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Bueueno poss’asku AtmitHUT GYHKYIOHAAYHUT PI6HAND, KOTNDL GUHUKGIOMD 8 360641 6CMAHOBAEHHA
MONOAOLIYHOT CIPANCEHOCTNT YHIMOJUNDHUT KYCKOBO MHITHUL 61000pascend iHmepsany 6 cebe, Kompi
CRAQDAIOTDBCA 3 080X KYCKI8 AHITHOCTE Ma YUl 06pa3 MICTNUIMDL GECH THIMEPEAN.

Mu susuaemo Pyrnkyionasvre PIGHAHHA, AKE OMPUMYEMBCA NICAL NIOCMAHOBKY PO38 A3KY 00H020
3 080T MHITHUT PYHKUIOHANODHUL PIGHAND (AKUT 3HATOOUMBCA 3 MOUHICMI0 00 d06IALHOT PYHKUTT)
6 THWE 3 Memoto 3Haxoddcenms uici dosinvhol dynryii. Mu noxasyemo ckAGIHICMD OMPUMAHHS
AGHUL POPMYA OAA PO36 AZAHHA PYHKUIONAADHO20 DIBHAHNA, AKE NICAL MAKOT 04 OMPUMYEMBCH
Ma BUBHAEMO TMEPayitini HabauNCeHHA J06IALHOT PynKuil, wo dieypye y po3s’azanni odnozo 3 060x
PYHKUIOHAALYHUL DIEHAHD.

Karwuosi caosa: O0HOBUMIPHG OUHAMIKG, 81006PANCEHRA-KANENOULOK, TONOAOLIHHA CIUPANCEHICTS.

The article deals with topological conjugacy problem for piecewise linear unimodal interval into
itself mappings. It is considered such pairs of mappings that the graph of each of them consists of two
linear parts and graph of one of them is symmetrical in the center of the function domain. The system
of two linear functional equations which determines the topological conjugateness of mentioned maps
1s studied. The techniques of solving linear functional equations is used for each one of this equations
and substituting the solution into another one. As these solutions contain the arbitrary function the
substitution makes the second equation to be the equation for that arbitrary function. It is shown
that obtained functional equation is complicated and properties of its solutions are studied. We show
the complicateness of applying the linear functional equations solving methods for finding the explicit
formula for the homeomorphism we study and consider the iterational approzimations of the arbitrary
function from the explicit formula for the solution of one two functional equations.

Key Words: One-dimensional dynamics, hat mapping, topological conjugateness.

Communicated by Prof. Kozachenko Yu.V.

Remind that a mapping f and f € C([0; 1])
are called topological conjugate if there exists a
homeomorphism h € C([0; 1]) such that the fol-
lowing diagram

Introduction

We consider methods of solving the functional
equations in the problem of finding the homeomor-
phism which define the topological conjugateness

of mapping 0; 1] f [0; 1]
| 2=z, x < 1/2; h h
f(x)_{z—zx, x> 1/2, (1) l _ l
0] —— [0; 1],
and mapping
is commutative i.e. the equality
z r < v
w(@) =9 12, T 2
ro={ B 150 @ MF (@) = Fu(h)). )

each of them is defined on the interval [0; 1]. holds for every x € [0; 1].
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Taking into attention the explicit formulas for
mappings f and f, the commutativeness of the di-
agram from the definition of the topological conju-
gate is equivalent to the following system of func-
tional equations.

h(2z) = %h(x) r<12 ()
11_11(5”) x>1/2 (4b) W
Fach of these functional equations is a lin-
ear functional equation. Methods of solving linear
functional equations are well developed and de-
scribed for example at [1, 3]. In the same time the
mentioned works do not contain any methods of
solving systems of linear functional equations.
Note that functional equation (3) is reduced to
a system of functional equations (4) only in the as-

h(2 —2z) =
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sumption that the unknown function A is a home-
omorphism. We will prove that functional equa-
tions system (4) has the unique solutions which is
the homeomorphism which satisfy the functional
equation (3). The existence and the uniqueness of
the solution of the last equations is proved at [2].

The proving of the uniqueness of the solution
of the functional equation (3) will be constructive.
That is why our calculations will give us a possi-
bility of using the values table of the mapping h
obtained with numerical methods.

Example 1. With the use of methods which we
will show below it is possible to get that for v = 3/4
the graph of the mapping h looks as shown at the
figure la). It is possible to show that this mapping
is not differentiable at any open interval.

[

0,95

M
R

0,925

Figure 1:

According to methods of solving functional
equations which are described at [1] the solution
of (4a) looks as

h(z) =z~ %2V (log, ), (5)

where w(x) is arbitrary periodical period 1 func-
tion. The analogical result is also given at [3, p.
408]. Function w will appear to be one to one de-
fined if we add the demand for the solution of the

functional equation (4a) to be also the solution of
the equation (4b).

If for v = 3/4 on calculate the function w from
the formula above with the use of the numerical
calculations for values of the solution of (3) the
get the graph as at the figure 1b).

The solution of the functional equation (4b)
looks as
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L ety [ (omle—3) x> 3

h(z) = g P : (6)
2—wv 3 — 2
w (logz‘w—g}) r < 3.

and functions wt and w™ satisfy the relation

{

In the same way like during solving the func-
tional equation (4a) we can find the graph of the
function w(x) such that

(v
w | log,

T3

with the use of homeomorphism h which was
found independently earlier. Taking into attention
the (7) it is enough to plot the graph of w only for
x € [0; 2]. It is presented at the figure 1c).

It was constructed at [2] the approximation
of h with piecewise linear mappings h,, for n > 1
such that each of the is not differentiable only at
point of the set A,, which is defines as follows.

w(t+1)=—-wt(t)

Wt 1) = —w (1), (@)

wt (logQ ‘:c — %D x> %;

w™ (10g2 ‘a: - %D x < %

For every n > 1 denote with A,, n > 1 the
set of all points of the interval [0; 1] such that
f™(A,) = 0 and denote also B,, n > 1 the
set of all points of the interval [0; 1] such that
fi(By) = 0. It is proved at [2] that sets A,
and B,, are os the same cardinality and that sets
oo o

A= | A4, and B = |J B, are dense in the in-
n=1 n=1

terval [0; 1].

Denote with h, the increase piecewise linear
mapping such that points of A, maps to B, and
is differentiable on [0; 1] \ A,. We may consider
hn as an approximation of the mapping h.

The deal of the work is the study of approx-
imations of functions w which appear in formulas
for solutions of functional equations (4a) and (4b)
if we construct these approximations with the use
of functions h,,.

1 Constructing and the simplest
properties of linear functional
equations.

Generally said, The system of functional equa-
tions (4) does not yield from the functional equa-
tion (3). It yields from it only with the assumption

42

that the mapping h which we try to find satisfy the
relations

For example we prove that the linear equa-
tions system (4) has the unique solution which is
the homeomorphic solution of (3) whose existence
is proved at |2].

In the same time, the functional equation (4)
has only the unique solution which is a men-
tioned homeomorphism. For example, the follow-
ing mappings defined with equalities hi(xz) = 0
and ha(z) = 2 for all x € [0; 1] where z* is a
fixed point of f, will also be solutions of (4).

h([0; 1/2]) = [0; v],
h([1/2; 1]) = [v; 1].

1.1 A system of linear functional
equations as a corollary of the
assumption of that mapping which
makes the diagram commutative is a
homeomorphism

Let a mapping h is a homeomorphism which
maps the interval [0; 1] into itself and which makes
commutative the diagram from the definition of
topological conjugateness.

The mapping h moves each fixed point of the
mapping f to a fixed point of the mapping f,.

As 0 is a fixed point of the mapping f and 1 is
not a fixed point of the mapping f, then the equal-
ity h(0) = 0 holds and yields that homeomorphism
increase.

Substitute the value z = 1/2 into the func-
tional equation (3) and get h(1) = f,(h(1/2)). As
homeomorphism h increase then the last equality
yields that h(1/2) = v.

So the functional equation (3) can be rewrit-
ten as a pair of commutative diagrams

0;1/2) 2225 oy 1), [1/25 1] 2222 0; 1),
L ] |
[0; 0] — [0; 1]; [v; 1] = 10; 1]

These diagrams together are equivalent to the
functional equations system (4).
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1.2 The uniqueness of the solution of
linear functional equations system

Denote with z* = % the positive fixed point
of the mapping f i.e. the solution of the equation
r=—2x+2.

1

2—v

v
2—

Lemma 1. h(z*) = and h (%) = -

Proof. Substitute x* into the equation (4b) and
get

1—h(x*)
h(z*) = —— )
(z%) 1—v
whence 1
h(z*) = .
If substitute # = %~ into the equation (4b)
then get
¥ v
h|— ) =vh(z") =
< 2 ) vhi@’) = 5=
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Notation 1. Call the value of the mapping h at
the point x to be uniquely defined if some value
h(zx) at this point is a corollary of the system of
functional equations (4). For example the map-
ping h is uniquely defined at points 0; z* and %

Lemma 2. If the mapping h is uniquely defined
at point T then it is uniquely defined at each point
of the integer trajectory of this point.

Proof. Let x is an arbitrary point such that h is
uniquely defined at it.

We sill show that in this case the mapping h
is uniquely defined at the point f(z). Really if
T < % then the substitution of the value z = =
into the equation (4a) gives that h(2Z) = 1h(2)

which means that h(fZ) is uniquely defined.

Let =, be some pre image of the point z. In
this case the fact that h is uniquely defined at =
can be proved in the same way or with the sub-
stituting © = 27, into the equation (4a) or with
into the equation (4b).

2—Ty

5 O]

substituting x =

6)

Figure 2:

Lemma 3. The union of all integer trajectories
of the point x* is dense in the set [0; 1] and the
mapping h is uniquely defined at each point of this
UNLON.

Let us give some note before the proving the
lemma. The pre image of the point z € [0; 1]
under the mapping f looks as follows with given
binary code of x =0, a3 a9, .. ..

Remark 1. If the binary code of the number
x € [0; 1] looks as follows

r=0 a1as, ...,

then the binary code of the pre image = under
the action of f (i.e. the binary code of such point
that the equality f(z~) = x holds) has one of the

43



Bicnur Kuiscvko20 HaUuionaAbH020 YHIGEPCUMEMY
imens Tapaca Illeswenxa
Cepia: $i3uro-mamemamusHi HayKy

following forms

- 1 0,001as...ap...
O,1laq1ag...ay ...

Lemma 3 yields from the more general lemma.

Lemma 4. For the arbitrary point x € [0; 1] the
union of all its inverse trajectories is dense in
[0; 1].

Proof. This lemma is an immediate corollary from
the note 1. It is enough for proving this lemma to
prove that for every point = € [0; 1] and every set
{aj as ... a,} of binary points there is an integer
trajectory of x such that it has a point with the

first binary digits be equal to 0, ay ...y, ..

This proposition is a trivial corollary of the
inductive reasonings for n > 1 which is a number
of first chosen digits of the binary code of some

pre image. U

Proving of lemma 3. The lemma 1 gives that the
value of the mapping h is uniquely defined at point
x*. The lemma 2 gives that the mapping h is
uniquely defined at each point of each integer tra-
jectory of the point z*.

The density of the union of integer trajectories

of z* is proven at the lemma 4. O

The obtain results can be generalized in the
following theorem.

Theorem 1. The system of functional equa-
tions (4) has the unique continuous solution which
18 increase homeomorphism

2 Solving the functional equations with
analytical methods

Each functional equation of the system (4) can
be solved and correspond solutions can be repre-
sented analytically.

We will introduce the correspond technique
below and will do the calculations with each of ob-
tained solutions for showing the complicatedness
of the solutions of each functional equation after
substituting it into another equation of the system

(4)-
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2.1 Solving of the equation (4a) with
further substituting the solution into

the equation (4b).

The equation (4a) is a linear functional equa-
tion. According to for example [3](p. 408) its so-
lutions looks as

h(@) = &~ %% 0 (log, 2) (5)
where w(z) is a arbitrary periodical 1 function.

If substitute the obtained function into the
equation (4b) then obtain

1 — 21829 (log, x)

(2—2z) 7 19827(log, (2—22)) =

1—vw

Taking into attention the periodicity of w this
equation can be rewritten as

(1—v)(1 )" *%2vw(logy(1 — x)) = (8)
= v(1 — 27 1982v(log, ).

Remark 2. If consider the equation (8) as a func-

tional equation of the whole real axis then it will

appear that the necessary function h is a constant.

The deal of the remark. If denote t = 1 — = then
obtain
(1 — )t~ 182y (log, t) =

= o(1 = (1 —t)" "2 w(logy(1 — 1))

If write x instead of ¢t and take into atten-
tion the equation (8) then we may express (1 —
x) 71982y (logy (1 — ) from each of the equations
and make equal the results after which obtain

v

T (1 — 27 19827(log, x)) =

1-v g vw(logy ),
v

:1—

whence
z7 19829 (logy ) = v.

The obtained condition means that function h is
constant and whence is not invertible. O

The explanation for the remark 2. The equa-
tion (8) is obtained with substituting the solution
of the functional (4a) into the functional equa-
tion (4b).

That is wy the substitution ¢t = 1 —x is in fact
the substitution at the equation (4a).
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Nevertheless the equation (4a) if obtained
from the fact that the diagram

05 1/2] £E22 ;)
05 0] L (o 1]

commutes. But it is defined only for = € [0; 1/2].
As the substitution t = 1 — z for z € [0; 1/2]
means that ¢ € [1/2; 1] then after formal rewrit-
ten of this substitution one obtain the functional
equation for another domain of a function h and
formal expressing of

(1 — @)~ %82 w(logy(1 - z))
each of two obtained equations is incorrect. O

If use the mapping h which was constructed
at the example 1 then numerical methods will let
us to get the mapping w(x) whose graph is given
at the figure 1b) for x € [0; 1].

Remark 3. Make the remark about the way how
the graph of w was obtained.

The deal of the remark. As w is periodic with pe-
riod 1 then it is enough to find its values at arbi-
trary interval of the length 1.

If one consider all the values of z € [1/2; 1]
with the use of the step which then we will get
the table of values of the function log, . Now the
equation (5) yields the table of values of the func-
tion w defined at log, z for all x from the former
set of values.

So for every = € [0; 1] with some fixed step for
example % for n is huge enough we will fix log,
and w(logy ) = h(x) - 2'°92Y whence obtain the
dense set of points of the graph of the function w
on the interval [—1; 0]. O

The function h which is the solution of the
system of functional equations (4) is “complicated”
yield from the fact that h is not differentiable on
any subinterval of [0; 1]. The form of the equa-
tion (5) means that complicatedness of h should
come from the complicatedness of w because the
multiplier z~1°%2? is differentiable at any point.

In the same time we will formulate the list os
properties of h of the form (5).

Lemma 5. If the invertible interval [0; 1] mapping
h is of the form (5) then the following hold.

2014, 4

Bulletin of Taras Shevchenko
National University of Kyiv
Series: Physics & Mathematics

1. The mapping h increase;

2. For any n € N the equality h(%n)
hold.

More then this, for all integer t the equality
w(t) =1 holds.

I
<

Proof. Prove at first that function w is bounded.
It is so because of its periodicity it is wholly de-
termined with values of w(log, ) for z € [1/2; 1].
Nevertheless for such values of = the function h
is bounded and the function 279827 strictly in-
crease. This means that w(logy ) is bounded for
all z € [0; 1].

If substitute = 0 into the equality (5)
then obtain the product of zero times a value of
bounded function which means that h(0) = 0.
This corollary together with the fact of being in-
vertible means that h increase from 0 to 1 for all
x € [0; 1].

The condition h(l) = 1 yields that after
substitution = = 1 into the equality (5) obtain
1 = w(logy x). The periodicity of w with period 1
means that for every ¢ € Z the equality w(t) = 1
holds.

Plugging = = % into the equality (5) obtain

1
h <2n> =0v"w(logy,27") = v".
O

Consider the examples of “simple” mappings
w but such that function A which is determined
with (5) is invertible and consider the mapping
fv which is determined with the commutative di-
agram

0: 1] —— [0;1]
;,i lh 9)
0:1] — [0, 1],

Lemma 6. If for invertible mapping h of the
form (5) the diagram (9) is commutative then for
x € [0; v] the equality

folz) ==

v

holds.

Proof. The condition of that h is invertible yields
that f, is determined with h. More exactly for
every x € [0; 1] the equality f, = h(f(h~!(z)))
holds. But by lemma 5 for = € [0; v] the inclusion
h~Y(x) € [0; 1/2] means that f,(z) = h(2h~1(x)).
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The uniqueness of f, and the fact that f,(z) =
% satisfies the functional equation above obtain
the proposition of lemma. O

The simplest condition is that when w is pe-
riodical is that when it is constant.

The equality h(1) = 1 yields that if w is con-
stant then w(z) = 1.

Example 2. Consider the graph of the mapping
fv which is determined with the commutative dia-
gram (9) for the mapping h of the form (5) if w
s a constant function.

The deal of the example. If w(x) = 1 then for ev-
ery © € [0; 1] whence h(z) = x71°%2%. Then by
lemma 6 (also it can be shown with the direct cal-
culations) for x € [0; v] the equality f,(z) =
holds.

For such function w the equality h~!(x) =
2719802 holds whence for = € [v; 1] obtain

~ —log, 2
fv(ar):(2—2x71°g2”> e

The graph of the mapping f, for v = 3/4 is given
at figure 2a). O

Example 3. Find the graph of the mapping ﬁ,
which is defined with the commutative diagram (9)
for the mapping h of the form (5) if w is contin-
wous function whose graph consists of two linear
branches on the interval [1/2; 1].

The deal of the example. Plug = = 3/4 into the

commutative diagram (9) and get

!

34 —L . 1y
h(3/4) —T s p = h(1/2).

Define h(3/4) such that this number be the
biggest pre image of v under the acting of f,. In
this case the values of f, and f, will coincide on
this bigger pre image of v under the acting of f,.

In another words

()= () () e

For v = 2 obtain w(0,584) ~ 0,915.
Define w on the interval [0; 1] as follows. w(z)
should be piecewise linear whose graph consists of
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two lines and has the fracture point with coordi-

nates
3 3 logy v
1 % (? - |- .
(og24,@) v+ (§) )

The graph of mapping fv for such w for v =
3/4 is given at 2b).

On this figure we also mark the point of in-
tersection of f with the line y = x because the
construction gives that in this case mappings f,
andf coincide. O

Examples 2 and 3 can be generalized as fol-
lows.

Consider the iteration approximations wy, for
the function w and use them for iteration approx-
imations En of the function h.

For the arbitrary approximation of i on the
interval x € [%, 1} we can obtain the approxima-
tion of w on the interval [—1; 0] with taking into
attention the formula (5). As w is periodical with
period 1 then we obtain the approximation of h
on the whole [0; 1].

With using of constructed h, find the values
of w on the set A4,, N [%, 1] .

Denote with wy(x) the mapping whose values
are defined with the values of h,, at points of the
set {logyx, z € A, N [1; 1]} such that wy(z) is
linear at all points except the set A, N B, 1] and
is periodical with period 1.

So, the mapping hy, looks as

hy(x) = o log2 Ywy, (logs ), (10)

and should be considered as iteration approxima-
tion of h.

If the constructed hy, appear to be invertible
then there exists the unique mapping f,, such that
the diagram

AL

o l Jhn

B f"L B
commutes. This mapping j~’n can be defined with
the formula

(11)

Fu = B (f(h)).

For example with the use of notations in-
troduced above the mapping f, which was con-
structed at the example 3 is the mapping f2 and
correspond approximation of h is the mapping ha.
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_ Nevertheless it may appear that the mapping
hy, will not be monotone and so it will not exist
a mapping f,, which make the diagram (11) com-
mutative.

Example 4. Consider the case when the mapping
hs(x) which in fact is dependent on v is non mono-
tone for some v.

The deal of the example. Give the graphs of map-
pings hg(z) for v = 0,01, v = 0,025, v = 0,1 and
v =10,2 on the figure 2c).

As a comment for the given graphs note that
each of them satisfy the functional equation (4a)

h(2z) = % W),

i.e. its form on the each of intervals [2,9%, 2%] is
its form on the interval [%, 1] but being squeezed
v times.

The mapping hs(z) which is calculated for
v = 1 is given with the formula hs(z) = .

Whence we see that with decreasing of v from
v = % there exist some “critical value” at which
the graph of %3(37) becomes to be monotone non
monotone. O

Notation 2. Denote with iALn(t) the function such
that the equality

R (logy ) = hn(2)

holds.

Use numbers oy, = oy, to construct the num-
bers ay, = logs o

Denote with t, = ti.,, the extremum of the
mapping hy, on the interval (ag; ag+1). The con-
struction lets to prove that this extremum if unique
and the proving is quiet simple.

The condition for h, to be monotone is equiv-
alent to that for every k the inclusion

tr € R\[ak; ags1] = R\[logy ay; logy ag+1] (12)
holds.

__ Taking into attention the formula (10) rewrite
hn(t) as

ha(t) = 27108200, (1),

Taking into attention the function y = log, x ob-
tain that being monotone of h, is equivalent of
being monotone of h,.
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The equality h,(ax) = Bk yields the following
equality for the function w,

wn(&k) — ﬁk . 2c~yk log, v

Denote with Bk = G - 20 logy v — ﬂkv&k‘.
Let wy, be of the form w,(t) = ai -t + by on
the interval (ag; dg41). Then

. BkJrl_gk
p = LRl T PR

Brk+1 — Br+10k
Q1 — Qg

by = = =
Q1 — O

Find the extremum of the curve which is de-
fined with the equation which determines the map-
ping h,(t) on the interval (ag; ax+1). So, we get

B (t) = 27119827 (g, — logy vIn2 - (agt + by))
whence extremum of the mapping En can be found
with the formula

_ag —biloggvln2 1 br.

tp =

(13)

aplogovln2  Inv  ay

The previous calculations give that

bk BrQhy1 — Brraok
o Bre+1 — B

Coming back to previous calculations obtain
that

b Brv'829% logy a iy — Brr1v'982 %%+ log, ay,

ay @H_lvlogQ k1 — B plogs ak
As a(k; n) = & and A, = {a(k; n — 1)} ob-

k

tain that ay = 535 whence

log, o, =logy k —n+ 1.
So,

b n—14 Brv'°82k logy (k + 1) B
ay Byrviog2(b+1) — gy ylogs k

ﬁk+1vlog2(k+1) logy k
5k+1vlog2(1€+1) _ ﬂkvlogg k-

The example 4 let to come to a natural as-
sumption that for v — 0 the mapping h, will
be non invertible also for huge values of n. With
the use of formula (13) we can prove the following
lemma.

Lemma 7. For any n € N there exists vg € (0; 1)

such that for every v € (0; vy) the mapping hy ()

. . n—1_
is monotone on the interval [%7,11, 1},
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Proof. Let us find evident formulas for 8(n; 271 —
1). We know about this point that

{ £ (B(n; 271 = 1)) = 0;
fi B 27 = 1) = 1.

Find the tangent of the mapping f7~! on the
last interval where it is monotone. This tangent
equals U%l . Un%? which means that

Bln; 2t =) =14+0""2 (v—1).

With the use of notions which were intro-
duced during finding of ¢, defined with (13) we
get k=2""1—1 By =14+0"2-(v—1), Brg1 = 1,
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Note that inequality ¢ < 0 holds because for
v € (0; 1) there are inequalities Inv < 0 and
logy(1 — 217™) < 0. In this case the denomina-
tor of the fraction is positive.

Also for fixed n and v — 0 we have that
V1982 % 5 50 whence t, — 0.

The obtained value of limit proves lemma. [

With the use of formula (13) we can study the
example 4 more attentively if consider n = 3 and

a, = 1 — 2n—1,1, agr1 = 1. So, logyapy1 = 0 study the behavior of numbers ¢ and ¢3 depen-
whence dently on v.
a) b)
Figure 3:
Example 5. Consider the function ta(v) for hold.

n=3. We will which un succeed attempt of cal-
culation of the limit lim1 to(v). We will show that

this limat exists and equals 1 in the time when nu-
merical methods look like the limit does not exist.

The deal of the example. For n = 3 we have a par-
tition of the interval [%, 1] to 2 intervals with 3
points ay = %, a3 = % and ay = 1. Correspond-
ingly B2 = v, 33 = max f, }(v) = 1 —v(1 —v) and
Bs=1.
Then
1 v? — v?logy 3
(v2 — v+ 1)vlog23 — ¢2°

tg = —
7 Tnv

For the function Eg being continuous on the
interval int is necessary and sufficient the inclu-
sion

to € R\[—1; logy 3 — 2] ~ R\[-1; —0,415]

The numerical analysis of the obtained func-
tion t2(x) lets make a conclusion that it decrease
for x € [0; 0,5] and has an asymptote for x = 0,5
lim t9 = —o0 and iiir%)tg = —1.

r—0,5—

i.e.

If try plot the graph of t2(z) for = € [0,5; 1]
then numerical methods for x € [0,99999; 1] show
that it becomes to be non monotone. So, for
t € 10,6; 0,999999] graph of to(x) is given at fig-
ure 4a).

Nevertheless the graph of ty(z) for z € M =
[0,99999999; 0,999999995] is given at the fig-
ure 4b). Strictly said, the given sketch is not ex-
actly the graph of to(z) but the set of its points
whose x-coordinated are uniformly distributed on

48



Bicnur Kuiscvko20 HaUuionaAbH020 YHIGEPCUMEMY
imens Tapaca Illeswenxa
Cepia: $i3uro-mamemamusHi HayKy

M and are all these points are connected with
lines.

Remind that the obvious continuality of the
mapping t2(v) yields that the mapping t2(v) has
on the set M such points that correspond mapping
hs is not continuous on the interval [ag; as].

Further experiments show that for each of in-
tervals of the form [1 — WIH; 1-—- 10m] the map-
ping t3(v) has such point that correspond map-
ping hs is not continuous on correspond point of
[O@; 043}.

In the same time these experiments do not
represent the mathematical reality of the function
under consideration, because the limit

v2(1 — logy 3) )

(v2 — v+ 1)vloge3 — 42

: < 1

lim ( — +

v—1 \Inv
is a limit of difference of two expressions such that
each of them tends to +o0o so trying to calculate
this limit directly with calculating of each term
may accumulate a huge calculation mistake. Let
us prove properly that the limit which was re-

minded above exists.
As

1 0
limtg(v)ﬁ-l:*ﬁ-ﬁ:

V—00 0

0

0’

make the sum a proper fraction to make possible
to differentiate is with the L’Hopital’s rule. So,

to+1=
(v2 — v+ 1823 — 2 4 Inw(v? —v?log,y 3)
Inv((v? — v+ 1)vlos23 — ¢2) '
Denote with

s(v) = (V2 —v+1)v'%823 — % 4 Inv(v? —v? logy 3)
and
p(v) = Inv((v? — v+ 1)v'°823 —4?),
Thens’ ( ) = (2v — 1)v'°823 4 log, 3(v? — v +
+1)v'823=1 294 (v—vlog, 3)+2(v—vlogy 3) Inwv,

whence §'(1) = 0. Also p'(v) = (v — 1)v'°823 +
vlo823=1 gy 4 ((20 — 1)v'°823 + log, 3(v? — v +
1)v'°823=1 — 29)) Inwv, whence p/(1) = 0.

Find second derivatives s”(v) and p”(v) to
get s"(1) = 3 + (logy 3)2 — 2log, 3 ~ 2,3422 and
p"(1) =2logy 3 — 2 =~ 1,1699. That is why

S//(l)

t2(7)> - p”(l)

— 1~ 1,0020.
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Example 6. Consider the function t3(v) for
n=3. We will show that function t3(v) makes
the correspond function hs(x) non monotone for
all v < vy where vg = 0,18867 + 0,00001. This
result is consistent with the one of the example 4.

The deal of the ezample. Study the question of
being monotone of the mapping hz(x) on the in-
terval [ag; ay] for n = 3. In this case

1 v?logy 3 — 202
(v2 — v + 1)vloe23

ty = —
57 Tno v2 —

For the violation of being monotone of 7L3 it is

necessary the inclusion
ts € [logy 3 — 2; 0] = [0, 415; 0].

The graph of t3(v) for v € [0; 0,21] is given at
the figure 4c).

As it is shown at the example 4 there is a point
near vg =~ 0,2 such that hs is non monotone near
it for all v < vg. Our calculations show that this
value is about

vo € [0, 18868; 0, 18869],

i.e.

v ~ 0,18867 + 0,00001.

As about t3(v) on the interval [0, 2; 0, 5], it has
an asymptote at the point 0,5 and increase at the
whole interval [0,2; 0,5] to positive infinity. O

We will give now the similar investigation for
n = 4. For every v and for every interval [%; 2],
[5; 2], [3; I] and [£; 1] find the value ¢ with the
use of formula (13).

For different values v and every k € [4; 7]
find ¢x(v) and this will give us 4 points. Just for
convenience concatenate these points to polygons
i.e. obtain a polygon for each of v. Also add the
following two curves (and put with the bold) to
the picture.
bers {ay} and another connects numbers {41}
for the same k € [4; 7] The previous explanations
give that the mapping h n:v Will be monotone if and
only if each of obtained 4 points will be between
these two bold curves, i.e. under then bottom and
above then the lower of them.

Let one of them to connects num-
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a) b) c)
Figure 4:

The figure 3a contains these curves for values
vy = 0,15, v2 = 0,1, v3 = 0,07, v4 = 0,03, v5 =
0,17, v¢ = 0,01, v; = 0,001 and vg = 0,00001.
The top curves on the picture correspond to the
lower values of v.

As we can see and this corresponds to lemma 7
if the value of v is small enough then curves be-
come close to the horizontal line y = 1 and the last
point of each of these curves (that one which corre-
sponds to the interval [a7; 1]) tends to 1 for v — 0
and so belongs to the interval (a7; ag) = (ar; 0).
This means that h,, is non monotone on the inter-
val (a7; ag) = (ar; 1).

The figure 3b contains the analogues calcula-
tions for n = 5 and values v; = 0,125, v9 = 0,1,
vy = 0,15, vy = 0,05, v5 = 0,02, vg = 0,01,
vy = 0,001 and vg = 0,000000001.

2.2 Solving the equation (4b) with
further substitution o the
equation (4a).

The solution of the functional equation (4b)
looks as
1
C2—w

h(z)

+ X

—logy (1-v)
:1: - ’

2
3

wt (logy |t —2|) x> %
W™ (logQ ‘x — %‘) T < %

where functions wt and w™ satisfy the equation

w(t+1)=—wt(t) (7)

wht+1)=—-w (t).

50

In the same way like in the previous section
we can use the found h for getting the function w.

The equation (7) yields that function w™ and
w™ are periodical with the period 2.

Consider the function h for

ve |5 5]

When the variable  become equal to all the val-
ues of the mentioned interval then he values of
log, (:L' — %) will become equal to all values of the
interval [—4; —2] whose length is 2. This will make
possible to find the function w™ on the interval of

its periodicity.

35 11
48 12

Lemma 8. If for the invertible mapping h of the
form (6) the diagram (9) is commutative then for
x € [v; 1] the equation

_l—ac

fol@)

1—w
holds.

Proof. The prove of this lemma is analogous to the
prove of the lemma 6. O

Example 7. Obtain the graph of the mapping ﬁ
which is defined with the commutative diagram (9)
for the mapping h of the form (6) if w is the func-
tion of the simplest form.
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The deal of the example. The equation (7) makes
impossible the case when the function w is con-
stant and does not equal to 0. So the simplest
case for w is that when w = wg for x < 0 and
w = —wyp for z > 0.
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Then the equality h(0) = 0 gives that

( >10g2(1—v)

In this case the graph of the mapping fv(x)
h(f(h~1(x))) which for v 3 is given at fig-
ure ba). O

-1
2—w

2

3

wo =

b)

Figure 5:

Example 8. Obtain the graph of the mapping fv
which is defined with the commutative diagram (9)
for the mapping h of the form (6) if w is a func-
tion such that w* and w™ are the simplest but non
constant.

The deal of the example. Consider the functions
wt and w™ to be continuous.
The equality h(0) = 0 gives that

0 1 N <2>—10g2(1—’0) = <10g2 2) ’
2—wv 3 3
i.e.
1 2 logy (1—v)

As the left pre image of the point % for the
mapping f goes to
h ( ) =02,

under the mapping h, i.e.

—logy(1-v)
)l

1

4

1
2—wv

kl
12

5
2

1 _
089 12

v

).
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whence the periodicity of w™ with period 2 gives

that
logy (1—v)
-

1
2—wv

S
12

112—

w™ <log 5)
-
3

Construct the function w™ as follows. The val-
ues of w™ at points log, % ~ 0,737 and 2+log 2% ~
2,737 are equal and are defines with the equality
(15) (according to (7) function w™ is periodical
with period 2).

The value of w™ at point 3 — logy 3 ~ 1,415
is defined with (14) (because of the periodicity of
w™ the equality (14) can really be used for finding
w™ at this point).

In this case we make the function w™ to be
linear at each of intervals [log, 2; 3 — log, 3] and
[3—1log, 3; 2+1og 2%] and is periodical with period
2.

We will construct the function w®™ with us-
ing the function w™ and taking into attention the
equation (7). The graph of the mapping f, which
was constructed in such a way for v = 3/4 is given
at the figure 5b).

If compare the graph from the previous exam-
ple with that one which was constructed yet then
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see the plot as at figure 5¢) (the dots are used for
the first graph). O

Plug the solution (6) of the functional equa-
tion (4b) into the functional equation (4a) and ob-
tain

’23: ’ logy (1—v)
wt (logQ ‘230 — %}) x> %;
X v
w” (log2 ‘230 — %}) T < %
=L+ | 2 —logy(1-v)
w* (l0g, [z —3]) =>3;
>< .

o (logs o —3)) @ <3

Here the unknown functions w' and w™ are con-
nected with the equation (7). The complicated-
ness of this equation in comparison with linear
functional equation is obvious. The question on
the invertibility of the mappings h which are ob-
tained in such a way is so complicated as in the
previous case.

3 The final remarks

We have shown in the work that methods of
solving the linear functional equations appear to
be practically non useful in the case of the sim-
plest generalization of functional linear equations

CliMcOoK BUKOPUCTAHUX J2KePeJl
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i.e. for the system of two linear functional equa-
tions.

In the same time the problems which were
stated in the work may be generalized to the case
when f, is more complicated the that which we
consider, for example has home the one point when
it is not differentiable.

In spite of the experimental material which is
given in the work we were failed to find the reason
why the mentioned sequence h,, sometimes appear
to be non monotone. So, we can no formulate the
necessary an sufficient conditions for this sequence
to be counsisted of monotone functions.

Our calculations show that in the case which
is considered in more details during the work the
mapping ﬁn becomes close to be constantly equal
1 for v — 0. This means that for all n the mapping
h,, becomes non monotone when v — 0. Never-
theless we were failed to find the exact prove that
these h, really tend to be constant.

In any way we have found the list of constants
like

vp ~ 0,18867 £ 0,00001

from the example 6 which characterize the topo-
logical conjugation of f and each of the mappings
fv- We have calculated these constants only nu-
merically and have failed to catch their deep mean-
ing.
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