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У роботi отримано канонiчну форму для пари iдемпотентних матриць A,B з додатко-
вим спiввiдношенням ABA = BAB (яке називається подвiйним сендвiч-спiввiдношенням) та
обчислено алгебру Ауслендера для таких пар матриць.
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One of the important notion of the area of modern representation theory that study categories of
representations of various algebraic objects is Auslander algebra (which has been studied for decades
by many mathematicians). This algebra is defined for an algebra of finite type (i. e. such that has, up
to isomorphism, only finitely many indecomposable modules) as the endomorphism algebra of a direct
sum of all indecomposable modules, one from each isomorphism class. We use instead of the module
language the equivalent language of matrix representations. Since there is a natural correspondence
between the representations of a semigroup and the representations of its semigroup algebra over any
field, we can say about the Auslander algebra of each semigroup of finite representation type.

In the first part of this paper we obtain a canonical form of representation of the semigroup
generated by two idempotent elements a, b with additional relation aba = bab (which we call the
double sandwich relation), or in other term, a canonical form of pairs idempotent matrices such
that ABA = BAB. We prove that this semigroup has, up to equivalence, only finite number of
indecomposable representations.

In the second part of this paper we calculate the Auslander algebra in this situation.
Key Words: semigroup, idempotent matrix, double sandwich relation, matrix representation, endo-

morphism, Auslander algebra.
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1 Introduction

Throughout this paper, K denotes a field.
Let S = Sdsr(2, 2) denotes the semigroup with

the generators 0, a, b and the defining relations
1) 02 = 0, 0a = a0 = 0, 0b = b0 = 0;
2) a2 = a, b2 = b;
3) aba = bab.
We call the relation 3) the double sandwich

relation.
By the general definition, a matrix represen-

tation of the semigroup S over K is a homomorp-

hisms T : S → Mn(K), where Mn(K) is the semi-
group (with respect to the multiplication) of all
n × n matrices over K (n is called the dimension
of the representation T ). We can assume, essenti-
ally without loss of generality, that T (0) = 0.
Then T is uniquely determined by the pair of
matrices R(T ) = (A,B) with A2 = A, B2 = B,
ABA = BAB (here A = T (a), B = T (b)). We
identify the representation T with the pairs of
matrices R(T ).

Representation R = {A,B} and R′ = {A′, B′}
of the semigroup S are said to be equivalent if A′ =
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CAC−1 and B′ = CBC−1 for some invertible
matrix C. A matrix representation R is said to be
decomposable if it is equivalent to a direct sum of
two representations, and indecomposable otherwi-
se. For matrix representations of S, the Krull-
Schmidt theorem (on the uniqueness of decomposi-
tion into a direct sum of indecomposables) holds.

We identify the problem on matrix represen-
tation of the semigroup Sdsr(2, 2) and the problem
on pairs idempotent matrices with double sand-
wich relation using both notions depending on the
particular situation.

The first aim of this paper it to classify (up
to equivalence) the indecomposable representati-
ons of the semigroup Sdsr(2, 2). The second part
is devoted to the study of the Auslander algebra
of this semigroup.

The Auslander algebra (the endomorphism
algebra of a direct sum of the representatives of the
indecomposable representations) is introduced for
algebras (in particular, for semigroup algebras, or
equivalently, semigroups themselves) only in the
case of finite representation type, i. e. with only
finitely many (up to equivalence) indecomposable
representations.

We emphasize that the semigroup S(2, 2)
with the generators a, b and the defining relati-
ons a2 = a, b2 = b is of infinite representation
type; its representations can be classified by one
of the method of [1] using a result of [2]. Since
the semigroup Sdsr(2, 2) is of finite representation
type (see below Theorem 2.1), we can say about
its Auslander algebra.

2 Classification theorem

By E we denote any identity matrix of size m×m
with m > 0.

Theorem 2.1. Any matrix representation of the
semigroup Sdsr(2, 2) is equivalent to a matrix
representation of the form

a → A =




E 0 0 0 0 0 0 0
0 E 0 0 0 0 0 0
0 0 E 0 0 0 0 0
0 0 0 E 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




,

b → B =




E 0 0 0 0 0 0 0
0 0 0 0 0 0 E 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 E E 0 0 0
0 0 0 0 0 E 0 0
0 0 0 0 0 0 E 0
0 0 0 0 0 0 0 0




.

Proof. We carry out the proof on the language
of admissible elementary transformations, and
following the traditions of the Roiter theory of
matrix problems we denote, as rule, the result
of applying such transformations to some matri-
ces by the same symbols. When we partition into
blocks some matrices of a matrix representation,
we always assume (often by default) that all the
other matrices are partitioned analogously. The
same is assumed with respect to parts of matrices
and these matrices themselves, and in the other
analogously situations.

Let R = {A,B} be a matrix representation of
the semigroup S = Sdsr(2, 2) over K. We reduce
A to a normal Jordan form, namely

A =
(

E 0
0 0

)

and partition B into blocks in the same way as A:

B =
(

B11 B12

B21 B22

)
.

First, we use the equality ABA = BAB:

ABA =
(

E 0
0 0

) (
B11 B12

B21 B22

)(
E 0
0 0

)
=

=
(

B11 0
0 0

)
;

BAB =
(

B11 B12

B21 B22

) (
E 0
0 0

)(
B11 B12

B21 B22

)
=

=
(

B11 0
B21 0

)(
B11 B12

B21 B22

)
=

=
(

B2
11 B11B12

B21B11 B21B12

)
;

consequently
B2

11 = B11 (1)

B11B12 = 0 (2)

B21B11 = 0 (3)
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B21B12 = 0 (4)

Now we use the equality B2 = B:

B2
11 + B12B21 = B11 (5)

B11B12 + B12B22 = B12 (6)

B21B11 + B22B21 = B21 (7)

B21B12 + B2
22 = B22 (8)

Taking into account relations (1)-(4) we write the
equalities (5)-(8) in the following form:

B12B21 = 0 (9)

B12B22 = B12 (10)

B22B21 = B21 (11)

B2
22 = B22 (12)

Since the matrices B11 and B22 are idempotent
(see (1) and (12)) they can be reduced, by admissi-
ble transfornations to be similarity trasformations
with A and B (inside the 1st and 2nd horizontal
and vertical bands), to the following forms:

B11 =
(

E 0
0 0

)
and B22 =

(
E 0
0 0

)
.

In accordance with the partitions of B11 and B22

we partition B12 and B21 into the new blocks:

B12 =
(

C1 C2

C3 C4

)
and B21 =

(
D1 D2

D3 D4

)
.

Then we have
(

C1 C2

0 0

)
=

(
0 0
0 0

)

from equality (2),
(

D1 0
D3 0

)
=

(
0 0
0 0

)

from equality (3),
(

C1 0
C3 0

)
=

(
C1 C2

C3 C4

)

from equality (10),
(

D1 D2

0 0

)
=

(
D1 D2

D3 D4

)

from equality (11).

So C1 = 0, C2 = 0, C4 = 0 i D1 = 0, D3 = 0,
D4 = 0, and consequently we have

(
0 D2

0 0

)(
0 0
C3 0

)
=

(
0 0
0 0

)

from equality (4) and
(

0 0
C3 0

)(
0 D2

0 0

)
=

(
0 0
0 0

)

from equality (9), whence D2C3 = 0, C3D2 = 0.
Thus our matrix representation R = {A, B}

consists of matrices of the following form:

A =




E 0 0 0
0 E 0 0
0 0 0 0
0 0 0 0


 , B =




E 0 0 0
0 0 C 0
0 D E 0
0 0 0 0


 , (13)

where DC = 0, CD = 0.
Now find out when the matrix representati-

on R = {A,B} is equivalent to another matrix
representation R = {A, B} with the matrices A,B
to be the same form as A,B:

A =




E 0 0 0
0 E 0 0
0 0 0 0
0 0 0 0


 , B =




E 0 0 0
0 0 C 0
0 D E 0
0 0 0 0


 .

Let X be an invertible matrix such that A =
XAX−1, B = XBX−1, or equivalently,

AX = XA, BX = XB.

First, we use the equality AX = XA (with the
matrix X to be partitioned into blocks in accor-
dance with the partitions of B11 and B22):



E 0 0 0
0 E 0 0
0 0 0 0
0 0 0 0







X11 X12 X13 X14

X21 X22 X23 X24

X31 X32 X33 X34

X41 X42 X43 X44


 =

=




X11 X12 X13 X14

X21 X22 X23 X24

X31 X32 X33 X34

X41 X42 X43 X44







E 0 0 0
0 E 0 0
0 0 0 0
0 0 0 0


 .

As result, we have



X11 X12 0 0
X21 X22 0 0
X31 X32 0 0
X41 X42 0 0


 =




X11 X12 X13 X14

X21 X22 X23 X24

0 0 0 0
0 0 0 0


 ,
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whence

X =




X11 X12 0 0
X21 X22 0 0
0 0 X33 X34

0 0 X34 X44


 .

Now we use the equality BX = XB (with X
to be of the new form):



E 0 0 0
0 0 C 0
0 D E 0
0 0 0 0







X11 X12 0 0
X21 X22 0 0
0 0 X33 X34

0 0 X34 X44


 =

=




X11 X12 0 0
X21 X22 0 0
0 0 X33 X34

0 0 X34 X44







E 0 0 0
0 0 C 0
0 D E 0
0 0 0 0


 .

As result, we have

CX33 = X22C, DX22 = X33D,

X12 = 0, X21 = 0, X34 = 0, X43 = 0.

Thus, the matrix X is block-diagonal, and
the matrix representations R = {A,B} and R =
{A, B} (of the form (13)) are equivalent if and only
if the following equalities hold:

C = X22CX−1
33 (14)

D = X33DX−1
22 (15)

In other terms this means that R = {A,B}
and R = {A, B} are equivalent if and only if the
pairs of matrices (C,D) and (C, D) are equivalent
as matrix representations of the quiver

◦¾

c

d
◦-

with relations cd = 0, dc = 0.
It is easy to see (and is well known) that any

matrix representation (C, D) of this quiver is equi-
valent to those of the following form:

C =




0 0 E
0 0 0
0 0 0


 , D =




0 0 E
0 0 0
0 0 0




(the horizontal and vertical partitions of D are the
same as the vertical and horizontal partitions of C,
respectively). Substituting these matrices in (13)
we obtain the matrices A,B of the form indicated
in the theorem, and the proof is complete.

We have the following corollary.

Наслiдок 1. The indecomposable matrix repre-
sentations of the semigroup S = Sdsr(2, 2) over
the field K are exhausted, up to equivalence, by
the following (pairwise non-equivalent) ones:

1) a → 0, b → 0;

2) a → 1, b → 0;

3) a → 0, b → 1;

4) a → 1, b → 1;

5) a →
(

1 0
0 0

)
, b →

(
0 0
1 1

)
;

6) a →
(

1 0
0 0

)
, b →

(
0 1
0 1

)
.

Indeed, it follows from Theorem 1 that any
matrix representation of Sdsr(2, 2) is equivalent
to a direct sum of representations of the form
1)−6). On the other hand, all representation 1)−6)
are indecomposable: 1) − 4) as one-dimensional
representations and 5), 6) as representations with
the trivial algebra of endomorphisms.

3 Calculation of the Auslander algebra

Using Theorem 2.1 we describe the Auslander
algebra for the pairs of idempotent matrices A,B
with the double sandwich relation ABA = BAB
over the field K. Since by this theorem the pair of
matrices A,B with all blocks E to be of size 1×1,
i. e. the pair of matices

A0 =




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




,

B0 =




1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0




,

12
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is (up to the same permutation of rows and
columns) a direct sum of all indecomposable, pair-
wise non-similar, pairs of idempotent matrices
with the double sandwich relation, the (matrix)
Auslander algebra in this case consists of all the
matrices X such that A0X = XA0, B0X = XB0.

First, we consider the equality A0X = XA0:




x11 x12 x13 x14 x15 x16 x17 x18

x21 x22 x23 x24 x25 x26 x27 x28

x31 x32 x33 x34 x35 x36 x37 x38

x41 x42 x43 x44 x45 x46 x47 x48

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




=

=




x11 x12 x13 x14 0 0 0 0
x21 x22 x23 x24 0 0 0 0
x31 x32 x33 x34 0 0 0 0
x41 x42 x43 x44 0 0 0 0
x51 x52 x53 x54 0 0 0 0
x61 x62 x63 x64 0 0 0 0
x71 x72 x73 x74 0 0 0 0
x81 x82 x83 x84 0 0 0 0




,

whence the matrix X has the form

X =




x11 x12 x13 x14 0 0 0 0
x21 x22 x23 x24 0 0 0 0
x31 x32 x33 x34 0 0 0 0
x41 x42 x43 x44 0 0 0 0
0 0 0 0 x55 x56 x57 x58

0 0 0 0 x65 x66 x67 x68

0 0 0 0 x75 x76 x77 x78

0 0 0 0 x85 x86 x87 x88




.

Now, using the above form of X, we consider
the equality B0X = XB0:




x11 x12 x13 x14 0 0 0 0
0 0 0 0 x75 x76 x77 x78

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

x41 x42 x43 x44 x55 x56 x57 x58

0 0 0 0 x65 x66 x67 x68

0 0 0 0 x75 x76 x77 x78

0 0 0 0 0 0 0 0




=

=




x11 0 0 0 0 0 x12 0
x21 0 0 0 0 0 x22 0
x31 0 0 0 0 0 x32 0
x41 0 0 0 0 0 x42 0
0 0 0 x55 x55 x56 x57 0
0 0 0 x65 x65 x66 x67 0
0 0 0 x75 x75 x76 x77 0
0 0 0 x85 x85 x86 x87 0




.

So it is easy to see that

X =




x11 0 0 0 0 0 0 0
0 x22 x23 x24 0 0 0 0
0 0 x33 x34 0 0 0 0
0 0 0 x44 0 0 0 0
0 0 0 0 x44 x56 x57 0
0 0 0 0 0 x66 x67 0
0 0 0 0 0 0 x22 0
0 0 0 0 0 0 0 x88




. (16)

Thus we proved the following theorem.

Theorem 3.1. The matrix Auslander algebra for
the pairs of idempotent matrices A, B over K
with the double sandwich relation ABA = BAB
consists of all matrices of the form ( 16).
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