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Donoho and Johnstone introduced an algorithm and supporting inequality that allows the selection
of an orthonormal basis for optimal denoising. They considered ideal de-noising for signals in Gaussi-
an noise and Sebastian E. Ferrando with Randall Pyke obtained the results for signals in strictly sub-
Gaussian noise. The present paper concentrates in extending and improving this result, the main contri-
bution is to incorporate a wider class of noise vectors. We consider signals with @-sub-Gaussian noise.
In particular, we show that the random wvariables which have centered Weibull distribution belongs to
Suby, (). Estimates for the signals in which the tails of the distribution of noise is "lighter"or "heavi-
er"than Gaussian are established.
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Introduction type of inequality gives an apriori measure for the
quality of the algorithm associated to estimators
The subject of this paper is oracle based de- satisfying (1).
noising. Let s be a signal embedded in noise, we
are interested in estimators §, for the signal s, ob-
tained by thresholding coefficients in an ortonor-
mal basis B of R™. We consider the problem of
optimal basis selection when there is available a
library £ of such bases from which to choose from.
We will look for estimators which satisfy the fol-
lowing oracle-type inequality with high probabil-

1ty

Ideal de-noising for signals with Gaussian
noise is considered in [3]. The results for strictly
sub-Gaussian noise are obtained in the paper [4].

Ideal de-noising for signals with ¢-sub-
Gaussian noise is considered in this paper. The
notion of the Sub,(€2) space is introduced in the
paper [6]. The definition and properties of ran-
dom variables are studied in [5] (see also the book
[1]).

The main point of the present article is to
extend the results obtained in [3] and [4] to a
Our results have
been thus obtained that the algorithmic content

~ 2 .
$—s|5< cminR(s, B). 1
|85 IB< cminR(s, B) 1)
R(s, B) is the oracle risk for the basis B, this last
quantity is the average quadratic error incurred by
an oracle estimator. This last estimator makes use

wider class of noise vectors.

of knowledge of s and is of excellent quality but
unavailable in practice. After proper re-scaling,
it can be argued that an inequality of the above
type is asymptotically optimal as the oracle risk
decays in a best possible manner. Therefore, this
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of the original results have been preserved, in par-
ticular the thresholding parameters used are the
ones used in [4]. We generalize Gaussian and sub-
Gaussian hypothesis and we require that the noise
vector satisfies a p-sub-Gaussian hypothesis. Esti-
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mates of the risk of signal detection that occurred
in the case of Gaussian noise and sub-Gaussian
noise holds for (p-sub-Gaussian random variables
are studied. That is why the results, which are
obtained in this paper, can be used for wider
class of noise. In particular the random variables
which have centered Weibull distribution belongs
to Sub, ().

1 Basic definitions and some preliminary
results from the theory of Sub,(2)

The definition and properties of random vari-
ables are studied in [5] (see also the book [1]). We
now provide a number of results that we will use
extensively in this paper.

Definition 1. ([2]) Let ¢ = {¢(z),z € R} be a
continuous even convex function. ¢ is called an
Orlicz N-function if ¢(0) = 0, ¢(x) > 0as z # 0
and the following conditions hold

lim ¢lz) = 00. (3)

r—00 I

Lemma 1. (/6], [2]) For any N-function ¢ the
following statements hold:
a)e(lz | +|yl) = e@)+¢aszeR0<
a<l;
|z|

b) o(z) = [ p(t)dt, where the density p =
0

{p(t),t = 0} is right continuous non-decreasing
p(0) =0 and p(t) — oo ast — oo.

Definition 2. ([2], [5]) Let ¢ = {p(z),z € R} be
an N-function. The function ¢* defined by

@* =sup (vy — ¢(y)),
yeR

is called the Young-Fenchel transform of ¢

Remark 1. ([5]) The Young-Fenchel transform of
an N-function is an N-function as well.

Ezample 1. ([5]) If

then

where ¢ is such that 1% + % =1
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Example 2. Let

|zl
=< p’ = h 2, (5
QO(.’E) {:t;” ‘$‘>1 w enp> 9 ()

Find ¢*(z).
z >0 ¢(z) = [ p(u)du, where
0

From Lemma 1 it follows that for all

2u
e 0<ux<l1
— p? ~ ~ )
p(u) { ub™l, u > 1.
Then
Lu, 0<z<2/p,
PV () = 1, 2/p<z<l.
ut/(P=1), u > 1.

From Lemma 1 and remark 1 follows that ¢*(x) =
xT
J P (w)du.
0
Therefore
%aﬂ, 0<z< }%,

z—1/p, 2<x<l,
p=1.p/(p—1)
D )

¢ (r) =

Lemma 2. Let pi(x) and ¢a(x) be two N-
function, where o1(x) < pa(x). Then @3(x) <
¢i(z).

Proof. From the Young-Fenchel inequality it fol-
lows

¢i(z) = ilirg(wy —1(y)) =
> 21;18(33?4 —p2(y)) = p3(x).

Thus ¢3(z) < ¢i(). =

Condition Q([5]): An N-function ¢ satisfies
Q it
lim inf 90(5) =
z—0 X
Let {©,B,P} be a standard probability

space.

c > 0.

Definition 3. ([5]) Let ¢ be an N-function satis-
fying condition ). The random variable £ belongs
to the space Sub,(Q2) if E{ = 0, Eexp{A¢{} exists
for all A € R and there exists a constant ¢ > 0 such
that the following inequality holds for all A € R

Eexp{\¢{} < exp{p(Aa)}.

40
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Consider now the following functional, de-
fined on the space Sub,():

7o(€) = inf(a > 0: Eexp{A¢} <
<exp{p(Aa)}, A € R).

Theorem 1. (/5/) The space Sub,(?) is a Ba-
nach space with respect to the norm 7,(-).

Lemma 3. ([5]) Let £ € Sub,(€2),
0. The following inequality holds

P(€ 1> e < 2o |- ((5))}

Theorem 2. ([5]) The random wvariable & €
Suby, () if and only if E{ = 0 and there exist
two constants C' > 0 and D > 0 such that

To(&) > 0, >

(6)

(1+
, v1 the root of

P{¢|>a} < Coxp{—¢" (5 )}

for any x > 0. If (6) holds then 1,(§) <
C)DS¢6%, = max~y; |
i=1,3
the equation v = A\g\/co(1 — 7); Y2 the root of the
equation v3 — 2(1 — ) = 0; 3 the root of the
equation v = (=1 (2)\/co(1 — ), where \g > 0

@A)
PLEE

where S,

be any number and co =  inf
0<|A[<No

2 Main results

f exp {tu

wi/2

Lemma 4. Let I(t
2. Then

}du q >

I(t) < 22/qu exp {tﬁcl/zq} ’

/2

where Cy

:foexp{
2)/q.

Proof. From the Young-Fenchel inequality follows
that for any s > 0, v > 0 holds

}ds and Cljq =
42/(q-2) (q—

sv < p(s) + " (v). (7)

Consider
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Let o(s) = q/2,thengo (s )Z%,Where%—i-q/%:

1. It follows that r = _L;. Therefore ¢*(s) =
q%fsq/(q”). Then from (7) obtain

1 u9/? 1 a_q—?2

<
2q/2 q

Hence,

I < %20 T wd/? du —
(t) \exp{tq é’q}gexp{— 5 } u =
:22/quexp {t#Céq}.
[

Remark 2. If ¢ = 2 then Sub,(Q2) =
this occasion does not regarded.

Sub(), thus

Lemma 5. Let & € Suby,(Q2) and ¢(x) be deter-
mined in (4), that is p*(x) = % where q is such
that % + % = 1. Then for any t the following in-
equality holds

2 a+2 _q_
Eexp{ € }< 14142 q C’qexp{tr2C’%7q}. (8)

Proof. Let ¢*(x) be the Young-Fenchel transform
of function ¢(z). Denote n = &2, then n > 0. Let
F, (x) be distribution function of random variable
1. From Lemma 6 it follows that

1—Fy(z)=P{n>a}=P{& >z} =

=P{|{|> Vx} < 2exp{—<p* (4)} 9)

Consider

Eexp{%} = Eexp{:—z} =

Zoexp{g}dpn(u> _

f exp {4} d(1 - F,(u)).

0

Calculate this integral by parts, then

tfi}z—exp{t"} Fyw) [§° +

+35 [ (1= Fy(u)) exp {75} du.
0

Eexp

The first summand in upper bound converting in
origin if u — oo, since
ud/2 tu
exp { &}

exp{tu} qr4
= exp {— — qu/;} — 0,

(1—Fy(u) 2exp{
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and in lover bound converting in one, therefore
that 1 — F;,(0) = 1. Then from inequality (9) and
Lemma 3 it follows that

(o] 4
u
1+2t0fexp{tu—q

1+ t2@h)/aC, exp {tq/(qf

}du<

Lemma 6. Let £ € Suby,(2) and p(x) be deter-
mined in (5), namely for p > 2 (see Example 1.2)

Ba?, 0<x<2/p,
©*(x) = xfl/pp, 2/p<x <1,
pp%lxpj x> 1.

Then if t < 1 the following inequality holds

)}

Proof. Let F¢(x) be distribution function of ran-
dom variable ¢ and ¢*(z) be the Young-Fenchel
transform of function ¢(x). Since ¢*(x) is even
(it follows from remark 1 ) then

2
1—ta’

3

E exp {(p* (
-

(10)

so () 5o

Ofexp {o* ()} d (F(u)).
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Therefore

s (%))

—feXp{so ()3 d (1~ F(w)

27’/tp
= [ e e ()} - Pl -
T/t
= [ ep{e (7)1 - Fu) -
27 [tp
B {t exp {¢* (7)} d(1 - F(u)) =
: /—(1—Fu exp {p* (&)} g7 +
+ [ A= F)ep {e (%)} de (%) -
— (1= F(u))exp {&" ()} 1515, +
T/t
+2{ (1= F(u)exp {¢* (7) } de™ (7) =
T /ip
— (1= Fw)exp{e™ ()} 17, +
+{(1—F( Jexp {¢* ()} de* (%) =
= — (1= F(2r/tp)) exp {¢* (2/p)} +
1= (1= F(r/t))exp{e* (1)} +
+ (1= F (27/tp)) exp {¢* (2/p)} +
(L=F(r/t) exp{e* (1)} +
27 /tp
£ [ Q= F)ep {et (F)}de* (%) +
. w)exp {* (1)} g™ () +
27/0127
+{t (1= F(u))exp {o* (7) } de™ (7).

From Lemma 3 it follows that

42
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) 27 /tp . 2
=@ [ en {5 - nja (g )
+2+t2—tlfexp{%(t—1)}d(g(t—1))+

2T
tp
B fexp {3 (2)"(#1 - 1)} x
t
xd (L (W)@ -1)) =
(L) )=
= 2+ 2_ IGXP{472 (t2 - 1)} |6P +
ﬁeXP{;(t_l)} ’%i +t3i]1x

T
t

b-1)+
2(t— 1)})_

3
)}

x exp{l () (e —p1)} |
=24 2 t2 T (exp{tL1
2t (exp{t 1}exp{

214 {

“ia—1 &XP
t < 1 thus

2(t — 1)
p{ pt
! 1

}gexp{q<1_

Since p > 2 and 0 <
t_

{17
exp{l_

N
I

1

t2 4

1
exp{l—tQ} < 1;

14 12
< .
ti—1 12 -1

From these inequalities it follows that

Bexp {¢" (%)} <2+ 2 (exn {1 - &} -1)
—tgt—ql exp{% ( - th)} <2- tgt—ql""
% (ep {1 - &) e {5 (- 4)})
<2 (1 tqtql) = tq_—21 = 1—2t‘1‘

Let £ be a library of orthonormal bases of R™,
M., the set of distinct vectors in £. M, will de-
note the cardinality of M,,. If B is orthonormal
bases of R™ then by s;[B] denote the k' coordi-
nate of s in the basis B.

Put

In(A)

=4\(1+ 2log M,,)) (11)

and
Ay = Ap(N) = 725,(N), A > 2

The data is given in the form

y=s+z (12)
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where s is the deterministic signal and z is a noise
vector whose coordinates are assumed to be i.i.d.
p-sub-gaussian random variables.

Introduce the empirical entropy for defined
best orthogonal basis as as in [3]

B) = min(y;[B]

Let B be the best orthogonal basis according
to this entropy

Ay)

)

N

B = i B
arg min e (y, B)

For determined thresholding z consider func-
tion what defined for all real ¢ as follows

Nz (C) = CZ{\C|>Z}7

where 7y~ is the characteristic function of the
set (—oo;—2z) U (z;00). Apply hard thresholding
to obtain the empirical best estimate for signal s
in the basis B

§718] = n. /5 (uiB))

Consider the complexity functional as well as
it was done in [4]

K(s7s) =] 5—53 +A, mm 1=
BEL (i 5,18]#0}

=|| 5= s[5 +AnNL(3)

where
Ng(g) = mBin#{ei € B: S~Z[B] 7é 0}.

Let s° denote a signal of minimum theoretical
complexity i.e.

0

K(s",s) =min K(3,s)

Let jo = max(N,(s°),1).
Using the result obtained above it can be
shown that the estimate from [4]

226, (\)

3 R(sL),

| s* = s |3<
where
2 [8],7%)

R*(s, L) = mganin (s (13)

with a certain probability holds for ¢-sub-gaussian
random variables.
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Theorem 3. Let p(x) be defined as in (4) namely
o*(x) = %}, where q is such that equality %—F% =1
holds. If the data is presented as y = s+ z, where
z € Suby,(Q) (see (12)) then when t =1

- A6 (N) o
P{Il5 =5 3> 2=0R(s,0)} <

< exp{C_—j()} (14)
where  §p,(A) = AN1 + 2logM,)),
R*(s, L) = mBinEmin(s?[B],Tz), C =1+

7

g+2

2% ¢ exps C1 ¢, constants C, and C1 _ are
q 54 q 54

defined in Lemma 4 .

Proof. Let C(j, My,) denotes the collection of all
subsets consisting of j vectors chosen from the M,
vectors of M,,. Let S € C(j, M ) be subspace
generated by the element of C(j, M,,). Let Ps be
an orthogonal projection on S.

Consider the set

VAu/Ne (s
2V

A= {w || Psz(w) [|2= )+ Ne($ )}

and
VAL
Bj = {w :osup || Pgz(w) [[2= \/5}
SeC(j,M») 2V

VARV

Then A C U Bj. Let a = and fixed sub-

o
j=jo
space ) € C(j, M,,) be of dimension d, d < j
Consider the set

Dj =A{w:|| Py 2(w) ll2= a}

Let {eq, e, ...,e4} be an orthonormal basis of
Si. Extend {ey, e, ..., €4} to an orthonormal basis
Rn

€= {61; €2, -5 €d5 €dt15 -0y en}'
Then
n
z= <Z,€k> k
k=1
and
d
f = Pglz Z<Z, 6k>€k
k=1

Evidently, &le] =
&kle] =0 when k=d+1,n
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From Chebyshev inequality and (10) and the
fact that the random variables are independent we
obtain

P(Dy) = Pl & ll2> o} =
P{exp tu 1 }>exp{ } <
E'exp{ Z £} E ﬁ exp{_}_%{;%}

< k=1 _ k=1 <
X exp{%} exp{t:%} X
Ek]i[lexp{ﬁfz} _ k]i[lEexp{T%gz} -
@] (E]
q+2
q

P(D;) < C(t)exp {1 | =
= CI(t) exp {_ﬂtj(ltz;og Mn)} _
= Ci(t)e It M, 2
With this common bound, i.e. independent of the
particular Sq, we have

—2]t et —

P(Bj) < #C(j, My)C? () M,

( Af >0J<t)M;2”eﬁ

Therefore,

P(A)< Y,
Mj=j0
ey —j 1-2t)j5
gj; eI <
. My .
< MT(LI—Qt)joe_th Z C;!(t)
=1

MeCi(tye I My ' <

< exp{C(O)—tjo}
X MT(LQt—l)jO .

Choosing t = 1 we obtain required inequality.
O

Theorem 4. Let o(x) b

Py
1T

defined as in (5) namely

O<ac<2

2<x<l,

@’B\r—‘uw g

E—=gr- x> 1.

data is presented as y = s + z where

z € Suby(2) (see (12)) cmd let 6,(\) =

A\ (q(1 4 (2 + B) log M, ))q ]0 = then for any 3 >
0

e2

Mo’
(15)

- 200 ()
P - s gz B0

where R*(s, L) = mBanmm (s2[B],7%).

R*(s,ﬁ)} <
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Proof. In the proof we will use the same notation
and set as in the proof of Theorem 3.

Let T(A) = 4X (q(1 + (2 + 3) log M,,))*/? and
Sn(AN) = T(\)j'2/9, where 1 < jo < j < My, Tt
follows from Chebyshev 1nequahty that

P(D) = P € s> a} =
(e [ & 1 (at\q
=P {exp{q <T k§1§k> > exp{a (7) }}

d
< Eexp {}1 (i\/ > 5;%) } exp {—q
k=1
Since ¢*(z) is even and ¢*(y/x) in this case is con-
cave then

p Ee"p{é(i)qkflmkq}
(D) € — = T _
Eexp{i(i)qgilﬁi} ffgilexp{%(é)fz}
ol el
< Ek]i[lexp{%(fyfg} kli[1EeXp{%<£)q§Z}
Soehe) el
From (10) it follows that

Function V (t) = (ﬁ)j exp {—

its minimum at the point ¢ = (1 —

(%t ) 1 } reaches

Taking into account the inequality 1 + (2 +
B)log M,, < M;? we obtain
2a1

P(D;) < V({) = (25) expo{~ % +} =
=2/ (1+ (24 B8)log M) x
x exp{—(2+ 3)jlog M, }
< QngjM;(2+ﬂ)j _ 2jMn—2j

qr?y
ad

Then for the common bound the following in-
equality holds

P(Bj) < #C(j, M,)21 M, > = <J\f_">2fM52j

M) A r—2 27 ar—
P(A) < > M, J<ZﬁMn]<
J=Jo Jj=1
1 Y e?
< M:erO 7 < MTJ;O

2014, 2

45

Bulletin of Taras Shevchenko
National University of Kyiv
Series: Physics & Mathematics

Since jo < j and ¢ < 2 then T(\)j'7?/¢ <

TNy "

Therefore

2

Mo

> P{H s |2 Mms a)}

2)\T()\)jo .

>Pqls—sl3>

:P{Hé

R*( L)

13> 2R s 0))
O

Ezample 3. ([5]) The random variable £ has cen-
tered Weibull distribution, namely

P{¢>a}= %exp{—cmo‘} x>0

P{£<x}:%exp{fc|x|a} x <0

when o > 2 belongs to the space Suby,(Q2) and

Tw(g) <
2.

Example 4. Let o < 2. For simplicity, consider
the particular case of Weibull distribution and put
¢ =1/« then

25906%, where S, is defined in Theorem

P> o} =exp {—;x}

Consider Sub,(§2) where

272
e rz|<1,
o) =< &’ @] when p > 2, (16)
?7 |aj‘> 1
Then
2 2
%a:l, 2<CE< 55
cp*(:c): :1:—;;, £Lr<l,
pp%lxﬁ, x> 1,
Putp%lzawhereé—k%:l Then p = 25.
Namely
2o 0<e<2(a-1),
pa)=q e-2t Za-1)<e<l,
éxa, z>1

From Lemma 2 it follows that 21 > ¢*(x). Then

P{¢l> o} =exp{—;xa} < exp{—p* (@)}

Consequently, £ € Sub,(€2) and 7,(§) < ZSSOe?Tg,

where S, is defined in Theorem 2.
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3 Conclusions

Regardless the fact that in Theorem 3 due to
complexity of calculations the smallest value of
the probability could not be found exactly. How-
ever, the result for jo > C' is much better than
the result obtained for Gaussian and strictly sub-
Gaussian noise. This is natural, since the ran-
dom variables that belong to the space Sub,(2)
with the function ¢(z) which is defined in (4)
have ”lighter tails” of distribution than the ran-
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dom variables from the space SSub(2). Note also
that the result of Theorem 4 is worse than the re-
sults obtained in Theorem 3 and for Gaussian and
strictly sub-Gaussian noise. This is because the
random variables from the space Sub,(€2) where
() is defined in (5) have "heavier tails” of dis-
tributions. The importance of Theorem 4 is that
either the results of Theorem 3, or the results from
the paper [4] for these random variables cannot be
used.
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