}}, \quad \frac{1}{\mathrm{D} X_{t}^{\theta}}\left(\delta\left(\frac{\left(\partial_{\theta} X_{t}^{\theta}\right)^{2}}{\mathrm{D} X_{t}^{\theta}}\right)+\partial_{\theta \theta}^{2} X_{t}^{\theta}\right)
$$

belong to $\operatorname{dom}(\delta)$ and

$$
\begin{align*}
& \Xi_{t}^{2}:= \delta\left(\frac{1}{\mathrm{D} X_{t}^{\theta}}\left(\delta\left(\frac{\left(\partial_{\theta} X_{t}^{\theta}\right)^{2}}{\mathrm{D} X_{t}^{\theta}}\right)+\partial_{\theta \theta}^{2} X_{t}^{\theta}\right)\right)= \\
&-\frac{1}{\mathrm{D} X_{t}^{\theta}} \mathrm{D} \delta\left(\frac{\left(\partial_{\theta} X_{t}^{\theta}\right)^{2}}{\mathrm{D} X_{t}^{\theta}}\right)+\frac{\mathrm{D} \partial_{\theta \theta}^{2} X_{t}^{\theta}}{\mathrm{D} X_{t}^{\theta}}+ \\
&\left(\frac{\delta(1)}{\mathrm{D} X_{t}^{\theta}}+\frac{\mathrm{D}^{2} X_{t}^{\theta}}{\left(\mathrm{D} X_{t}^{\theta}\right)^{2}}\right)\left(\delta\left(\frac{\left(\partial_{\theta} X_{t}^{\theta}\right)^{2}}{\mathrm{D} X_{t}^{\theta}}\right)+\partial_{\theta \theta}^{2} X_{t}^{\theta}\right) \tag{21}
\end{align*}
$$

with

$$
\begin{aligned}
& \quad \delta\left(\frac{\left(\partial_{\theta} X_{t}^{\theta}\right)^{2}}{\mathrm{D} X_{t}^{\theta}}\right)= \\
& \frac{\left(\partial_{\theta} X_{t}^{\theta}\right)^{2} \delta(1)}{\mathrm{D} X_{t}^{\theta}}+\frac{\left(\partial_{\theta} X_{t}^{\theta}\right)^{2} \mathrm{D}^{2} X_{t}^{\theta}}{\left(\mathrm{D} X_{t}^{\theta}\right)^{2}}-\frac{2\left(\partial_{\theta} X_{t}^{\theta}\right) \mathrm{D}\left(\partial_{\theta} X_{t}^{\theta}\right)}{\mathrm{D} X_{t}^{\theta}}
\end{aligned}
$$

$$
\mathrm{D} \delta\left(\frac{\left(\partial_{\theta} X_{t}^{\theta}\right)^{2}}{\mathrm{D} X_{t}^{\theta}}\right)=
$$

$$
\begin{gathered}
\frac{2 \partial_{\theta} X_{t}^{\theta}}{\mathrm{D} X_{t}^{\theta}}\left(\delta(1) \mathrm{D}\left(\partial_{\theta} X_{t}^{\theta}\right)-\mathrm{D}^{2}\left(\partial_{\theta} X_{t}^{\theta}\right)\right)+\frac{\left(\partial_{\theta} X_{t}^{\theta}\right)^{2} \mathrm{D} \delta(1)}{\mathrm{D} X_{t}^{\theta}} \\
-\frac{2\left(\mathrm{D}\left(\partial_{\theta} X_{t}^{\theta}\right)\right)^{2}}{\mathrm{D} X_{t}^{\theta}}+\left(\frac{\partial_{\theta} X_{t}^{\theta}}{\mathrm{D} X_{t}^{\theta}}\right)^{2}\left(\mathrm{D}^{3} X_{t}^{\theta}-\delta(1) \mathrm{D}^{2} X_{t}^{\theta}\right) \\
\quad+\frac{4 \partial_{\theta} X_{t}^{\theta} \mathrm{D}\left(\partial_{\theta} X_{t}^{\theta}\right) \mathrm{D}^{2} X_{t}^{\theta}}{\left(\mathrm{D} X_{t}^{\theta}\right)^{2}}-\frac{2\left(\partial_{\theta} X_{t}^{\theta} \mathrm{D}^{2} X_{t}^{\theta}\right)^{2}}{\left(\mathrm{D} X_{t}^{\theta}\right)^{3}}
\end{gathered}
$$

The expressions for $\partial_{\theta} X_{t}^{\theta}, \mathrm{D} \partial_{\theta} X_{t}^{\theta}$ and $\mathrm{D} \delta(1)$ can be found in [1], the other one given by the formulas (14) - (18). Therefore, for any test function $f \in$
$C^{2}(\mathbb{R})$ with bounded derivatives we have

$$
\begin{align*}
& \partial_{\theta \theta}^{2} \mathrm{E}_{x}^{\theta} f\left(X_{t}^{\theta}\right)= \\
& \mathrm{E}_{x}^{\theta}\left(f^{\prime \prime}\left(X_{t}^{\theta}\right)\left(\partial_{\theta} X_{t}^{\theta}\right)^{2}+f^{\prime}\left(X_{t}^{\theta}\right) \partial_{\theta \theta}^{2} X_{t}^{\theta}\right)= \\
& \mathrm{E}_{x}^{\theta}\left(\mathrm{D} f^{\prime}\left(X_{t}^{\theta}\right) \frac{\left(\partial_{\theta} X_{t}^{\theta}\right)^{2}}{\mathrm{D} X_{t}^{\theta}}+f^{\prime}\left(X_{t}^{\theta}\right) \partial_{\theta \theta}^{2} X_{t}^{\theta}\right)= \\
& \mathrm{E}_{x}^{\theta}\left(f^{\prime}\left(X_{t}^{\theta}\right)\left(\delta\left(\frac{\left(\partial_{\theta} X_{t}^{\theta}\right)^{2}}{\mathrm{D} X_{t}^{\theta}}\right)+\partial_{\theta \theta}^{2} X_{t}^{\theta}\right)\right)= \\
& \mathrm{E}_{x}^{\theta}\left(\frac{\mathrm{D} f\left(X_{t}^{\theta}\right)}{\mathrm{D} X_{t}^{\theta}}\left(\delta\left(\frac{\left(\partial_{\theta} X_{t}^{\theta}\right)^{2}}{\mathrm{D} X_{t}^{\theta}}\right)+\partial_{\theta \theta}^{2} X_{t}^{\theta}\right)\right)= \\
& \mathrm{E}_{x}^{\theta} f\left(X_{t}^{\theta}\right) \Xi_{t}^{2}=\mathrm{E}_{x}^{\theta} f\left(X_{t}^{\theta}\right) G_{t}^{\theta}\left(x, X_{t}^{\theta}\right) ; \tag{22}
\end{align*}
$$

see (6) for the definition of $G_{t}^{\theta}(x, y)$. Because the test function f is arbitrary, the integral identity (22) proves (5).

Remark 6. From (22) with $f \equiv 1$ it follows that

Список використаних джерел

1. Іваненко Д.О. Застосування числення Малявена до статистистичного аналізу СДР керованих процесом Леві [Електронний ресурс] / Д.О. Іваненко, О.М. Кулік // arXiv:1301.5141.
2. Шамон Л. Марківські мости: слабка неперервність і потраєкторна конструкція / Л. Шамон, Дж. Уріб Браво // Ann. Probab. 2011 - №39(2). - C. 609-647.
3. Саймон Б. Методи сучасної математичної фізики / Б. Саймон, М. Рід // Functional Analysis, Academic Press. - San Diego. - 1972.
4. Гіхман I.I. Стохастичні диференціальні рівняння і їх додатки / I.I. Гіхман, А.В. Скороход. - New York. Springer-Verlag. - 1972.
for every $x \in \mathbb{R}, \theta \in \Theta, t>0$

$$
\mathrm{E}_{x}^{\theta} G_{t}^{\theta}\left(x, X_{t}^{\theta}\right)=0 .
$$

Proof of Remark 2. By the moment bounds and formula (21), we have

$$
\begin{equation*}
\mathrm{E}_{x}^{\theta}\left|\Xi_{t}^{2}\right|^{p} \leqslant C\left(1+|x|^{p}\right) \tag{23}
\end{equation*}
$$

for every $p \in[1,2+\kappa)$, with the constants C depending on t, p only.

Combining relations (3) - (6) we get

$$
\partial_{\theta} g_{t}^{\theta}\left(x, X_{t}\right)=\mathrm{E}_{x}^{\theta}\left[\Xi_{t}^{2} \mid X_{t}\right]-g_{t}^{\theta}\left(x, X_{t}^{\theta}\right)^{2},
$$

Moreover, inequality (9) follows directly from (23), (45) [1] (moment bounds for g_{t}^{θ}) and Jensen's inequality.

References

1. IVANENKO, D. and KULIK, A. (2014) Malliavin calculus approach to statistical inference for Levy driven SDE's. [Online] - Available from arXiv:1301.5141.
2. CHAUMONT, L., URIBE BRAVO, G. (2011) Markovian bridges: Weak continuity and pathwise constructions, Ann. Probab., 39(2). p. 609-647.
3. SIMON, B. READ, M. (1972) Methods of Modern Mathematical Physics. San Diego. Functional Analysis, Academic Press.
4. GIHMAN, I. and SKOROHOD, A. (1972) Stochastic differential equations and their applications.. New York, Springer-Verlag.

Received: 23.12.2013

[^0]: ${ }^{1}$ Taras Shevchenko National University of Kyiv, Department of Radio physics, electronics and computer systems, 01601, Kyiv, Volodymyrska str., 64, e-mail: ida@univ.net.ua

