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Y daniti pobomi poseaadacmubea modeab Cymiull GMOBIPHICHUL PO3N0IALE, Y AKIT KOHUEHMPAULT
B6ANCANMDBCSH GIIOMUMUY, | 3MINIOIOMBCA 610 cnocmepesicenns do cnocmepesicenms. Jas danoi modeas
CMABUMBCA 300040 NEPEGIPKY 2IN0TNE3U PO PIBHICTIL PO3NOOLALE KOMTOHEHINIE Midic 06010, 660 dearo-
MYy Haneped 3a0aromy po3nodiay. B axocmi po3s’a3ky npononyemvbea mexrnika, aHaA02iYHG KAGCUSHO-
MY mecmy Ti-keadpam, 0e PiBHICTY PO3NOJIAIE NEPECIPAEMBCA NO 2pYnosarum darum. arna mexrnixa
€ moduirayicro 6iabUL 3020451020 NIOTOAY 00 MEPESIPKY 2inomes npo GYHKUIOHANDHT MOMERTIU Y MO-
deai cymiwi, axul 6ye podaasnymudl y nonepedwnil pobomi asmopa. Jlas xonxpemmuo danoi modudirxauii
KOHKDEMUS0BGHO YMOBU 11 3acmocysanna na npaxmuyi. Ha poav mecmosoi cmamucmury obupaemses
BEKMOP, EAEMERMAMY AKO20 € SHAUEHHA HABAHMANCEHOT EMNIPUNHOT MIPU HA JEAKUL NIOMHONCUHAT
npocmopy cnocmepedcens. Tecm noaseac y docaidocennt eidcmani y cenct Mazanarobica mioic 3nave-
HHAM MECMOBoT cmamucmuky ma wyaiem. Jlana 8idcmans nopieHINEMBCA 13 NOPO2OGUM PisHEM, AKUTL
BUBOJUMBCA 13 ACUMNIMOMUNHUT saacmusocmel cmamucmury. Hasedenud nidrid aezko monce 6ymu
Y302000HEHUT OA% NEPEGIPRY DIADW WUPOKO20 KAGCY 2IMOMES NPO PO3NOJIAU KOMNOHEHMIG CYMIULL.
SHxicmo pobomu mecimy nepesipacmvbea 36 00NOMO2010 IMITAYLTH020 MOOEAIOBAHHA.

Karwuosi caosa: modesv cymiwg, nepesipra 2inomes, mecm i-x6adpam.

In this paper we consider the model of mizture of probability distributions. The concentrations
of components (mizing probabilities) are known, and they vary from observation to observation. For
the given model, we formulate a problem of testing hypothesis about the equality of components’ di-
stributions within each other, or to some distribution given in advance. As a solution we propose
a technique analogous to the classical chi-square test, where distributions’ equality is checked by the
grouped data. This technique is a modification of more general approach to testing hypotheses about
functional moments in the model of mizture, which was developed in the author’s previous work. For
this concrete modification, the conditions of it’s application were concretized. As o test statistic, we
choose a vector, which elements are the values of the weighted empirical measure on some subsets of
the observations’ space. To perform the test, we compare the Mahalanobis-type distance between the
value of the test statistic and zero. This distance is compared with the threshold value, which we derive
from the asymptotic properties of statistic. Introduced approach can easily be generalyzed for checking
of much more general class of hypotheses about the mizture components’ distributions. Performance of
the test is analyzed by simulation.

Key Words: mizture model, hypothesis testing, chi-square test.
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We denote the number of this subpopulation as
ind(Oj,n) € {1,..., M}. Next we assume that we
know only the probabilities that ind(Oj,n) takes
certain value (component’s concentrations):

Introduction

We consider a sample consisting of N subjects
O1.N, ..., On;n- Each subject Oj.n belongs to one
of the M subpopulations Py, ..., Py (mixture’s
components) of the general population. But we
do not know to which subpopulation exactly.

p??N = P[ind(Oj;n) = m]

= P[Oj;N c Pm] (1)

© O.B. Hopowix, 2014 20



Bicnux Kuiscvkoz2o Hayionaavbto20 yrisepcumemy
iment Tapaca Hlesuwenra
Cepia: Pi3uro-Mamemamushi HGYKY

We observe some characteristics &.n := £(Ojn)
for each subject O, n. Assume next that the values
of £ lie in some measurable space X with § as it’s
o-algebra. Denote as F,,(A) := P[£(0) € A|O €
P the conditional distribution of £(O) assuming
that the subject O is taken from the m-th mi-
xture’s subpopulation. Then the distribution of
§j;N is expressed as

Pl{;n € A] = ), A3

Zp

The mixture model with varying concentrati-
ons may appear in the analysis of medical and
biological data (see [11]), during sociological and
politological researches (see [12]), and in scope
of economical, psychological and other issues (see
5)).

In this paper we consider testing hypotheses
about equality of distributions for different mi-
xture’s components. As a solution of this problem,
it is proposed a test analogous to the classical chi-
square test. This test checks the equality of distri-
butions by the grouped data. This paper is the
sequel of 3], where more general scheme of testi-
ng hypotheses on functional moments was consi-
dered. The test of checking the single-dimentional
functional moments for two mixture’s components
was developed in [11]. The hypothesis of the
homogeneity of two different samples is considered
in [6].

Another problems for the mixture’s model are
considered in [1, 2, 4, 14]. Note that the mixture’s
model with varying concentration is a modificati-
on of the classical mixture’s model. In the last one,
probabilities p ‘N are the same for all j =1, ..., N.
The monographs [13, 15] are devoted to the cla581—
cal mixture’s model. Nonparametric technique is
applied to this model in [7, 8, 10].

In this paper, the formal problem statement is
placed in section 1. Test statistics are introduced
in section 2. We investigate the asymptotic
properties of test statistics more thoroughly in
section 3. The test itself is constructed in secti-
on 4. The results of simulation study is placed in
section 9.

(2)

1 Problem statement

Our goal is to develop a test for checking the
hypotesis about the equality of some component’s
distribution to the distribution of some another

21

2014, 4

Bulletin of Taras Shevchenko
National University of Kyiv
Series: Physics & Mathematics

component’s distribution. But in fact our test will
check the equality of the grouped data distributi-
ons. L.e. we check the equality of distributions F,
i F} on some sets Ay, ..., Ag from §:

Fa(Aq) = Fy(Ag), Q. (3)

Without loss of generality we check the
hypothesis about only first mixture’s components.
Indeed, the components can be
rearranged without change of (2). The first type of
hypotheses we are interested in is the hypothesis
of the equality of I} to some distribution Fy given
in advance:

Ho . Fl(Aq) =

qg=1,...

mixture’s

Fo(Ag), ¢=1,...,Q. (4)

The second type of hypotheses is about the
equality of distributions of the first two mixture’s
components:

HO . Fl(Aq) = 1,...,@. (5)

In what follows we build the test to check both
types of hypotheses, (4) and (5). This test can be
considered as the analogue of chi-square test for
the model of mixture with varying concentrations.

F2(Aq)a q

2 Test statistics

Hereinafter we denote zero vector from RF
as Q. Unit k-by-k matrix is denoted as Iz,
and zero k-by-m matrix as Qgy,. diaglv] will
denote the diagonal matrix, the diagonal elements
of which are the elements of some vector v. For
real-valued m-by-k matrix A we will write A €
R™*k We denote the convergence in probability

as —>. And the convergence by distribution as

N Moreover, we introduce independent random

variables n,, with distributions F,,, m =1, ..., M.

For arbitraty sets of values ajn and bj,n, j =
., N we define the averaging operator (-)n:

L
=N Zaj;N-
j=1

The operations of summation, multiplication, etc.
under the operator (-)y we understand element-
wise:

(6)

(a;n +b,N)N (aj;n +bjiN),

- IM=

1
N
(7)

<a Nb

N
E :aj;ij;N-
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Corresponding limit values (if they exist) we
denote through the operator () without subscript
N:

(8)

Let us assume that Aj,...,Agp are some
measurable sets from §. We denote the values of
mixture’s component’s distributions on these sets
as

(axb):= lim (a,n *b.N)N
N—o00

I =Fn(Ag), ¢=1,..,Q, m=1,.., M, (9a)
frs = Fn(Ar N Ag), s =1,...,Q, m=1,.., M.
(9b)

Then we can reformulate hypotheses (4) and (5)
as f! = fO and f! = f? respectively, where
fY= (FO(A‘I))qzl,...,Q is the vector of the values
of given in advance distribution on the sets A,.

We will use the weighted empirical measures
Fm;N to estimate f;" 1 fs:

N
Fm;N = N z_: H{ .NEA> Ae g (10)

where aj’y is the set of some weight coefficients.
We define aj’y as the minimax weight coefficients

(e.g., see [3], [5]):

m . —1
aiy = PNy €m,

(11)

o NxM ;

where p.ny = (p;’;lN)j:17...,N,m:1,...7]W € R™*M is
. . -1 . .

the matrix of concentrations, Iy is the inversed

matrix to the Gramm’s matrix of concentrations

FN = (<p§€Np§N>N)k’,l=17...7M € RJWXM? (12)
and e, = (]I{k m})k 1L..m € RM . Thus, the
values of fi" and f, can be estimated as
fimi= Fn (Ag), [ o= En (A N Ag). (13)
If the space of observations is real-valued
(X = R) with Borel o-algebra § = B(R) we can
take the improved weight coefficients a7’y (see [3],
[5], [9]). We can define them as the coefficients
that correspond to improved empirical distributi-
on function

Fm;N(aj) := min{1, sup Fm;N(y)}
y<z

L (14)
- N Zaj;NHEj;NSI'
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Theorem 1 shows consistency and asymptotic
normality of estimators Fm0 .~ and Fp..~n. To
formulate the theorem we will denote the limit
value of I'y as

L TN
I:= ]\}gnoo Ly = ((p"p >)k,z:1,...,M' (15)

Theorem 1. Let By be some measurable sets from
3§, my be the indices from {1,... M}, k=1,..., K,
and fulfills the following.

(i) Limit matriz T exists, and detT" # 0.
(m) Limit wvalues (a™ka™p"p®) ewxist,

WM, kil=1,.. K.

Then 1. VN (Fp,. N(Bk) Fony(Br)) 1. i
¢ ~ N(Og,X) as N — oo, where ka;N is the
empirical measure from (10), and X is the dispersi-
on matriz with elements defined as

rs =

d
—

M
(Deg= > _{(a™a™p™) Fy(Ap N Ay)
m (16)
— ) (™ a"p p*) Fr(Ag) Fo(Ay).
r,s=1

2. If moreover the following conditions are fulfi-
lled,

(#4i) Distribution functions F,, are continuous on
R,m=1,.. M.

(iv) supp F,, C supp Fy,,, m = 1
1, K.

then /N (Fyyn (Br) = Fon (Br)) 1.
N(Og,Y) as N — oo, where ka;N are the wei-
ghted empirical distributions defined in (14).

WM,k =

i)C:

Proof 1. Consistency of the estimators is
obtained by lemma 1 from [12]. Theorem 2 from
[3] states the asymptotic normality of the functi-
onal moments, and of the necessary estimators as
the partial case.

2. Theorem 2.3.1 from [5] that
SUpP,cRr \/N‘ka(x) - ka(mﬂ L 0as N > 00,
k=1,..., K. From here, and from point 1, obtain
the necessary statement. O

We define the vectors of indicators

states

tin = (Igwea,) oy o € R, (17)
Then the estimate of f? takes form
. 1N
fn= > dlntin, i=1,2. (18)

j=1
To test the Hy we will use the test statistic
Tn. One should reject the null hypothesis if Tx

22



Bicnux Kuiscvkoz2o Hayionaavbto20 yrisepcumemy
iment Tapaca Hlesuwenra
Cepia: Pi3uro-Mamemamushi HGYKY

differs from zero significantly, and accept otherwi-
se. Statistic Ty for hypothesis (4) takes form

Iy = fx—f°

N
1 (19)
= 5 2 vty = I
j=1
And for hypothesis (5) T becomes
= i~ f
1., . (20)
= 3 2_(@hx — gt
j=1
3 Asymptotics of the test statistics
Assume that statistic TN takes form
(21)

- 1
Tn = N Zlbj;th;N — 1o
]:

where b;,y € R is some set of weight coefficients,
to € R¥ is some nonrandom vector. Both statistics
(19) and (20) take this form.

Tests for checking the hypotheses (4) and (5)
by statistic (21) are modifications of more general
scheme for the tests introduced in [3].

Let us introduce the formal random values

Cm = (yneay) oy gr M=1,n M. (22)
Denote their covariance matrix as
®,,, := Var
" m (23)

= ( 7”.:’; - fr’rnfgl)r,szlp--,Q.

If the sets Ay, ¢ =1, ...,
form

Q are disjoint, ®,, takes

= diaglf™] — f(f™)7, (24)
where f™ = (f")¢=1,..qQ € R€ is the vector from
f¢'- In this case

det[® (25)

(Hf’")(l—Zf”)

Denote the covariance matrix of Ty multiplied
by the number of observations as

Dy := N - Var[Ty] € R¥*9, (26)
The limit matrix for Dy we denote as
D:= lim Dy € R¥*€. (27)
N—o0
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Lemma 1. Let Ay, ..., Ag be some measurable sets
from F, and test statistic T takes form (21). Then
(i) Elements of Dy are expressed as

M=

~

(DN)kg = 7{(bN)* PR N

m=1

- Z Te £ (b,

r,s=1

(28)

N)PDINDIN) N

(ii) If the limit values ((b)*p™) and {(b)*p"p*) ewi-
st, then exists the limit matriz D, and it’s elements
are expressed as

M
:Zflzrfl 2m 2rs>

m=1

Z fefid

r,s=1

(29)

Proof (i)
Var[Ty] =

same time,

Since tjn are independent,

32 20y (bjn)? Var(tjn]. At the
Varftjnley = Yoo Pl —

S DhnDSn fL k1 =1, ..., Q. Note that the
last expression always exist.
(ii) Follows from (i). O
To formulate the following statements we need
to find the conditions under which the matrices
(26) and (27) are non-singular. They are positi-
vely definite since it is some covariance matrices.
Thus, to matrices (26) and (27) be non-singular, it
is sufficient to obtain some their lower estimates.
Lower estimate is meant in Loewner sense. L.e. for
matrices A and B we write A > B if the matrix
(A — B) is non-negatively definite. Lemma 2 gives
us the needed estimate.

Lemma 2. Let Ay, ..., Ag be some measurable sets
from F, and test statistic Ty takes form (21). Then
the following fulfills.
(i) Dy > Zn, where

M
D (b)) N D € ROXC,

m=1

N = (30)

(ii) If the limits ((b)?p™) and ((b)?p"p®) exist, then
D > Z, where

m € ROXC, (31)

M
= > (0)*»™)e

m=1

23
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Proof (i) Let pi, p2 be some square-
integrable random values. By the total variance
law Var[pi] = E[Var|pi|p2]] + Var[E[p1]|p2]]. T.e.
Var[p1] > E[Var|p1]p2]].

v = lo, vep,,. Denote 67 := o, vep,,}- Let
¢ € R? be any non-random vector. Then
Var[e Ty] > E[Var [Ty {07 }]]
= E[Var [Z%:1 Gy Zjvzl bj;N‘S;?N‘{‘s;Y;LN}”

- E[ZM (% ZN bj;n ;?N)Q Var[cTCm]]

m=1\N Zuj=1
LT Zne.

= % Z%:l((b;N)2p;T?\f>NCT<I>mC =N

Thus, DN Z ZN.

(ii) Follows from (i) and lemma 1. O
The next theorem shows the asymptotic

normality of Tly.

Theorem 2. Let Ay,...,Ag be some measurable
sets from §, and test statistic T takes form (21).
Assume that

(1) Weight coefficients bj,n take form bjny =
Zle h,-a;.?jv, and tg 2?21 hif™, where
hi,...,hq is some set of real numbers.

(1) Matriz T exists, is finite, and detT" # 0.

(i4) Values ((b)*p™), ((b)*p"p®) ewxist, and are fi-
nite, m,r,s = 1,..., M.

(iv) Ezists mo € {1,..., M} such that ((b)
0.

(v) Matriz ®,,, is positively defined.
Then, under Hy, VN (Tny—to) — ¢ ~ N(Qq, D).
Moreover, matriz D is positively defined.

If conditions (iii) and (iv) of theorem 1 are fulfi-
lled (for K = d), then the statement remains true

d ~m;
Jor bjin =32y hatl

2,.mo

pmo) >

Proof From conditions (iii), (iv), (v) and
lemma 2 it follows that D exists and is positively
definite. From conditions (i), (ii) and theorem 1
obtain consistency and asymptotic normality for
T. O
Remark 1. Weight coefficients bj,n for statistics
(19) and (20) are the partial case of coefficients
bin = Zle hiajy - Indeed, for (19) we need to
set d =1, hy = 1, m; = 1, and for (20): d = 2,
hlz—l, h2:1,m1:1,m2:2.

Remark 2. If the sets A1, ..., Ag are disjoint, then
condition (v) of theorem 2 can be replaced by
condition

(V) f10 >0, g=1,..,Q, X0 fio < 1.

Indeed, from condition (v') and equality (25)
obtain det ®,,, > 0. Since ®,,, is the covariance
matrix, it is positively definite.

2014, 4

24

Bulletin of Taras Shevchenko
National University of Kyiv
Series: Physics & Mathematics

4 Test construction

Theorem 2 shows that the statistic TN of the
form (21) has the mean value ty, and is asymptoti-
cally normal with the dispersion matrix D. Note
that the matrix D is non-singular. It’s elements
can be estimated as

M
(DN)ki = Cin () PR ) v

m=1

o (32)

- Z l:;NflS;N<(b;N)2p;TprN>N'
r,s=1
Thus, we can expect that under Hy statistic
SN = N(TN — to)TDRﬁ (TN — to) (33)

converges by distribution to y? distribution wi-
th Q degrees of freedom (next we will write ng)
Since matrix D is non-singular, and its estimate
Dy is consistent (under conditions from theorem
1), then the matrix Dy is non-singular for large
enough N.

Remark 3. To estimate D in hypothesis (4), we
can put more precise estimate (28) instead of (32).
Indeed, if (4) fulfills, then we already know the
values f;"* and f,’fnl

Assume that §y converges by distribution to
ng- For a given significance level «, we can test the
hypothesis by comparing Sy with the threshold
level:

Ta;N - {

where QX% (1 — «) is the quantile of level 1 — « for
the distribution XZ} The reached significance level
(p-level) can be calculated as

2
accept Hy if §y < QXR(1 — ), (

. . 34)
reject Hy otherwise,

pi=1-Fp (), (35)

where Fxé is the distribution function of XZQ.

Theorem 3 proves that the test (34) is defi-
ned correctly. For weight coefficients b;.n defi-
ned through aj’y, this theorem is the direct
consequence of theorem 5 from [3]. If we use
improved coefficients aiin, then it’s proof is the
same as the proof of the mentioned theorem.

3.
are

Assume the conditions
fulfilled.  Then,
limy o0 Plma;nv rejects Hol = au.

Theorem
theorem 2

of

under Hy,
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A1l. First-type errors (Hy is true)
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: : & o
100 200 500 1000 2000 5000

A2. Second-type errors (Hy is false)

Puc. 1: Frequences of errors. Test checks if the distribution is equal to some known in advance.

100 200 500 1000 2000 5000

B1. First-type errors (Hy is true)

L L L L T
100 200 500 1000 2000 5000

B2. Second-type errors (Hy is false)

Puc. 2: Frequences of errors. Test checks if the distribution of first two components are equal.

5 Numerical results

Introduced approach was tested by the si-
mulation study. We took three-component mi-
xture. Fach component has the Gaussian distri-
bution with some mean y,, and variance o2, m =
1,2,3. The concentrations were generated with
the uniform distribution: pj;n = (u1,uz,u3)’ /s,
where u; ~ Unif(0,1),7 =1,2,3, s := uj +uz+us.

In each experiment it was generated 1000
samples with 50, 100, 250, 500, 750, 1000, 2000
and 5000 observations. As the result, we measured
the frequences of the first- and second-type errors
for significance level o = 0.05.

It was implemented three modifications of
Ta:N- In the first modification (next (ss)) both esti-
mates TN and D ~n were constructed via minimax
weight coefficients @]’y from (11). In the second
modification (next (si)) we built Ty via coeffici-
ents a;-?N, but we used improved coefficients d;’fN
from (14) to estimate Dy. The third modification
(next (ii)) represents Ty and Dy both constructed
via improved weights.

The results of all three realizations are shown

25

on figures 1 and 2. Line marked by [ represents
the realizations (ss), marked by A - (si), and by o
— (ii). The dashed line is for the significance level
o = 0.05.

Experiments A. For this pair of experiments
we took the Gaussian mixture, which components

have zero values 1 = 0, pu2 = 1, u3 = 0 and
variances O'% = 1, a% = 4, O'g = 9. In experi-

ment Al the distribution of the first component
was compared to the Gaussian distribution with
parameters pg = 0 and 03 = 1, i.e. when Hy
is true. We defined the sets A, as the intervals
(1o + (i — Yoo, o + (i + L)oo], i = —2,...,2.
Frequencies of the first-type errors are shown on
the left part of figure 1. Analogously, in experi-
ment A2 we took the Gaussian distribution with
paramenters ug = 1 and g9 = 1, i.e. Hy is false.
Frequencies of the second-type errors are shown
on the right part of figure 1.

Experiments B. For this pair of experi-
ments, we checked the hypothesis about equali-
ty of the first two components’ distributions. We
took the sets A, analogously to experiment A,
except that pg and og were estimated as fig.n =
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1/~ ~ ~2 . 1(z2 ~2
s(iuy + fioy) and GGy = 5(01Ny + Tyn)
— 15N omo
= szzl a%iNEjiN
2 ._ 1NV~ ~ 2 _
TN = N 2j=1 N (§iN = flmn)™, mo= 1,2,
In experiment B1 we took mean values as u; =
pus = 0, p3 = 3, and variances as o7 2 1,

respectfully, where fi,.n

1= 02 =
a% = 9. L.e. Hy is true. Frequences of the first-type
errors are shown on figure 2. In experiment B2 the
mean values were taken as p; = p2 = p3 = 0, and
the variances as 03 = 1, 03 = 4, 053 = 9. l.e. Hy
is false. Frequences of the second-type errors are
shown on figure 2.
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6 Conclusion

The model of mixture with varying
concentrations was considered. We developed
the technique of test construction to check the
hypotheses about equality of components’ distri-
butions. This technique can easily be extended to
the case of more than two mixture’s components.
Quality of the tests was checked by the simulati-
on study. Developed tests can be applied to the
analysis of statistical data from medical, biologi-
cal, sociological, political, economical etc. areas.
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