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Ó äàíié ðîáîòi ðîçãëÿäà¹òüñÿ ìîäåëü ñóìiøi éìîâiðíiñíèõ ðîçïîäiëiâ, ó ÿêié êîíöåíòðàöi¨

ââàæàþòüñÿ âiäîìèìè, i çìiíþþòüñÿ âiä ñïîñòåðåæåííÿ äî ñïîñòåðåæåííÿ. Äëÿ äàíî¨ ìîäåëi

ñòàâèòüñÿ çàäà÷à ïåðåâiðêè ãiïîòåçè ïðî ðiâíiñòü ðîçïîäiëiâ êîìïîíåíòiâ ìiæ ñîáîþ, àáî äåÿêî-

ìó íàïåðåä çàäàíîìó ðîçïîäiëó. Â ÿêîñòi ðîçâ'ÿçêó ïðîïîíó¹òüñÿ òåõíiêà, àíàëîãi÷íà êëàñè÷íî-

ìó òåñòó õi-êâàäðàò, äå ðiâíiñòü ðîçïîäiëiâ ïåðåâiðÿ¹òüñÿ ïî ãðóïîâàíèì äàíèì. Äàíà òåõíiêà

¹ ìîäèôiêàöi¹þ áiëüø çàãàëüíîãî ïiäõîäó äî ïåðåâiðêè ãiïîòåç ïðî ôóíêöiîíàëüíi ìîìåíòè ó ìî-

äåëi ñóìiøi, ÿêèé áóâ ðîçãëÿíóòèé ó ïîïåðåäíié ðîáîòi àâòîðà. Äëÿ êîíêðåòíî äàíî¨ ìîäèôiêàöi¨

êîíêðåòèçîâàíî óìîâè ¨¨ çàñòîñóâàííÿ íà ïðàêòèöi. Íà ðîëü òåñòîâî¨ ñòàòèñòèêè îáèðà¹òüñÿ

âåêòîð, åëåìåíòàìè ÿêîãî ¹ çíà÷åííÿ íàâàíòàæåíî¨ åìïiðè÷íî¨ ìiðè íà äåÿêèõ ïiäìíîæèíàõ

ïðîñòîðó ñïîñòåðåæåíü. Òåñò ïîëÿãà¹ ó äîñëiäæåííi âiäñòàíi ó ñåíñi Ìàõàëàíîáiñà ìiæ çíà÷å-

ííÿì òåñòîâî¨ ñòàòèñòèêè òà íóëåì. Äàíà âiäñòàíü ïîðiâíþ¹òüñÿ iç ïîðîãîâèì ðiâíåì, ÿêèé

âèâîäèòüñÿ iç àñèìïòîòè÷íèõ âëàñòèâîñòåé ñòàòèñòèêè. Íàâåäåíèé ïiäõiä ëåãêî ìîæå áóòè

óçàãàëüíåíèé äëÿ ïåðåâiðêè áiëüø øèðîêîãî êëàñó ãiïîòåç ïðî ðîçïîäiëè êîìïîíåíòiâ ñóìiøi.

ßêiñòü ðîáîòè òåñòó ïåðåâiðÿ¹òüñÿ çà äîïîìîãîþ iìiòàöiéíîãî ìîäåëþâàííÿ.

Êëþ÷îâi ñëîâà: ìîäåëü ñóìiøi, ïåðåâiðêà ãiïîòåç, òåñò õi-êâàäðàò.

In this paper we consider the model of mixture of probability distributions. The concentrations

of components (mixing probabilities) are known, and they vary from observation to observation. For

the given model, we formulate a problem of testing hypothesis about the equality of components' di-

stributions within each other, or to some distribution given in advance. As a solution we propose

a technique analogous to the classical chi-square test, where distributions' equality is checked by the

grouped data. This technique is a modi�cation of more general approach to testing hypotheses about

functional moments in the model of mixture, which was developed in the author's previous work. For

this concrete modi�cation, the conditions of it's application were concretized. As a test statistic, we

choose a vector, which elements are the values of the weighted empirical measure on some subsets of

the observations' space. To perform the test, we compare the Mahalanobis-type distance between the

value of the test statistic and zero. This distance is compared with the threshold value, which we derive

from the asymptotic properties of statistic. Introduced approach can easily be generalyzed for checking

of much more general class of hypotheses about the mixture components' distributions. Performance of

the test is analyzed by simulation.

Key Words: mixture model, hypothesis testing, chi-square test.
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Introduction

We consider a sample consisting of N subjects
O1;N , ..., ON ;N . Each subject Oj;N belongs to one
of the M subpopulations P1, ...,PM (mixture's
components) of the general population. But we
do not know to which subpopulation exactly.

We denote the number of this subpopulation as
ind(Oj;N ) ∈ {1, ...,M}. Next we assume that we
know only the probabilities that ind(Oj;N ) takes
certain value (component's concentrations):

pmj;N := P[ind(Oj;N ) = m]

= P[Oj;N ∈ Pm].
(1)
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We observe some characteristics ξj;N := ξ(Oj;N )
for each subject Oj;N . Assume next that the values
of ξ lie in some measurable space X with F as it's
σ-algebra. Denote as Fm(A) := P[ξ(O) ∈ A|O ∈
Pm] the conditional distribution of ξ(O) assuming
that the subject O is taken from the m-th mi-
xture's subpopulation. Then the distribution of
ξj;N is expressed as

P[ξj;N ∈ A] =
M∑
m=1

pmj;NFm(A), A ∈ F. (2)

The mixture model with varying concentrati-
ons may appear in the analysis of medical and
biological data (see [11]), during sociological and
politological researches (see [12]), and in scope
of economical, psychological and other issues (see
[5]).

In this paper we consider testing hypotheses
about equality of distributions for di�erent mi-
xture's components. As a solution of this problem,
it is proposed a test analogous to the classical chi-
square test. This test checks the equality of distri-
butions by the grouped data. This paper is the
sequel of [3], where more general scheme of testi-
ng hypotheses on functional moments was consi-
dered. The test of checking the single-dimentional
functional moments for two mixture's components
was developed in [11]. The hypothesis of the
homogeneity of two di�erent samples is considered
in [6].

Another problems for the mixture's model are
considered in [1, 2, 4, 14]. Note that the mixture's
model with varying concentration is a modi�cati-
on of the classical mixture's model. In the last one,
probabilities pmj;N are the same for all j = 1, ..., N .
The monographs [13, 15] are devoted to the classi-
cal mixture's model. Nonparametric technique is
applied to this model in [7, 8, 10].

In this paper, the formal problem statement is
placed in section 1. Test statistics are introduced
in section 2. We investigate the asymptotic
properties of test statistics more thoroughly in
section 3. The test itself is constructed in secti-
on 4. The results of simulation study is placed in
section 5.

1 Problem statement

Our goal is to develop a test for checking the
hypotesis about the equality of some component's
distribution to the distribution of some another

component's distribution. But in fact our test will
check the equality of the grouped data distributi-
ons. I.e. we check the equality of distributions Fa
i Fb on some sets A1, ..., AQ from F:

Fa(Aq) = Fb(Aq), q = 1, ..., Q. (3)

Without loss of generality we check the
hypothesis about only �rst mixture's components.
Indeed, the mixture's components can be
rearranged without change of (2). The �rst type of
hypotheses we are interested in is the hypothesis
of the equality of F1 to some distribution F0 given
in advance:

H0 : F1(Aq) = F0(Aq), q = 1, ..., Q. (4)

The second type of hypotheses is about the
equality of distributions of the �rst two mixture's
components:

H0 : F1(Aq) = F2(Aq), q = 1, ..., Q. (5)

In what follows we build the test to check both
types of hypotheses, (4) and (5). This test can be
considered as the analogue of chi-square test for
the model of mixture with varying concentrations.

2 Test statistics

Hereinafter we denote zero vector from Rk
as Ok. Unit k-by-k matrix is denoted as Ik×k,
and zero k-by-m matrix as Ok×m. diag[v] will
denote the diagonal matrix, the diagonal elements
of which are the elements of some vector v. For
real-valued m-by-k matrix A we will write A ∈
Rm×k. We denote the convergence in probability

as
P−→. And the convergence by distribution as

d−→. Moreover, we introduce independent random
variables ηm with distributions Fm, m = 1, ...,M .
For arbitraty sets of values aj;N and bj;N , j =
1, ..., N we de�ne the averaging operator 〈·〉N :

〈a;N 〉N :=
1

N

N∑
j=1

aj;N . (6)

The operations of summation, multiplication, etc.
under the operator 〈·〉N we understand element-
wise:

〈a;N + b;N 〉N =
1

N

N∑
j=1

(aj;N + bj;N ),

〈a;Nb;N 〉N =
1

N

N∑
j=1

aj;Nbj;N .

(7)
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Corresponding limit values (if they exist) we
denote through the operator 〈〉 without subscript
N :

〈a ∗ b〉 := lim
N→∞

〈a;N ∗ b;N 〉N . (8)

Let us assume that A1, ..., AQ are some
measurable sets from F. We denote the values of
mixture's component's distributions on these sets
as

fmq := Fm(Aq), q = 1, ..., Q, m = 1, ...,M, (9a)

fmr,s := Fm(Ar ∩As), r, s = 1, ..., Q, m = 1, ...,M.
(9b)

Then we can reformulate hypotheses (4) and (5)
as f1 = f0 and f1 = f2 respectively, where
f0 :=

(
F0(Aq)

)
q=1,...,Q

is the vector of the values
of given in advance distribution on the sets Aq.

We will use the weighted empirical measures
F̂m;N to estimate fmq i fmr,s:

F̂m;N (A) :=
1

N

N∑
j=1

amj;N Iξj;N∈A, A ∈ F, (10)

where amj;N is the set of some weight coe�cients.
We de�ne amj;N as the minimax weight coe�cients
(e.g., see [3], [5]):

am·;N := p·;NΓ−1N em, (11)

where p·;N := (pmj;N )j=1,...,N,m=1,...,M ∈ RN×M is

the matrix of concentrations, Γ−1N is the inversed
matrix to the Gramm's matrix of concentrations

ΓN :=
(
〈pk;Npl;N 〉N

)
k,l=1,...,M

∈ RM×M , (12)

and em :=
(
I{k=m}

)
k=1,...,M

∈ RM . Thus, the
values of fmq and fmr,s can be estimated as

f̂mq := F̂m;N (Aq), f̂
m
r,s := F̂m;N (Ar ∩As). (13)

If the space of observations is real-valued
(X = R) with Borel σ-algebra F = B(R) we can
take the improved weight coe�cients ãmj;N (see [3],
[5], [9]). We can de�ne them as the coe�cients
that correspond to improved empirical distributi-
on function

F̃m;N (x) := min{1, sup
y<x

F̂m;N (y)}

=
1

N

N∑
j=1

ãmj;N Iξj;N≤x.
(14)

Theorem 1 shows consistency and asymptotic
normality of estimators F̂m0;N and F̃m0;N . To
formulate the theorem we will denote the limit
value of ΓN as

Γ := lim
N→∞

ΓN =
(
〈pkpl〉

)
k,l=1,...,M

. (15)

Theorem 1. Let Bk be some measurable sets from
F, mk be the indices from {1, ...,M}, k = 1, ...,K,

and ful�lls the following.

(i) Limit matrix Γ exists, and det Γ 6= 0.
(ii) Limit values 〈amkamlprps〉 exist, r, s =
1, ...,M , k, l = 1, ...,K.

Then 1.
√
N
(
F̂mk;N (Bk) − Fmk

(Bk)
)
k=1,...,K

d−→
ζ ' N (OK ,Σ) as N → ∞, where F̂mk;N is the

empirical measure from (10), and Σ is the dispersi-

on matrix with elements de�ned as

(Σ)k,l =

M∑
m=1

〈amkamlpm〉Fm(Ak ∩Al)

−
M∑

r,s=1

〈amkamlprps〉Fr(Ak)Fs(Al).

(16)

2. If moreover the following conditions are ful�-

lled,

(iii) Distribution functions Fm are continuous on

R, m = 1, ...,M .

(iv) suppFm ⊆ suppFmk
, m = 1, ...,M , k =

1, ...,K.

then
√
N
(
F̃mk;N (Bk)− Fmk

(Bk)
)
k=1,...,K

d−→ ζ '
N (OK ,Σ) as N → ∞, where F̃mk;N are the wei-

ghted empirical distributions de�ned in (14).

Proof 1. Consistency of the estimators is
obtained by lemma 1 from [12]. Theorem 2 from
[3] states the asymptotic normality of the functi-
onal moments, and of the necessary estimators as
the partial case.

2. Theorem 2.3.1 from [5] states that

supx∈R
√
N
∣∣F̃mk

(x) − F̂mk
(x)
∣∣ P−→ 0 as N → ∞,

k = 1, ...,K. From here, and from point 1, obtain
the necessary statement.

We de�ne the vectors of indicators

tj;N :=
(
Iξj;N∈Aq

)
q=1,...,Q

∈ RQ. (17)

Then the estimate of f i takes form

f̂ iN :=
1

N

N∑
j=1

aij;N tj;N , i = 1, 2. (18)

To test the H0 we will use the test statistic
T̂N . One should reject the null hypothesis if T̂N

22
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di�ers from zero signi�cantly, and accept otherwi-
se. Statistic T̂N for hypothesis (4) takes form

T̂N := f̂1N − f0

=
1

N

N∑
j=1

a1j;N tj;N − f0.
(19)

And for hypothesis (5) T̂N becomes

T̂N := f̂2N − f̂1N

=
1

N

N∑
j=1

(a2j;N − a1j;N )tj;N .
(20)

3 Asymptotics of the test statistics

Assume that statistic T̂N takes form

T̂N =
1

N

N∑
j=1

bj;N tj;N − t0, (21)

where bj;N ∈ R is some set of weight coe�cients,
t0 ∈ RQ is some nonrandom vector. Both statistics
(19) and (20) take this form.

Tests for checking the hypotheses (4) and (5)
by statistic (21) are modi�cations of more general
scheme for the tests introduced in [3].

Let us introduce the formal random values

ζm :=
(
Iηm∈Aq

)
q=1,...,Q

, m = 1, ...,M. (22)

Denote their covariance matrix as

Φm := Var ζm

=
(
fmr,s − fmr fms

)
r,s=1,...,Q

.
(23)

If the sets Aq, q = 1, ..., Q are disjoint, Φm takes
form

Φm = diag[fm]− fm(fm)T , (24)

where fm := (fmq )q=1,...,Q ∈ RQ is the vector from
fmq . In this case

det[Φm] =
( Q∏
q=1

fmq

)(
1−

Q∑
q=1

fmq

)
. (25)

Denote the covariance matrix of T̂N multiplied
by the number of observations as

DN := N ·Var[T̂N ] ∈ RQ×Q. (26)

The limit matrix for DN we denote as

D := lim
N→∞

DN ∈ RQ×Q. (27)

Lemma 1. Let A1, ..., AQ be some measurable sets

from F, and test statistic T̂N takes form (21). Then
(i) Elements of DN are expressed as

(DN )k,l =

M∑
m=1

fmk,l〈(b;N )2pm;N 〉N

−
M∑

r,s=1

fskf
s
l 〈(b;N )2pr;Np

s
;N 〉N .

(28)

(ii) If the limit values 〈(b)2pm〉 and 〈(b)2prps〉 exi-
st, then exists the limit matrix D, and it's elements
are expressed as

(D)k,l =
M∑
m=1

fmk,l〈(b)2pm〉 −
M∑

r,s=1

fskf
s
l 〈(b)2prps〉.

(29)

Proof (i) Since tj;N are independent,

Var[T̂N ] = 1
N2

∑N
j=1(bj;N )2 Var[tj;N ]. At the

same time, Var[tj;N ]k,l =
∑M

m=1 p
m
j;Nf

m
k,l −∑M

r,s=1 p
r
j;Np

s
j;Nf

r
kf

s
l , k, l = 1, ..., Q. Note that the

last expression always exist.
(ii) Follows from (i).

To formulate the following statements we need
to �nd the conditions under which the matrices
(26) and (27) are non-singular. They are positi-
vely de�nite since it is some covariance matrices.
Thus, to matrices (26) and (27) be non-singular, it
is su�cient to obtain some their lower estimates.
Lower estimate is meant in Loewner sense. I.e. for
matrices A and B we write A ≥ B if the matrix
(A−B) is non-negatively de�nite. Lemma 2 gives
us the needed estimate.

Lemma 2. Let A1, ..., AQ be some measurable sets

from F, and test statistic T̂N takes form (21). Then
the following ful�lls.

(i) DN ≥ ZN , where

ZN :=

M∑
m=1

〈(b;N )2pm;N 〉NΦm ∈ RQ×Q. (30)

(ii) If the limits 〈(b)2pm〉 and 〈(b)2prps〉 exist, then
D ≥ Z, where

Z :=
M∑
m=1

〈(b)2pm〉Φm ∈ RQ×Q. (31)
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Proof (i) Let ρ1, ρ2 be some square-
integrable random values. By the total variance
law Var[ρ1] = E[Var[ρ1|ρ2]] + Var[E[ρ1|ρ2]]. I.e.
Var[ρ1] ≥ E[Var[ρ1|ρ2]].
δmj;N := IOj;N∈Pm . Denote δ

m
j;N := I{Oj;N∈Pm}. Let

c ∈ RQ be any non-random vector. Then
Var[cT T̂N ] ≥ E[Var

[
cT T̂N

∣∣{δmj;N}]]
= E[Var

[∑M
m=1 c

T ζm
1
N

∑N
j=1 bj;Nδ

m
j;N

∣∣{δmj;N}]]
= E

[∑M
m=1(

1
N

∑N
j=1 bj;Nδ

m
j;N )2 Var[cT ζm]

]
= 1

N

∑M
m=1〈(b;N )2pm;N 〉NcTΦmc = 1

N c
TZNc.

Thus, DN ≥ ZN .
(ii) Follows from (i) and lemma 1.

The next theorem shows the asymptotic
normality of T̂N .

Theorem 2. Let A1, ..., AQ be some measurable

sets from F, and test statistic T̂N takes form (21).
Assume that

(i) Weight coe�cients bj;N take form bj;N =∑d
i=1 hia

mi
j;N , and t0 =

∑d
i=1 hif

mi , where

h1, ..., hd is some set of real numbers.
(ii) Matrix Γ exists, is �nite, and det Γ 6= 0.
(iii) Values 〈(b)2pm〉, 〈(b)2prps〉 exist, and are �-

nite, m, r, s = 1, ...,M .

(iv) Exists m0 ∈ {1, ...,M} such that 〈(b)2pm0〉 >
0.
(v) Matrix Φm0 is positively de�ned.

Then, under H0,
√
N(T̂N−t0)

d−→ ζ ' N (OQ, D).
Moreover, matrix D is positively de�ned.

If conditions (iii) and (iv) of theorem 1 are ful�-

lled (for K = d), then the statement remains true

for bj;N =
∑d

i=1 hiã
mi
j;N .

Proof From conditions (iii), (iv), (v) and
lemma 2 it follows that D exists and is positively
de�nite. From conditions (i), (ii) and theorem 1
obtain consistency and asymptotic normality for
T̂N .

Remark 1. Weight coe�cients bj;N for statistics
(19) and (20) are the partial case of coe�cients
bj;N =

∑d
i=1 hia

mi
j;N . Indeed, for (19) we need to

set d = 1, h1 = 1, m1 = 1, and for (20): d = 2,
h1 = −1, h2 = 1, m1 = 1, m2 = 2.

Remark 2. If the sets A1, ..., AQ are disjoint, then
condition (v) of theorem 2 can be replaced by
condition
(v') fm0

q > 0, q = 1, ..., Q,
∑Q

q=1 f
m0
q < 1.

Indeed, from condition (v') and equality (25)
obtain det Φm0 > 0. Since Φm0 is the covariance
matrix, it is positively de�nite.

4 Test construction

Theorem 2 shows that the statistic T̂N of the
form (21) has the mean value t0, and is asymptoti-
cally normal with the dispersion matrix D. Note
that the matrix D is non-singular. It's elements
can be estimated as

(D̂N )k,l :=

M∑
m=1

f̂mk,l;N 〈(b;N )2pm;N 〉N

−
M∑

r,s=1

f̂ rk;N f̂
s
l;N 〈(b;N )2pr;Np

s
;N 〉N .

(32)

Thus, we can expect that under H0 statistic

ŝN := N(T̂N − t0)T D̂−1N (T̂N − t0) (33)

converges by distribution to χ2 distribution wi-
th Q degrees of freedom (next we will write χ2

Q).
Since matrix D is non-singular, and its estimate
D̂N is consistent (under conditions from theorem
1), then the matrix D̂N is non-singular for large
enough N .

Remark 3. To estimate D in hypothesis (4), we
can put more precise estimate (28) instead of (32).
Indeed, if (4) ful�lls, then we already know the
values fmk and fmk,l.

Assume that ŝN converges by distribution to
χ2
Q. For a given signi�cance level α, we can test the

hypothesis by comparing ŝN with the threshold
level:

πα;N :

{
accept H0 if ŝN ≤ Qχ

2
Q(1− α),

reject H0 otherwise,
(34)

where Qχ
2
Q(1−α) is the quantile of level 1−α for

the distribution χ2
Q. The reached signi�cance level

(p-level) can be calculated as

p := 1− Fχ2
Q

(ŝN ), (35)

where Fχ2
Q
is the distribution function of χ2

Q.

Theorem 3 proves that the test (34) is de�-
ned correctly. For weight coe�cients bj;N de�-
ned through amj;N , this theorem is the direct
consequence of theorem 5 from [3]. If we use
improved coe�cients ãmj;N , then it's proof is the
same as the proof of the mentioned theorem.

Theorem 3. Assume the conditions of

theorem 2 are ful�lled. Then, under H0,

limN→∞P[πα;N rejects H0] = α.
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A1. First-type errors (H0 is true)
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A2. Second-type errors (H0 is false)

Ðèñ. 1: Frequences of errors. Test checks if the distribution is equal to some known in advance.

á

á

á

á

á

á

á

ó
ó

ó

ó

ó

ó

ó

ó

ç
ç

ç
ç

ç ç

ç

ç

100 200 500 1000 2000 5000

0.02

0.04

0.06

0.08

0.10

0.12

B1. First-type errors (H0 is true)

á á á

á

á

á

á

á

ó

ó

ó

ó

ó

ó

ó

ó

ç ç

ç

ç

ç

ç

ç

ç

100 200 500 1000 2000 5000

0.2

0.4

0.6

0.8

1.0

B2. Second-type errors (H0 is false)

Ðèñ. 2: Frequences of errors. Test checks if the distribution of �rst two components are equal.

5 Numerical results

Introduced approach was tested by the si-
mulation study. We took three-component mi-
xture. Each component has the Gaussian distri-
bution with some mean µm and variance σ2m, m =
1, 2, 3. The concentrations were generated with
the uniform distribution: pj;N = (u1, u2, u3)

T /s,
where ui ' Unif(0, 1), i = 1, 2, 3, s := u1+u2+u3.

In each experiment it was generated 1000
samples with 50, 100, 250, 500, 750, 1000, 2000
and 5000 observations. As the result, we measured
the frequences of the �rst- and second-type errors
for signi�cance level α = 0.05.

It was implemented three modi�cations of
πα;N . In the �rst modi�cation (next (ss)) both esti-

mates T̂N and D̂N were constructed via minimax
weight coe�cients amj;N from (11). In the second

modi�cation (next (si)) we built T̂N via coe�ci-
ents amj;N , but we used improved coe�cients ãmj;N
from (14) to estimate D̂N . The third modi�cation
(next (ii)) represents T̂N and D̂N both constructed
via improved weights.

The results of all three realizations are shown

on �gures 1 and 2. Line marked by � represents
the realizations (ss), marked by 4 � (si), and by ◦
� (ii). The dashed line is for the signi�cance level
α = 0.05.

Experiments A. For this pair of experiments
we took the Gaussian mixture, which components
have zero values µ1 = 0, µ2 = 1, µ3 = 0 and
variances σ21 = 1, σ22 = 4, σ23 = 9. In experi-
ment A1 the distribution of the �rst component
was compared to the Gaussian distribution with
parameters µ0 = 0 and σ20 = 1, i.e. when H0

is true. We de�ned the sets Aq as the intervals(
µ0 + (i − 1

2)σ0, µ0 + (i + 1
2)σ0

]
, i = −2, ..., 2.

Frequencies of the �rst-type errors are shown on
the left part of �gure 1. Analogously, in experi-
ment A2 we took the Gaussian distribution with
paramenters µ0 = 1 and σ0 = 1, i.e. H0 is false.
Frequencies of the second-type errors are shown
on the right part of �gure 1.

Experiments B. For this pair of experi-
ments, we checked the hypothesis about equali-
ty of the �rst two components' distributions. We
took the sets Aq analogously to experiment A,
except that µ0 and σ0 were estimated as µ̃0;N :=
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1
2(µ̃1;N + µ̃2;N ) and σ̃20;N := 1

2(σ̃21;N + σ̃22;N )

respectfully, where µ̃m;N := 1
N

∑N
j=1 ã

m
j;Nξj;N ,

σ̃2m;N := 1
N

∑N
j=1 ã

m
j;N (ξj;N − µ̃m;N )2, m = 1, 2.

In experiment B1 we took mean values as µ1 =
µ2 = 0, µ3 = 3, and variances as σ21 = σ22 = 1,
σ23 = 9. I.e. H0 is true. Frequences of the �rst-type
errors are shown on �gure 2. In experiment B2 the
mean values were taken as µ1 = µ2 = µ3 = 0, and
the variances as σ21 = 1, σ22 = 4, σ23 = 9. I.e. H0

is false. Frequences of the second-type errors are
shown on �gure 2.

6 Conclusion

The model of mixture with varying
concentrations was considered. We developed
the technique of test construction to check the
hypotheses about equality of components' distri-
butions. This technique can easily be extended to
the case of more than two mixture's components.
Quality of the tests was checked by the simulati-
on study. Developed tests can be applied to the
analysis of statistical data from medical, biologi-
cal, sociological, political, economical etc. areas.
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