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Âèâ÷åíî ðîçâ'ÿçêè ëiíiéíèõ ôóíêöiîíàëüíèõ ðiâíÿíü, êîòði âèíèêàþòü â çàäà÷i âñòàíîâëåííÿ
òîïîëîãi÷íî¨ ñïðÿæåíîñòi óíiìîäàëüíèõ êóñêîâî ëiíiéíèõ âiäîáðàæåíü iíòåðâàëó â ñåáå, êîòði
ñêëàäàþòüñÿ ç äâîõ êóñêiâ ëiíiéíîñòi òà ÷èé îáðàç ìiñòèòü âåñü iíòåðâàë.

Ìè âèâ÷à¹ìî ôóíêöiîíàëüíå ðiâíÿííÿ, ÿêå îòðèìó¹òüñÿ ïiñëÿ ïiäñòàíîâêè ðîçâ'ÿçêó îäíîãî
ç äâîõ ëiíiéíèõ ôóíêöiîíàëüíèõ ðiâíÿíü (ÿêèé çíàõîäèòüñÿ ç òî÷íiñòþ äî äîâiëüíî¨ ôóíêöi¨)
â iíøå ç ìåòîþ çíàõîäæåííÿ öi¹¨ äîâiëüíî¨ ôóíêöi¨. Ìè ïîêàçó¹ìî ñêëàäíiñòü îòðèìàííÿ
ÿâíèõ ôîðìóë äëÿ ðîçâ'ÿçàííÿ ôóíêöiîíàëüíîãî ðiâíÿííÿ, ÿêå ïiñëÿ òàêî¨ äi¨ îòðèìó¹òüñÿ
òà âèâ÷à¹ìî iòåðàöiéíi íàáëèæåííÿ äîâiëüíî¨ ôóíêöi¨, ùî ôiãóðó¹ ó ðîçâ'ÿçàííi îäíîãî ç äâîõ
ôóíêöiîíàëüíèõ ðiâíÿíü.

Êëþ÷îâi ñëîâà: Îäíîâèìiðíà äèíàìiêà, âiäîáðàæåííÿ-êàïåëþøîê, òîïîëîãi÷íà ñïðÿæåíiñòü.
The article deals with topological conjugacy problem for piecewise linear unimodal interval into

itself mappings. It is considered such pairs of mappings that the graph of each of them consists of two
linear parts and graph of one of them is symmetrical in the center of the function domain. The system
of two linear functional equations which determines the topological conjugateness of mentioned maps
is studied. The techniques of solving linear functional equations is used for each one of this equations
and substituting the solution into another one. As these solutions contain the arbitrary function the
substitution makes the second equation to be the equation for that arbitrary function. It is shown
that obtained functional equation is complicated and properties of its solutions are studied.We show
the complicateness of applying the linear functional equations solving methods for �nding the explicit
formula for the homeomorphism we study and consider the iterational approximations of the arbitrary
function from the explicit formula for the solution of one two functional equations.

Key Words: One-dimensional dynamics, hat mapping, topological conjugateness.
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Introduction

We consider methods of solving the functional
equations in the problem of �nding the homeomor-
phism which de�ne the topological conjugateness
of mapping

f(x) =
{

2x, x < 1/2;
2− 2x, x > 1/2,

(1)

and mapping

fv(x) =
{

x
v , x 6 v;
1−x
1−v , x > v,

(2)

each of them is de�ned on the interval [0; 1].

Remind that a mapping f and f̃ ∈ C([0; 1])
are called topological conjugate if there exists a
homeomorphism h ∈ C([0; 1]) such that the fol-
lowing diagram

[0; 1]
f−−−−→ [0; 1]

h

y
yh

[0; 1]
f̃−−−−→ [0; 1],

is commutative i.e. the equality

h(f(x)) = fv(h(x)). (3)

holds for every x ∈ [0; 1].
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Taking into attention the explicit formulas for
mappings f and fv the commutativeness of the di-
agram from the de�nition of the topological conju-
gate is equivalent to the following system of func-
tional equations.




h(2x) =
1
v

h(x) x 6 1/2 (4a)

h(2− 2x) =
1− h(x)

1− v
x > 1/2 (4b)

(4)

Each of these functional equations is a lin-
ear functional equation. Methods of solving linear
functional equations are well developed and de-
scribed for example at [1, 3]. In the same time the
mentioned works do not contain any methods of
solving systems of linear functional equations.

Note that functional equation (3) is reduced to
a system of functional equations (4) only in the as-

sumption that the unknown function h is a home-
omorphism. We will prove that functional equa-
tions system (4) has the unique solutions which is
the homeomorphism which satisfy the functional
equation (3). The existence and the uniqueness of
the solution of the last equations is proved at [2].

The proving of the uniqueness of the solution
of the functional equation (3) will be constructive.
That is why our calculations will give us a possi-
bility of using the values table of the mapping h
obtained with numerical methods.

Example 1. With the use of methods which we
will show below it is possible to get that for v = 3/4
the graph of the mapping h looks as shown at the
�gure 1a). It is possible to show that this mapping
is not di�erentiable at any open interval.

a) b) c)

Figure 1:

According to methods of solving functional
equations which are described at [1] the solution
of (4à) looks as

h(x) = x− log2 vω(log2 x), (5)
where ω(x) is arbitrary periodical period 1 func-
tion. The analogical result is also given at [3, p.
408]. Function ω will appear to be one to one de-
�ned if we add the demand for the solution of the

functional equation (4à) to be also the solution of
the equation (4b).

If for v = 3/4 on calculate the function ω from
the formula above with the use of the numerical
calculations for values of the solution of (3) the
get the graph as at the �gure 1b).

The solution of the functional equation (4b)
looks as
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h(x) =
1

2− v
+

∣∣∣∣x−
2
3

∣∣∣∣
− log2(1−v)

·




ω+
(
log2

∣∣x− 2
3

∣∣) x > 2
3 ;

ω−
(
log2

∣∣x− 2
3

∣∣) x < 2
3 .

(6)

and functions ω+ and ω− satisfy the relation
{

ω−(t + 1) = −ω+(t)
ω+(t + 1) = −ω−(t).

(7)

In the same way like during solving the func-
tional equation (4a) we can �nd the graph of the
function ω(x) such that

ω

(
log2

∣∣∣∣x−
2
3

∣∣∣∣
)

=





ω+
(
log2

∣∣x− 2
3

∣∣) x > 2
3 ;

ω−
(
log2

∣∣x− 2
3

∣∣) x < 2
3 .

with the use of homeomorphism h which was
found independently earlier. Taking into attention
the (7) it is enough to plot the graph of ω only for
x ∈ [0; 2]. It is presented at the �gure 1c).

It was constructed at [2] the approximation
of h with piecewise linear mappings hn for n > 1
such that each of the is not di�erentiable only at
point of the set An which is de�nes as follows.

For every n > 1 denote with An, n > 1 the
set of all points of the interval [0; 1] such that
fn(An) = 0 and denote also Bn, n > 1 the
set of all points of the interval [0; 1] such that
fn

v (Bn) = 0. It is proved at [2] that sets An

and Bn are os the same cardinality and that sets
A =

∞⋃
n=1

An and B =
∞⋃

n=1
Bn are dense in the in-

terval [0; 1].
Denote with hn the increase piecewise linear

mapping such that points of An maps to Bn and
is di�erentiable on [0; 1] \ An. We may consider
hn as an approximation of the mapping h.

The deal of the work is the study of approx-
imations of functions ω which appear in formulas
for solutions of functional equations (4a) and (4b)
if we construct these approximations with the use
of functions hn.

1 Constructing and the simplest
properties of linear functional

equations.

Generally said, The system of functional equa-
tions (4) does not yield from the functional equa-
tion (3). It yields from it only with the assumption

that the mapping h which we try to �nd satisfy the
relations {

h([0; 1/2]) = [0; v],
h([1/2; 1]) = [v; 1].

For example we prove that the linear equa-
tions system (4) has the unique solution which is
the homeomorphic solution of (3) whose existence
is proved at [2].

In the same time, the functional equation (4)
has only the unique solution which is a men-
tioned homeomorphism. For example, the follow-
ing mappings de�ned with equalities h1(x) = 0
and h2(x) = x∗ for all x ∈ [0; 1] where x∗ is a
�xed point of fv will also be solutions of (4).

1.1 A system of linear functional
equations as a corollary of the

assumption of that mapping which
makes the diagram commutative is a

homeomorphism

Let a mapping h is a homeomorphism which
maps the interval [0; 1] into itself and which makes
commutative the diagram from the de�nition of
topological conjugateness.

The mapping h moves each �xed point of the
mapping f to a �xed point of the mapping fv.

As 0 is a �xed point of the mapping f and 1 is
not a �xed point of the mapping fv then the equal-
ity h(0) = 0 holds and yields that homeomorphism
increase.

Substitute the value x = 1/2 into the func-
tional equation (3) and get h(1) = fv(h(1/2)). As
homeomorphism h increase then the last equality
yields that h(1/2) = v.

So the functional equation (3) can be rewrit-
ten as a pair of commutative diagrams

[0; 1/2] x7→2x−−−−→ [0; 1],

h

y
yh

[0; v]
x7→x

v−−−−→ [0; 1];

and

[1/2; 1] x7→2−2x−−−−−→ [0; 1],

h

y
yh

[v; 1]
x 7→ 1−x

1−v−−−−−→ [0; 1].

These diagrams together are equivalent to the
functional equations system (4).
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1.2 The uniqueness of the solution of
linear functional equations system

Denote with x∗ = 2
3 the positive �xed point

of the mapping f i.e. the solution of the equation
x = −2x + 2.

Lemma 1. h(x∗) = 1
2−v and h

(
x∗
2

)
= v

2−v .

Proof. Substitute x∗ into the equation (4b) and
get

h(x∗) =
1− h(x∗)

1− v
,

whence
h(x∗) =

1
2− v

.

If substitute x = x∗
2 into the equation (4b)

then get

h

(
x∗

2

)
= vh(x∗) =

v

2− v
.

Notation 1. Call the value of the mapping h at
the point x to be uniquely de�ned if some value
h(x) at this point is a corollary of the system of
functional equations ( 4). For example the map-
ping h is uniquely de�ned at points 0; x∗ and x∗

2 .

Lemma 2. If the mapping h is uniquely de�ned
at point x̃ then it is uniquely de�ned at each point
of the integer trajectory of this point.

Proof. Let x̃ is an arbitrary point such that h is
uniquely de�ned at it.

We sill show that in this case the mapping h
is uniquely de�ned at the point f(x̃). Really if
x̃ 6 1

2 then the substitution of the value x = x̃
into the equation (4a) gives that h(2x̃) = 1

vh(x̃)
which means that h(fx̃) is uniquely de�ned.

Let x̃∗ be some pre image of the point x̃. In
this case the fact that h is uniquely de�ned at x̃
can be proved in the same way or with the sub-
stituting x = 2x̃∗ into the equation (4a) or with
substituting x = 2−x̃∗

2 into the equation (4b).

à)
á) â)

Figure 2:

Lemma 3. The union of all integer trajectories
of the point x∗ is dense in the set [0; 1] and the
mapping h is uniquely de�ned at each point of this
union.

Let us give some note before the proving the
lemma. The pre image of the point x ∈ [0; 1]
under the mapping f looks as follows with given
binary code of x = 0, α1 α2, . . ..

Remark 1. If the binary code of the number
x ∈ [0; 1] looks as follows

x = 0, α1 α2, . . . ,

then the binary code of the pre image x− under
the action of f (i.e. the binary code of such point
that the equality f(x−) = x holds) has one of the
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following forms

x− =
[

0, 0α1 α2 . . . αn . . .
0, 1α1 α2 . . . αn . . .

Lemma 3 yields from the more general lemma.

Lemma 4. For the arbitrary point x ∈ [0; 1] the
union of all its inverse trajectories is dense in
[0; 1].

Proof. This lemma is an immediate corollary from
the note 1. It is enough for proving this lemma to
prove that for every point x ∈ [0; 1] and every set
{α1 α2 . . . αn} of binary points there is an integer
trajectory of x such that it has a point with the
�rst binary digits be equal to 0, α1 . . . αn . . ..

This proposition is a trivial corollary of the
inductive reasonings for n > 1 which is a number
of �rst chosen digits of the binary code of some
pre image.

Proving of lemma 3. The lemma 1 gives that the
value of the mapping h is uniquely de�ned at point
x∗. The lemma 2 gives that the mapping h is
uniquely de�ned at each point of each integer tra-
jectory of the point x∗.

The density of the union of integer trajectories
of x∗ is proven at the lemma 4.

The obtain results can be generalized in the
following theorem.

Theorem 1. The system of functional equa-
tions ( 4) has the unique continuous solution which
is increase homeomorphism

2 Solving the functional equations with
analytical methods

Each functional equation of the system (4) can
be solved and correspond solutions can be repre-
sented analytically.

We will introduce the correspond technique
below and will do the calculations with each of ob-
tained solutions for showing the complicatedness
of the solutions of each functional equation after
substituting it into another equation of the system
(4).

2.1 Solving of the equation (4a) with
further substituting the solution into

the equation (4b).

The equation (4a) is a linear functional equa-
tion. According to for example [3](p. 408) its so-
lutions looks as

h(x) = x− log2 vω(log2 x) (5)

where ω(x) is a arbitrary periodical 1 function.
If substitute the obtained function into the

equation (4b) then obtain

(2−2x)− log2 vω(log2(2−2x)) =
1− x− log2 vω(log2 x)

1− v
.

Taking into attention the periodicity of ω this
equation can be rewritten as

(1− v)(1− x)− log2 vω(log2(1− x)) =
= v(1− x− log2 vω(log2 x)).

(8)

Remark 2. If consider the equation ( 8) as a func-
tional equation of the whole real axis then it will
appear that the necessary function h is a constant.

The deal of the remark. If denote t = 1 − x then
obtain

(1− v)t− log2 vω(log2 t) =

= v(1− (1− t)− log2 vω(log2(1− t))).

If write x instead of t and take into atten-
tion the equation (8) then we may express (1 −
x)− log2 vω(log2(1− x)) from each of the equations
and make equal the results after which obtain

v

1− v

(
1− x− log2 vω(log2 x)

)
=

= 1− 1− v

v
x− log2 vω(log2 x),

whence
x− log2 vω(log2 x) = v.

The obtained condition means that function h is
constant and whence is not invertible.

The explanation for the remark 2. The equa-
tion (8) is obtained with substituting the solution
of the functional (4a) into the functional equa-
tion (4b).

That is wy the substitution t = 1−x is in fact
the substitution at the equation (4a).
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Nevertheless the equation (4a) if obtained
from the fact that the diagram

[0; 1/2]
f : x 7→2x−−−−−→ [0; 1]

h

y
yh

[0; v]
fv : x 7→x/v−−−−−−→ [0; 1]

commutes. But it is de�ned only for x ∈ [0; 1/2].
As the substitution t = 1 − x for x ∈ [0; 1/2]
means that t ∈ [1/2; 1] then after formal rewrit-
ten of this substitution one obtain the functional
equation for another domain of a function h and
formal expressing of

(1− x)− log2 vω(log2(1− x))

each of two obtained equations is incorrect.

If use the mapping h which was constructed
at the example 1 then numerical methods will let
us to get the mapping ω(x) whose graph is given
at the �gure 1b) for x ∈ [0; 1].

Remark 3. Make the remark about the way how
the graph of ω was obtained.

The deal of the remark. As ω is periodic with pe-
riod 1 then it is enough to �nd its values at arbi-
trary interval of the length 1.

If one consider all the values of x ∈ [1/2; 1]
with the use of the step which then we will get
the table of values of the function log2 x. Now the
equation (5) yields the table of values of the func-
tion ω de�ned at log2 x for all x from the former
set of values.

So for every x ∈ [0; 1] with some �xed step for
example 1

n for n is huge enough we will �x log2 x
and ω(log2 x) = h(x) · xlog2v whence obtain the
dense set of points of the graph of the function ω
on the interval [−1; 0].

The function h which is the solution of the
system of functional equations (4) is �complicated�
yield from the fact that h is not di�erentiable on
any subinterval of [0; 1]. The form of the equa-
tion (5) means that complicatedness of h should
come from the complicatedness of ω because the
multiplier x− log2 v is di�erentiable at any point.

In the same time we will formulate the list os
properties of h of the form (5).

Lemma 5. If the invertible interval [0; 1] mapping
h is of the form ( 5) then the following hold.

1. The mapping h increase;
2. For any n ∈ N the equality h

(
1
2n

)
= vn

hold.
More then this, for all integer t the equality

ω(t) = 1 holds.

Proof. Prove at �rst that function ω is bounded.
It is so because of its periodicity it is wholly de-
termined with values of ω(log2 x) for x ∈ [1/2; 1].
Nevertheless for such values of x the function h
is bounded and the function x− log2 v strictly in-
crease. This means that ω(log2 x) is bounded for
all x ∈ [0; 1].

If substitute x = 0 into the equality (5)
then obtain the product of zero times a value of
bounded function which means that h(0) = 0.
This corollary together with the fact of being in-
vertible means that h increase from 0 to 1 for all
x ∈ [0; 1].

The condition h(1) = 1 yields that after
substitution x = 1 into the equality (5) obtain
1 = ω(log2 x). The periodicity of ω with period 1
means that for every t ∈ Z the equality ω(t) = 1
holds.

Plugging x = 1
2n into the equality (5) obtain

h

(
1
2n

)
= vn ω(log2 2−n) = vn.

Consider the examples of �simple� mappings
ω but such that function h which is determined
with (5) is invertible and consider the mapping
f̃v which is determined with the commutative di-
agram

[0; 1]
f−−−−→ [0; 1]

h

y
yh

[0; 1]
f̃v−−−−→ [0; 1].

(9)

Lemma 6. If for invertible mapping h of the
form ( 5) the diagram ( 9) is commutative then for
x ∈ [0; v] the equality

f̃v(x) =
x

v

holds.

Proof. The condition of that h is invertible yields
that f̃v is determined with h. More exactly for
every x ∈ [0; 1] the equality f̃v = h(f(h−1(x)))
holds. But by lemma 5 for x ∈ [0; v] the inclusion
h−1(x) ∈ [0; 1/2] means that f̃v(x) = h(2h−1(x)).
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The uniqueness of f̃v and the fact that f̃v(x) =
x
v satis�es the functional equation above obtain
the proposition of lemma.

The simplest condition is that when ω is pe-
riodical is that when it is constant.

The equality h(1) = 1 yields that if ω is con-
stant then ω(x) = 1.

Example 2. Consider the graph of the mapping
f̃v which is determined with the commutative dia-
gram ( 9) for the mapping h of the form ( 5) if ω
is a constant function.

The deal of the example. If ω(x) = 1 then for ev-
ery x ∈ [0; 1] whence h(x) = x− log2 x. Then by
lemma 6 (also it can be shown with the direct cal-
culations) for x ∈ [0; v] the equality f̃v(x) = x

v
holds.

For such function ω the equality h−1(x) =
x− logv 2 holds whence for x ∈ [v; 1] obtain

f̃v(x) =
(
2− 2x− log2 v

)− logv 2
.

The graph of the mapping f̃v for v = 3/4 is given
at �gure 2a).

Example 3. Find the graph of the mapping f̃v

which is de�ned with the commutative diagram ( 9)
for the mapping h of the form ( 5) if ω is contin-
uous function whose graph consists of two linear
branches on the interval [1/2; 1].

The deal of the example. Plug x = 3/4 into the
commutative diagram (9) and get

3/4
f−−−−→ 1/2

h

y
yh

h(3/4)
f̃v−−−−→ v = h(1/2).

De�ne h(3/4) such that this number be the
biggest pre image of v under the acting of fv. In
this case the values of fv and f̃v will coincide on
this bigger pre image of v under the acting of fv.

In another words

h

(
3
4

)
=

(
3
4

)− log2 v

ω

(
log2

(
3
4

))
= v2− v + 1.

For v = 3
4 obtain ω(0, 584) ≈ 0, 915.

De�ne ω on the interval [0; 1] as follows. ω(x)
should be piecewise linear whose graph consists of

two lines and has the fracture point with coordi-
nates

(
log2

3
4
; (v2 − v + 1) ·

(
3
4

)log2 v
)

.

The graph of mapping f̃v for such ω for v =
3/4 is given at 2b).

On this �gure we also mark the point of in-
tersection of f with the line y = x because the
construction gives that in this case mappings f̃v

andf coincide.

Examples 2 and 3 can be generalized as fol-
lows.

Consider the iteration approximations ωn for
the function ω and use them for iteration approx-
imations h̃n of the function h.

For the arbitrary approximation of h on the
interval x ∈ [

1
2 ; 1

]
we can obtain the approxima-

tion of ω on the interval [−1; 0] with taking into
attention the formula (5). As ω is periodical with
period 1 then we obtain the approximation of h
on the whole [0; 1].

With using of constructed hn �nd the values
of ω on the set An ∩

[
1
2 ; 1

]
.

Denote with ωn(x) the mapping whose values
are de�ned with the values of hn at points of the
set {log2 x, x ∈ An ∩

[
1
2 ; 1

]} such that ωn(x) is
linear at all points except the set An ∩

[
1
2 ; 1

]
and

is periodical with period 1.
So, the mapping h̃n looks as

h̃n(x) = x− log2 vωn(log2 x), (10)

and should be considered as iteration approxima-
tion of h.

If the constructed h̃n appear to be invertible
then there exists the unique mapping f̃n such that
the diagram

A
f−−−−→ A

h̃n

y
yh̃n

B
f̃n−−−−→ B

(11)

commutes. This mapping f̃n can be de�ned with
the formula

f̃n = h̃n(f(h̃−1
n )).

For example with the use of notations in-
troduced above the mapping f̃v which was con-
structed at the example 3 is the mapping f̃2 and
correspond approximation of h is the mapping h̃2.
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Nevertheless it may appear that the mapping
h̃n will not be monotone and so it will not exist
a mapping f̃n which make the diagram (11) com-
mutative.

Example 4. Consider the case when the mapping
h̃3(x) which in fact is dependent on v is non mono-
tone for some v.

The deal of the example. Give the graphs of map-
pings h̃3(x) for v = 0, 01, v = 0, 025, v = 0, 1 and
v = 0, 2 on the �gure 2c).

As a comment for the given graphs note that
each of them satisfy the functional equation (4a)

h(2x) =
1
v

h(x),

i.e. its form on the each of intervals
[

1
2k+1 ; 1

2k

]
is

its form on the interval
[

1
2 ; 1

]
but being squeezed

vk times.
The mapping h̃3(x) which is calculated for

v = 1
2 is given with the formula h̃3(x) = x.
Whence we see that with decreasing of v from

v = 1
2 there exist some �critical value� at which

the graph of h̃3(x) becomes to be monotone non
monotone.

Notation 2. Denote with ĥn(t) the function such
that the equality

ĥn(log2 x) = h̃n(x)

holds.
Use numbers αk = αk; n to construct the num-

bers α̃k = log2 αk.
Denote with tk = tk; n the extremum of the

mapping ĥn on the interval (α̃k; α̃k+1). The con-
struction lets to prove that this extremum if unique
and the proving is quiet simple.

The condition for h̃n to be monotone is equiv-
alent to that for every k the inclusion

tk ∈ R\[α̃k; α̃k+1] = R\[log2 αk; log2 αk+1] (12)

holds.

Taking into attention the formula (10) rewrite
ĥn(t) as

ĥn(t) = 2−t log2 vωn(t).

Taking into attention the function y = log2 x ob-
tain that being monotone of h̃n is equivalent of
being monotone of ĥn.

The equality hn(αk) = βk yields the following
equality for the function ωn

ωn(α̃k) = βk · 2α̃k log2 v.

Denote with β̃k = βk · 2α̃k log2 v = βkv
α̃k .

Let ωn be of the form ωn(t) = ak · t + bk on
the interval (α̃k; α̃k+1). Then

ak =
β̃k+1 − β̃k

α̃k+1 − α̃k
, bk =

β̃kα̃k+1 − β̃k+1α̃k

α̃k+1 − α̃k
.

Find the extremum of the curve which is de-
�ned with the equation which determines the map-
ping ĥn(t) on the interval (α̃k; α̃k+1). So, we get

ĥ′n(t) = 2−t log2 v(ak − log2 v ln 2 · (akt + bk))

whence extremum of the mapping ĥn can be found
with the formula

tk =
ak − bk log2 v ln 2

ak log2 v ln 2
=

1
ln v

− bk

ak
. (13)

The previous calculations give that

bk

ak
=

β̃kα̃k+1 − β̃k+1α̃k

β̃k+1 − β̃k

.

Coming back to previous calculations obtain
that
bk

ak
=

βkv
log2 αk log2 αk+1 − βk+1v

log2 αk+1 log2 αk

βk+1vlog2 αk+1 − βkvlog2 αk
.

As α(k; n) = k
2n and An = {α(k; n − 1)} ob-

tain that αk = k
2n−1 whence

log2 αk = log2 k − n + 1.

So,

bk

ak
= n− 1 +

βkv
log2 k log2(k + 1)

βk+1vlog2(k+1) − βkvlog2 k
−

− βk+1v
log2(k+1) log2 k

βk+1vlog2(k+1) − βkvlog2 k
.

The example 4 let to come to a natural as-
sumption that for v → 0 the mapping hn will
be non invertible also for huge values of n. With
the use of formula (13) we can prove the following
lemma.

Lemma 7. For any n ∈ N there exists v0 ∈ (0; 1)
such that for every v ∈ (0; v0) the mapping h̃n(x)
is monotone on the interval

[
2n−1−1
2n−1 ; 1

]
.
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Proof. Let us �nd evident formulas for β(n; 2n−1−
1). We know about this point that

{
fn

v (β(n; 2n−1 − 1)) = 0;
fn−1

v (β(n; 2n−1 − 1)) = 1.

Find the tangent of the mapping fn−1
v on the

last interval where it is monotone. This tangent
equals 1

v−1 · 1
vn−2 which means that

β(n; 2n−1 − 1) = 1 + vn−2 · (v − 1).

With the use of notions which were intro-
duced during �nding of tk de�ned with (13) we
get k = 2n−1−1, βk = 1+vn−2 · (v−1), βk+1 = 1,
αk = 1 − 1

2n−1 , αk+1 = 1. So, log2 αk+1 = 0
whence

tk =
1

ln v
+

log2 αk

1− (1 + vn−2 · (v − 1))vlog2 αk
.

Note that inequality t < 0 holds because for
v ∈ (0; 1) there are inequalities ln v < 0 and
log2(1 − 21−n) < 0. In this case the denomina-
tor of the fraction is positive.

Also for �xed n and v → 0 we have that
vlog2 αk →∞ whence tk → 0.

The obtained value of limit proves lemma.

With the use of formula (13) we can study the
example 4 more attentively if consider n = 3 and
study the behavior of numbers t2 and t3 depen-
dently on v.

a) b)

Figure 3:

Example 5. Consider the function t2(v) for
n = 3. We will which un succeed attempt of cal-
culation of the limit lim

v→1
t2(v). We will show that

this limit exists and equals 1 in the time when nu-
merical methods look like the limit does not exist.
The deal of the example. For n = 3 we have a par-
tition of the interval

[
1
2 ; 1

]
to 2 intervals with 3

points α2 = 1
2 , α3 = 3

4 and α4 = 1. Correspond-
ingly β2 = v, β3 = max f−1

v (v) = 1− v(1− v) and
β4 = 1.

Then

t2 =
1

ln v
+

v2 − v2 log2 3
(v2 − v + 1)vlog2 3 − v2

.

For the function h̃2 being continuous on the
interval int is necessary and su�cient the inclu-
sion

t2 ∈ R\[−1; log2 3− 2] ≈ R\[−1; −0, 415]

hold.

The numerical analysis of the obtained func-
tion t2(x) lets make a conclusion that it decrease
for x ∈ [0; 0, 5] and has an asymptote for x = 0, 5
i.e. lim

x→0,5−
t2 = −∞ and lim

x→0
t2 = −1.

If try plot the graph of t2(x) for x ∈ [0, 5; 1]
then numerical methods for x ∈ [0, 99999; 1] show
that it becomes to be non monotone. So, for
t ∈ [0, 6; 0, 999999] graph of t2(x) is given at �g-
ure 4a).

Nevertheless the graph of t2(x) for x ∈ M =
[0, 99999999; 0, 999999995] is given at the �g-
ure 4b). Strictly said, the given sketch is not ex-
actly the graph of t2(x) but the set of its points
whose x-coordinated are uniformly distributed on
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M and are all these points are connected with
lines.

Remind that the obvious continuality of the
mapping t2(v) yields that the mapping t2(v) has
on the set M such points that correspond mapping
ĥ3 is not continuous on the interval [α2; α3].

Further experiments show that for each of in-
tervals of the form

[
1− 1

10m+1 ; 1− 1
10m

]
the map-

ping t2(v) has such point that correspond map-
ping ĥ3 is not continuous on correspond point of
[α2; α3].

In the same time these experiments do not
represent the mathematical reality of the function
under consideration, because the limit

lim
v→1

(
1

ln v
+

v2(1− log2 3)
(v2 − v + 1)vlog2 3 − v2

)

is a limit of di�erence of two expressions such that
each of them tends to +∞ so trying to calculate
this limit directly with calculating of each term
may accumulate a huge calculation mistake. Let
us prove properly that the limit which was re-
minded above exists.

As

lim
v→∞ t2(v) + 1 =

1
0

+
0
0

=
0
0
,

make the sum a proper fraction to make possible
to di�erentiate is with the L'Hopital's rule. So,

t2 + 1 =

=
(v2 − v + 1)vlog2 3 − v2 + ln v(v2 − v2 log2 3)

ln v((v2 − v + 1)vlog2 3 − v2)
.

Denote with

s(v) = (v2− v +1)vlog2 3− v2 + ln v(v2− v2 log2 3)

and

p(v) = ln v((v2 − v + 1)vlog2 3 − v2).

Thens′(v) = (2v − 1)vlog2 3 + log2 3(v2 − v +
+1)vlog2 3−1−2v+(v−v log2 3)+2(v−v log2 3) ln v,
whence s′(1) = 0. Also p′(v) = (v − 1)vlog2 3 +
vlog2 3−1 − v + ((2v − 1)vlog2 3 + log2 3(v2 − v +
1)vlog2 3−1 − 2v) ln v, whence p′(1) = 0.

Find second derivatives s′′(v) and p′′(v) to
get s′′(1) = 3 + (log2 3)2 − 2 log2 3 ≈ 2, 3422 and
p′′(1) = 2 log2 3− 2 ≈ 1, 1699. That is why

t2(v) → s′′(1)
p′′(1)

− 1 ≈ 1, 0020.

Example 6. Consider the function t3(v) for
n = 3. We will show that function t3(v) makes
the correspond function ĥ3(x) non monotone for
all v < v0 where v0 = 0, 18867 ± 0, 00001. This
result is consistent with the one of the example 4.

The deal of the example. Study the question of
being monotone of the mapping ĥ3(x) on the in-
terval [α3; α4] for n = 3. In this case

t3 =
1

ln v
+

v2 log2 3− 2v2

v2 − (v2 − v + 1)vlog2 3
.

For the violation of being monotone of h̃3 it is
necessary the inclusion

t3 ∈ [log2 3− 2; 0] ≈ [−0, 415; 0].

The graph of t3(v) for v ∈ [0; 0, 21] is given at
the �gure 4c).

As it is shown at the example 4 there is a point
near v0 ≈ 0, 2 such that h̃3 is non monotone near
it for all v 6 v0. Our calculations show that this
value is about

v0 ∈ [0, 18868; 0, 18869],

i.e.
v0 ≈ 0, 18867± 0, 00001.

As about t3(v) on the interval [0, 2; 0, 5], it has
an asymptote at the point 0, 5 and increase at the
whole interval [0, 2; 0, 5] to positive in�nity.

We will give now the similar investigation for
n = 4. For every v and for every interval [12 ; 5

8 ],
[58 ; 3

4 ], [34 ; 7
8 ] and [78 ; 1] �nd the value tk with the

use of formula (13).
For di�erent values v and every k ∈ [4; 7]

�nd tk(v) and this will give us 4 points. Just for
convenience concatenate these points to polygons
i.e. obtain a polygon for each of v. Also add the
following two curves (and put with the bold) to
the picture. Let one of them to connects num-
bers {α̃k} and another connects numbers {α̃k+1}
for the same k ∈ [4; 7]. The previous explanations
give that the mapping ĥn; v will be monotone if and
only if each of obtained 4 points will be between
these two bold curves, i.e. under then bottom and
above then the lower of them.
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a) b) c)

Figure 4:

The �gure 3a contains these curves for values
v1 = 0, 15, v2 = 0, 1, v3 = 0, 07, v4 = 0, 03, v5 =
0, 17, v6 = 0, 01, v7 = 0, 001 and v8 = 0, 00001.
The top curves on the picture correspond to the
lower values of v.

As we can see and this corresponds to lemma 7
if the value of v is small enough then curves be-
come close to the horizontal line y = 1 and the last
point of each of these curves (that one which corre-
sponds to the interval [α7; 1]) tends to 1 for v → 0
and so belongs to the interval (α̃7; α̃8) = (α̃7; 0).
This means that h̃n is non monotone on the inter-
val (α7; α8) = (α7; 1).

The �gure 3b contains the analogues calcula-
tions for n = 5 and values v1 = 0, 125, v2 = 0, 1,
v3 = 0, 15, v4 = 0, 05, v5 = 0, 02, v6 = 0, 01,
v7 = 0, 001 and v8 = 0, 000000001.

2.2 Solving the equation (4b) with
further substitution o the

equation (4a).

The solution of the functional equation (4b)
looks as

h(x) =
1

2− v
+

∣∣∣∣x−
2
3

∣∣∣∣
− log2(1−v)

×

×




ω+
(
log2

∣∣x− 2
3

∣∣) x > 2
3 ;

ω−
(
log2

∣∣x− 2
3

∣∣) x < 2
3 .

(6)

where functions ω+ and ω− satisfy the equation
{

ω−(t + 1) = −ω+(t)
ω+(t + 1) = −ω−(t).

(7)

In the same way like in the previous section
we can use the found h for getting the function ω.

The equation (7) yields that function ω+ and
ω− are periodical with the period 2.

Consider the function h for

x ∈
[
35
48

;
11
12

]
.

When the variable x become equal to all the val-
ues of the mentioned interval then he values of
log2

(
x− 2

3

)
will become equal to all values of the

interval [−4; −2] whose length is 2. This will make
possible to �nd the function ω+ on the interval of
its periodicity.

Lemma 8. If for the invertible mapping h of the
form ( 6) the diagram ( 9) is commutative then for
x ∈ [v; 1] the equation

f̃v(x) =
1− x

1− v

holds.

Proof. The prove of this lemma is analogous to the
prove of the lemma 6.

Example 7. Obtain the graph of the mapping f̃v

which is de�ned with the commutative diagram ( 9)
for the mapping h of the form ( 6) if ω is the func-
tion of the simplest form.
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The deal of the example. The equation (7) makes
impossible the case when the function ω is con-
stant and does not equal to 0. So the simplest
case for ω is that when ω = ω0 for x < 0 and
ω = −ω0 for x > 0.

Then the equality h(0) = 0 gives that

ω0 =
−1

2− v
·
(

2
3

)log2(1−v)

.

In this case the graph of the mapping f̃v(x) =
h(f(h−1(x))) which for v = 3

4 is given at �g-
ure 5a).

a) b) c)

Figure 5:

Example 8. Obtain the graph of the mapping f̃v

which is de�ned with the commutative diagram ( 9)
for the mapping h of the form ( 6) if ω is a func-
tion such that ω+ and ω− are the simplest but non
constant.

The deal of the example. Consider the functions
ω+ and ω− to be continuous.

The equality h(0) = 0 gives that

0 =
1

2− v
+

(
2
3

)− log2(1−v)

ω−
(

log2

2
3

)
,

i.e.

ω−(1− log2 3) =
1

v − 2

(
2
3

)log2(1−v)

(14)

As the left pre image of the point 1
2 for the

mapping f goes to

h

(
1
4

)
= v2,

under the mapping h, i.e.

v2 =
1

2− v
+

(
5
12

)− log2(1−v)

ω−
(

log2

5
12

)
,

whence the periodicity of ω− with period 2 gives
that

ω−
(

log2

5
3

)
=

(
v2 − 1

2− v

)(
5
12

)log2(1−v)

(15)
Construct the function ω− as follows. The val-

ues of ω− at points log2
5
3 ≈ 0, 737 and 2+log 25

3 ≈
2, 737 are equal and are de�nes with the equality
(15) (according to (7) function ω− is periodical
with period 2).

The value of ω− at point 3 − log2 3 ≈ 1, 415
is de�ned with (14) (because of the periodicity of
ω− the equality (14) can really be used for �nding
ω− at this point).

In this case we make the function ω− to be
linear at each of intervals [log2

5
3 ; 3 − log2 3] and

[3− log2 3; 2+log 25
3 ] and is periodical with period

2.
We will construct the function ω+ with us-

ing the function ω− and taking into attention the
equation (7). The graph of the mapping f̃v which
was constructed in such a way for v = 3/4 is given
at the �gure 5b).

If compare the graph from the previous exam-
ple with that one which was constructed yet then
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see the plot as at �gure 5c) (the dots are used for
the �rst graph).

Plug the solution (6) of the functional equa-
tion (4b) into the functional equation (4a) and ob-
tain

v
2−v + v

∣∣2x− 2
3

∣∣− log2(1−v)×

× v ·




ω+
(
log2

∣∣2x− 1
3

∣∣) x > 2
3 ;

ω−
(
log2

∣∣2x− 1
3

∣∣) x < 2
3

=

= 1
2−v +

∣∣x− 2
3

∣∣− log2(1−v)×

× ·




ω+
(
log2

∣∣x− 2
3

∣∣) x > 2
3 ;

ω−
(
log2

∣∣x− 2
3

∣∣) x < 2
3 .

Here the unknown functions ω+ and ω− are con-
nected with the equation (7). The complicated-
ness of this equation in comparison with linear
functional equation is obvious. The question on
the invertibility of the mappings h which are ob-
tained in such a way is so complicated as in the
previous case.

3 The �nal remarks

We have shown in the work that methods of
solving the linear functional equations appear to
be practically non useful in the case of the sim-
plest generalization of functional linear equations

i.e. for the system of two linear functional equa-
tions.

In the same time the problems which were
stated in the work may be generalized to the case
when fv is more complicated the that which we
consider, for example has home the one point when
it is not di�erentiable.

In spite of the experimental material which is
given in the work we were failed to �nd the reason
why the mentioned sequence h̃n sometimes appear
to be non monotone. So, we can no formulate the
necessary an su�cient conditions for this sequence
to be consisted of monotone functions.

Our calculations show that in the case which
is considered in more details during the work the
mapping ĥn becomes close to be constantly equal
1 for v → 0. This means that for all n the mapping
h̃n becomes non monotone when v → 0. Never-
theless we were failed to �nd the exact prove that
these h̃n really tend to be constant.

In any way we have found the list of constants
like

v0 ≈ 0, 18867± 0, 00001

from the example 6 which characterize the topo-
logical conjugation of f and each of the mappings
fv. We have calculated these constants only nu-
merically and have failed to catch their deep mean-
ing.
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