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Y pobomi eusuaromuves ca2aUdaky “YePENUNHUL NOPAJKIE CKIHYEHHOT 24000A5HO0T DPO3MIPHOCTI.
Hoxaszano, wo me Koocen cazaiidak 36e0eH020 YePEenUH020 NOPAIKY € ca2atidaKoM Yepe NuvH020 NoPAIKY
CKIHYENHOT 2400040101 po3mipHocmi. Jlaa cazatidaxis, wo maomov He Oiavuwie n'amu eepwun i AKX €
Ca2aUIAKAMU YEPENUUHUT NOPAJKIS, dosederno HacmynHe. Axuio dasa maxozo cazatidara ichye 36edenud
yepenuHutll nNopadox CKiHvwerHol 2400aAbHO0T POSMIPHOCTE 3 JaHUM CG2aT0GKOM, TO Maxuli nopadox
edurutl 3 mournicmio 0o idomopdizmy. Bisvu, mozo, maxut nopadox Mae MIHIMANOHY CYMY EAEMEHMIE
MAMPUYT NOKAZHUKIE TOMINC YCIT YEPENUYHUT NopAdKie 3 danum cazatidakom. depenuuni nopsdrxu
CKIMYennol 2a06aav10t posmiprocmi 6 My (K), de M, (K) — nosne mampuune xiavuye nad nosem K,
onucani y npayi [5] dasn < 5.V danit pobomi 3anouamxo6ano JOCAIONCEHHA YEPENUUHUT NOPAJKIE
CKIHYEHHOT 2000a46H0T POSMIDHOCTE MG 1X ca20T0aKI6.

Knouosi crosa: wepenuunuti nopsadok, donycmumut cazatidar, 2aobaivha PO3MIDHICTILY.

We study quivers of tiled orders of finite global dimension. It is well known that the quiver of tiled
order of a finite global dimension has no loops. Tiled orders associated with the partially ordered sets
with disconnected diagrams have infinite global dimension. It is shown that not every quiver of reduced
tiled order is quiver of tiled order of finite global dimension. For quivers on at most five vertices and
which are tiled orders, proved the following. If for such quiver there is reduced tiled order of finite global
dimension with the given quiver, then such tiled order is unique up to isomorphism. Moreover, such
tiled order has the minimum sum of all entries of exponent matriz among all tiled orders with the given
quiver. Tiled orders of finite global dimension in M, (K), where M, (K) is the ring of all n x n matrices
over a ring K were listed in the following paper H.Fujita, Tiled orders of finite global dimension, Trans.
Amer. Math. Soc., v. 327, No.2 (1991), pp. 919-920 for n < 5. In this paper research of tiled orders
of finite global dimension and their quivers was founded.
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gebraists in order to construct tiled orders of large
finite global dimension were using quiver of tiled
order.

1 Introduction

Tiled orders appeared in the 1970s. In the first

articles about tiled orders (see [7], [3], [4]) can be
found attempts to calculate global dimentions of
those tiled orders. V.A. Jategaonkar in [3| proved
that up to isomorphism only finite number of tiled
orders in M, (D) of finite global dimension exists.
R.B. Tarsy assumed that finite global dimension
of tiled order does not exceed n — 1. H. Fujita
described in [5] up to isomorphism all tiled orders
in M, (D) where n = 4,5. Later Fujita disproved
Tarsy’s hypothesis with counterexample. Some al-
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It the article research of the connections be-
tween admissible quivers (namely quivers of tiled
orders) and tiled orders of finite global dimension
was founded. Primary aim of the article is to prove
that for every admissible quiver with n vertices
where n < 5 up to isomorphism no more than
one tiled order of finite global dimension might
exist. In the case when admissible quiver is quiver
of nonisomorphic tiled orders, tiled order of finite
global dimension only when sum of entries of ex-
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ponent matrix is minimal.

All additional facts about tiled orders, expo-
nent matrices and their quivers can be found in [1],
[2]. The list of all up to isomorphism tiled orders
in M, (D) where n = 4,5 can be found in [5].

2 Tiled orders over discrete valuation
rings and exponent matrices

Recall [6] that a semimazimal ring is a semiper-
fect semiprime right Noetherian ring A such that
for each primitive idempotent e € A the ring eAe
is a discrete valuation ring (not necessarily com-
mutative).

Denote by M, (D) the ring of all nxn matrices
over a ring D.

Theorem 2.1 (see [6]). Each semimazimal ring
1s isomorphic to a finite direct product of prime
rings of the form

(@) 120 T QO
A= | 7O O mmO
T 720 @

where n > 1, O s a discrete valuation ring with a
prime element w, and oy are integers such that

Q5+ Qg 2 Qs a;; =0
foralli,j, k.

The ring O is embedded into its classical di-
vision ring of fractions D, and (1) is the set of all
matrices (ai;) € My(D) such that

aij € 740 = eiiAejj,

where eq1, ..., ey, are the matrix units of M, (D).
It is clear that @ = M, (D) is the classical ring of
fractions of A.

Obviously, the ring A is right and left Noethe-
rian.

Definition 2.2. A module M is distributive if its
lattice of submodules is distributive, i.e.,

KN(L+N)=KNnL+KNN
for all submodules K, L, and N.

Clearly, any submodule and any factormodule
of a distributive module are distributive modules.
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A semidistributive module is a direct sum of
distributive modules. A ring A is right (left)
semidistributive if it is semidistributive as the
right (left) module over itself. A ring A is semidis-
tributive if it is both left and right semidistributive

(see [1]).

Theorem 2.3 (see [1]). The following conditions
for a semiperfect semiprime right Noetherian ring
A are equivalent:

o A is semidistributive;

e A is a direct product of a semisimple artinian
ring and a semimaximal ring.

By a tiled order over a discrete valuation ring,
we mean a Noetherian prime semiperfect semidis-
tributive ring A with nonzero Jacobson radical. In
this case, O = eAe is a discrete valuation ring with
a primitive idempotent e € A.

Definition 2.4. An integer matriz £ =
M, (Z) is called

(i) €

e an exponent matrix iof oy + ajr > oy and

a; =0 forall i, j, k;

e a reduced exponent matrix if ay; + o > 0
foralli,j,i#j.

We wuse the following notation: A =
{0,E(A)}, where £(A) = (ayj) is the exponent
matrix of the ring A, i.e.

n
A = E eijﬂaij(’),

3,7=1

in which e;; are the matrix units. If a tiled order
is reduced, i.e. A/R(A) is the direct product of di-
vision rings, then o;; + aj; > 0if ¢ # j, i.e., E(A)
is reduced.

We denote by M(A) the poset (ordered by in-
clusion) of all projective right A-modules that are
contained in a fixed simple Q-module U. All sim-
ple @Q-modules are isomorphic, so we can choice
one of them. Note that the partially ordered sets
M;(A) and M, (A) corresponding to the left and
the right modules are anti-isomorphic.

The set M(A) is completely determined by
the exponent matrix £(A) = (a;;). Namely, if A
is reduced, then

M(A)={p;|li=1,...n,and z € Z},
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where

!/
’ z— 2 > oy
pi <pi = Y
z—2z 2 ay

Obviously, M(A) is an infinite periodic set.

Recall that a subset of a poset P is called an
antichain if all of its elements are pairwise incom-
parable. The maximal number w(P) of elements
in an antichain in P is called the width of P. The
width of M(A) is called the width of a tiled order
A and is denoted by w(A).

Let A and I be tiled orders over discrete val-
uation rings O and A.

3 Quivers of tiled orders

Let I be a two-sided ideal of the tiled order A.
Obviously,

I= Z eijﬂﬂijo,
ij=1
where e;; are matrix units. Denote by £(I) = (0;5)
the exponent matrix of an ideal I.

Let I and J be two-sided ideals of A, £(I) =
(ﬁ%]) and S(J) = (’yij). We have 5(IJ) = (51‘]‘),
where §;; = mlgn(ﬁik + Vij)-

Let R be the Jacobson radical of a reduced
tiled order A, then £(R) = (8;), where §;; = ajj
fori# jand B;; =1fori=1,...,n.

Let Q(A) be a quiver of a reduced tiled order
A ([1]) and let [Q(A)] be an adjacency matrix of
the quiver Q(A). Obviously, [1, theorema 14.6.2
| [QA)] = E(R?) — £(R) and [Q(A)] is a (0,1)-
matrix.

Let £ = (aj) be an n x n reduced exponent

matrix. Define the n x n matrices £ = (8;;) and
£ = (yi)), where

i,
Bij = {17”

Obviously, [Q] = £?) — £ is a (0, 1)-matrix. By
[1, Theorem 4.1.1 and Corollary 5.3|, we have the
following assertion.

if i # J,

iz Yij = lg}gﬂ(ﬂik + Bj)-

Theorem 3.1. The matriz [Q] = £?) —EW is the
adjacency matrixz of the strongly connected simply

laced quiver Q@ = Q(E).

Definition 3.2. The quiver Q(E) is called the
quiver of the reduced exponent matrix £. A
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strongly connected simply laced quiver is called ad-
missible if it is the quiver of a reduced exponent

it M(A) = Mi(Dmatriz.
it M(A) = M (ARemark 1. The quiver Q(A) of a reduced tiled

order A coincides with Q(E(A)).

Definition 3.3. The quiver Q@ = (VQ,AQ) is
called weighted if there is a function w: AQ — R.
w is called weight function. The value of w on an
arrow of @Q s called weight of the arrow. The al-
gebraic sum of weights of all arrows of a path is
called weight of the path.

Theorem 3.4. Simple strongly connected quiver
Q = (VQ, AQ) is admissible if and only if there is
a weight function w: AQ — N U {0} meeting the
following conditions:

(1) weight of the arrow from the pointi to the point
j is less than weight of the path from the point i
to the point j of the length | > 2,

(2) loop weight in the point i is less than the weight
of any cycle of the length | > 2, passing through i,
(8) weight of any cycle is always not less than 1,
(4) weight of any loop is 1,

(5) for each point without a loop there is a cycle
of the length | > 2 of the weight 1, passing through
this point.

Definition 3.5. Two reduced tiled orders in
M, (D) are isomorphic if and only if their expo-
nent matrices can be obtained from each other by
transformations of the following two types :

(1) subtract an integer from i-th row and add this
number to i-th column;

(2) transpose two rows and corresponding columns.

Quivers of isomorphic tiled orders are isomor-
phic (see [1])

4 Results

Proposition 4.1. Not for every admissible quiver
Q exists tiled order A of finite global dimension

with Q(A) = Q

Proof. As contrexample can be considered the fol-
lowing quiver. 4

2 \3
N\
7N

\/

1
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The quiver is admissible. It is quiver of the

tiled order with the following exponent matrix.
111

[

E(A) =

O = = = O

1
0
1
0

O = =

1
0
0
0

o O O O

O]

Proposition 4.2. If for admissible quiver Q) tiled
orders of finite global dimension exist then they are
isomorphic.

Proof. Fujita in the article [5] describes all tiled or-
ders in M5(D) up to isomorphism of finite global
dimension. Fujita provides 40 tiled orders of finite
global dimension and their quivers. So as quivers
of that tiled orders are not isomorphic then tiled
orders are also not isomorphic. O

Proposition 4.3. Let A is tiled order with E(A) =
(ayj) of finite global dimension and L is tiled or-
der with E(L) = (Nij)and Q(L) = Q(A). Then
Zi,j @ij < Z” Aij-
Proof. Let’s consider the following quiver of tiled
order of finite global dimesnion in Mj5(D) and cal-
culate minimum sum of exponent matrix of tiled
order with the given quiver. Calculations are sim-
ilar to the rest of tiled orders in [5].
RS
3——=5
N
\
0 1 z x
7
2

Yy
TZ‘L
00000
10000
EMN=]21010
2 2110
2 2110

d= Z?,j:l Q5 = 16.

Let’s find all tiled orders up to isomorphism
with the given quiver.

All verteces of the quiver do not have loops.
The following corresponding cycles of weight 1
are passing trought points 1 and 4 1 — 2 — 1
and 4 — 5 — 4. Cycle of weight 1 is passing
trought point 3 as well. Consider 3 — 2 — 3 or
3 —=5—3. Then ass + ag5s = 1,10 + a9 = 1,

azs +asz =1
gy +agg=1"
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Let’s assume that a1; = 0 Vj then ag = 1.
From the following equalities a3 = a1 + aog,
Q15 = 13 + 35

Q14 = Q12 + (4, we obtain
Q15 = (14 + Q5
042320,0424:0and[a35:0.
a45:0
ags = =0 ut+v=1
Th =
en |:Ck35—u—0 ) [O—i—y—l , T+ 2z
>1
1. Moreover, utv =z
O+y=>1

According to (1) in 3.4 the following inequal-
ities are true v < 0+y+0+x, v <t +0+0,
y<u+t+0, a3 =0<0+z+0v, ay =0<
O+u+2z,2<t4+04+0, z<v+y+0,t<v+y+1,
1<0+2+t1<0+u—+t.

Examine the inequality 0 = aoq4 < o3+ 35+
asg =0+u+ 2z If z=1then u =0 and z = 0.
That’s contradiction with 0 < u+ 2. So z = 0 and
z = 1.

Then quiver Q is

// /

v o 1 1| o
A
2—— 4
And  the following  equalities  hold
= >1
[u+v 1 utvz yu < y,v <ty <
y=1 y>1

u+t0 < v, 0 <u+11< tl < ov+y,
t<v+y+1,1<t,l1<u+t.

Suppose that v > 1 then 1 < u < y,1 < v
u+v=1

y=1 . We got
contradiction. Then u =0. 0 <y < t,0 < v <

v=1 v>1
y=1"1y>1

Ifv=1theny <t <y+2sot=y+1=y+v.
Ify=1thenv<t<v+2sot=v+1l=v+y.
Then t =v+y. ag1 =min(y+1,0+t) =y + 1.

soy > 2,u+v > 2 But [

Lt<v+y+L[

Finally, quiver is 3

and exponent matrix is
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