
Вісник Київського національного університету
імені Тараса Шевченка
Серія фізико-математичні науки

2015, 2 Bulletin of Taras Shevchenko
National University of Kyiv

Series Physics & Mathematics

УДК 004.655

Буй Д.Б.1 д.-р. фіз.-мат. н., професор,
Компан С.В.2, Поляков С.А.3 канд. фіз.-мат. н.,
Карам Д. 4 аспірант

Алгоритми CLOS та LOOPS лінеаризації
класів в мовах програмування: формальна

побудова

Київський національний університет імені Тараса
Шевченка, 03680, м. Київ, пр-т. Глушкова 4д

е-mail: 1 buy@unicyb.kiev.ua
е-mail: 2 robin_2005@mail.ru
е-mail: 3 sergey.a.polyakov@gmail.com
е-mail: 4 karamjasim1978@yahoo.com

D.B. Buy1 professor, S.V. Kompan2,
S.A. Polyakov3 PhD, J. Karam4 postgraduate

Linearization algorithms CLOS and LOOPS

of the classes in programming languages:
the formal definitions

1Taras Shevchenko National University of Kyiv,
03680, Kyiv, Glushkova st., 4d

е-mail: 1 buy@unicyb.kiev.ua
е-mail: 2 robin_2005@mail.ru
е-mail: 3 sergey.a.polyakov@gmail.com
е-mail: 4 karamjasim1978@yahoo.com

В статті досліджуються методи вирішення конфліктів імен в мовах програмування CLOS та

LOOPS, які дозволяють використовувати множинне успадкування. Ці методи засновані на
лінеаризації класів, яка полягає в трансформації ієрархії класів з множинним успадкуванням в ієрархію
одиночного успадкування, при якому проблема вибору відповідного атрибута вирішується тривіально.
Вводиться визначення ієрархії класів.

Ключові слова: множинне успадкування, CLOS, LOOPS, алгоритми лінеаризації

The methods of conflict resolution of names in programming languages CLOS and LOOPS that allow

multiple inheritance were researched. Those methods are based on the linearization of the classes. The idea of
linearization is to reduce multiple inheritance to single, in which the problem of selecting a suitable attribute
is solved trivially. The definition of a hierarchy of classes is introduced. The property of monotonicity was
clarified. The idea of monotonicity is that all the attributes that the class inherits either identified in its direct
ancestors, or inherited them. Methods of conflict resolution used in programming languages CLOS and
LOOPS were formally defined.

Key Words: Multiple objects inheritance, CLOS, LOOPS, linearization algorithms.

Статтю представив д.ф.-м.н., професор Анісімов А.В.

Introduction. In object-oriented programming

languages that implement multiple inheritance, the
situation when the same method or field is found in
multiple parent classes can take place. In this case,
there is the problem of choosing the "right" method or
field from several possible. Since the respective
algorithms perform equally for both fields and
methods of classes, we will in further call fields and
methods of class as attributes. If the class 푿 contains
an attribute 풂풕풓, then we say that the attribute 풂풕풓 is
defined in class 푿 (풂풕풓 ∈ 푿).

There are two basic approaches in the resolution
of the conflict of names [1]. In the first case, the
conflict is resolved trivially by explicit the indication
of the class in which the desired attribute exists. This
is, for example, in C ++. In the second case, a special
algorithm is used to select the "most appropriate"
attribute. This approach is used in languages such as

CLOS, LOOPS, Python, Perl, Dylan and others. The
basic idea is that the parent classes are linearly
ordered as the list. Then the method takes the first
class in the list in which the attribute is defined.

We can say that the multiple inheritance by means
of such ordering, boils down to the single inheritance,
in which the problem of name conflict is solved by
the fact that each class defines its own scope of
visibility, which overload the scope of visibility of its
the parent classes.

The main advantage of the second approach is that
the name conflict can be resolved dynamically, i.e.
during the program execution. Considered technique
is called classes’ linearization. There are several
algorithms to resolve a name conflict by means of
linearization. We will consider algorithms used in
programming languages CLOS and LOOPS.

© Д.Б. Буй, С.В. Компан,
С.В. Поляков, Д. Карам 2015 99

Вісник Київського національного університету
імені Тараса Шевченка
Серія фізико-математичні науки

2015, 2 Bulletin of Taras Shevchenko
National University of Kyiv

Series Physics & Mathematics

Although the algorithms have been created in the
90-th years of the last century, their formal properties
are not well understood. That does not allow to talk
about creating safe programs in programming
languages that use these algorithms for classes’
linearization. In addition, when formal definition of
the semantics of programs is given, different
approaches are usually consider the semantics of
basic programming constructions like branching,
looping, sequencing, but the semantics of classes and
objects are omitted. The obtained results form the
basis for a formal model that describes the classes,
inheritance and relationships between classes.

The purpose of this paper is to give the formal
definitions of these linearization algorithms that make
possible the second step – proofing the formal
correctness of these algorithms. Other algorithms for
linearization examined in [4, 5, 6].

Definitions. Let’s introduce the needed definitions
[1], [2]. Class 푋, which is directly inherited from
class 푌, will be called direct descendant of the class
푌, and 푌, respectively, the direct ancestor (parent) of
푋 (see. Fig. 1).

Fig. 1. Direct inheritance: Class Y is the direct
ancestor (parent) of the class X; the class X is the

direct descendant of the class Y

Such inheritance will be written in the form of a
pair (푋, 푌), i.e. the pair (a descendant, an ancestor). A
class can have a few direct ancestors, for example, a
pair (푋, (푌, 푍)) indicates that the class 푋 inherits from
classes 푌 and 푍, wherein the set of ancestors is
ordered. Ordered family of items will be called
tuples. Graphically, described multiple inheritance is
shown in Fig. 2.

Fig. 2. Multiple inheritance: class X is a direct
descendant of classes Y, Z, and direct ancestors are

ordered from left to right

In turn classes 푌 and 푍 may be inherited from
other classes, etc. Thus, we obtain a class hierarchy. It
is said that two pairs of direct inheritances
(푋 , (푋 , … , 푋)) and (푌 ,(푌 , … , 푌)) are linked if
there exists 푖 = 1. . 푛, that 푋 = 푌 . If 푋 = 푋 , the
inheritance is called the self-linked. Graphically, the
linked pairs of direct inheritances are shown in Fig. 3,
self-linked inheritance is shown in Fig. 4.

Fig. 3. Linked pairs of direct inheritances

Fig. 4. Self-linked direct inheritance

Sequence of direct inheritances 푟 , 푟 , … , 푟 called
a cycle when each i-푡ℎ element is linked with the
(i+1)-th for 푖 = 1. . 푘 − 1 and the k-th element is
linked with the first.

Let us denote by 휋 projection by the first
component of the set of ordered pairs, and by 휋
projection by the second component.

Let us denote by Δ the set of the classes, and by
Δ the set of all classes of tuples Δ. Class hierarchy
is called a binary relation 퐻 ⊆ (Δ × Δ), such that:
 퐻 is functionally, i.e. for each 푋 ∈ 휋 (퐻) exists

exactly one tuple (푋 , … , 푋)휖휋 (퐻) that sets its
direct ancestors;

 all the elements of the 퐻 are not self-linked;
 elements of the 퐻 does not form a cycles;
 elements from all tuples of projection 휋 (퐻) are

not repeated.
The class hierarchy defines an acyclic direct

simple graph whose vertices are the classes and the
edges are defined as follows. For each direct
inheritance (푋 , (푋 , … , 푋)) of the class hierarchy

푌

푋

푌

푋

푍

푋

푋 푋 = 푌 푋

푌 푌 푌

푋

푋 푋 푋 푋

100

Вісник Київського національного університету
імені Тараса Шевченка
Серія фізико-математичні науки

2015, 2 Bulletin of Taras Shevchenko
National University of Kyiv

Series Physics & Mathematics

the set of edges from 푋 will be defined as the set of
pairs {(푋 , 푋), (푋 , 푋), … , (푋 , 푋)}. Union of the
all of these sets will be the set of edges of the graph.
Such graphs will be called the direct inheritance
graphs. Each class hierarchy corresponds to a single
graph of direct inheritance. But each direct
inheritance graph corresponds, in general, several
hierarchies of classes. They differ by the order of the
elements in a tuple, since during the transition from a
pair (푋 , (푋 , … , 푋)) to the set of pairs
{(푋 , 푋), (푋 , 푋), … , (푋 , 푋)} information about
ordering of the classes 푋 , 푋 , … , 푋 lost.

The set of all edges of direct inheritance defines
the anti-reflective and antisymmetric binary relation
on classes. Its transitive closure is a strict partial order
relation, denoted by < .

The relation 푋 < 푌 means that in the graph of
direct inheritance there is a path from the class 푋 to
the class 푌. In this case we say that the class 푌 is an
ancestor of class 푋, and class 푋, respectively, a
descendant of the class 푌.

A linearization can be considered as a topological
sorting (see. eg., [3], section 2.2.3) on a graph of
direct inheritance or, another words, it specify linear
order < on the set of classes that would include a
partial order < .

Such a topological sort is called linear extension
of the graph of direct inheritance. Then we call
linearization a unary function 퐿, displaying a graph of
direct inheritance of 퐻 in its linear extension 퐿(퐻).
Thus, topological sorting is an example of a
linearization.

The idea of linearization is, in fact, the reduction a
multiple inheritance to a single inheritance, in which
the problem of choosing the most suitable attribute
from several ones is solved trivially.

For the class 푌 denote via 퐻 the subgraph of
direct inheritance graph of the hierarchy 퐻, consisting
of class 푌 and all of its ancestors (not only direct).

Under the method of conflict resolution we mean
the mapping 푀, assigning to the class 푋, direct
inheritance graph of the hierarchy 퐻, and attribute
푎푡푟 the class 푌 from subgraph 퐻 , such that attribute
푎푡푟 is defined in this class: 푋, 퐻, 푎푡푟 → 푌, attribute
푎푡푟 is defined in class 푌. In particular, if the attribute
푎푡푟 is defined in the class 푋, then 푀(푋, 퐻, 푎푡푟) = 푋.

The method of conflict resolution is not bound
only to linearization of the direct inheritance graph
and any other mapping satisfying definition can be
used.

Adequate methods of conflict resolution must
satisfy a number of natural properties, which
essentially is not to produce results contrary to
intuition.

The main feature is the so-called monotonicity.
The idea is that all the attributes that a class inherits
are defined in its direct ancestors, or inherited them.
I.e. situation is impossible when a class inherits an
attribute, but none of his direct ancestors; this
attribute does not inherit or not defined. Monotonicity
means that the class can be considered as a
specialization (specification) of his direct ancestors,
i.e. it has all the attributes that his direct ancestors
have, plus the additional attributes that are unique to
this class.

Methods of conflict resolution M is monotone if
for any inheritance graph 퐻 = (퐶, 퐼), any class 푋휖퐶
and any attribute 푎푡푟 ∈ 푋 either 푀(푋, 퐻, 푎푡푟) = 푋 or
푀(푋, 퐻, 푎푡푟) = 푌, 푌 ≠ 푋, and there exists at least one
direct ancestor 푍 of class 푋, such that 푎푡푟 ∈
푍 & 푀(푍, 퐻, 푎푡푟) = 푌. In particular, it can be a
situation that 푌 = 푍.

We proceed to the definition of the monotonicity
feature for linearization. Linearization 퐿 is monotone
if for any inheritance graph 퐻 = (퐶, 퐼), and for any
classes 푋, 푌 ∈ 퐶 such that 푋 is an ancestor of the 푌,
퐿(퐻) included in the 퐿(퐻).

Let’s introduce the relation 푝푟푒푑 of the
precedence of classes on a hierarchy of classes 퐻,
where 퐶 is a set of classes. Two classes 푋 and 푋 are
in relation of precedence if there is a direct
inheritance (푌 , (푌 , … , 푌)) ∈ 퐻, that 푋 = 푌 and
푋 = 푌 and 푖 < 푗, 푖, 푗 = 1. . 푛.

Relation of the precedence can be obtained as the
union of all the relations of local linear orders,
obtained by ordering direct ancestor classes.

The relation 푝푟푒푑 must be acyclic for correct
algorithms work. Then for each class you can specify
an ordered set of his previous classes.
Linearization algorithms. Let's go directly to the
linearization algorithm.

Algorithm of the linearization LOOPS.
For the hierarchy of the classes 퐻 build a direct

inheritance graph 퐻 = (퐶, 퐼) and define relation of
the precedence 푝푟푒푑 . Algorithm is defined in the
triple (퐶, 퐼, 푝푟푒푑), called the graph representation of
the direct inheritance and denoted 푅(퐻) . It builds a
linearization of the direct inheritance graph using the
precedence relation to resolve the ambiguity. We
denote this the linearization as 퐿(푅(퐻)).

For class 푋 and representation graph of the
inheritance 푅(퐻) algorithm works as follows.

1) As an initial linearization it takes a sequence
consisting of single element 퐿 = [푋].

2) We examine 퐿 from right to left and look for
the first class 푋, which has at least one direct
ancestor such that all its descendants already have
been chosen, and it is not already chosen. If 푋 has

101

Вісник Київського національного університету
імені Тараса Шевченка
Серія фізико-математичні науки

2015, 2 Bulletin of Taras Shevchenko
National University of Kyiv

Series Physics & Mathematics

few such direct ancestors, then take the first with
respect to the relation 푝푟푒푑 . Add it to the sequence
퐿 .

3) Repeat step 2 until it is possible.
Algorithm CLOS.
1) As an initial linearization it takes a sequence

consisting of a single element 퐿 = [푋].
2) We examine 퐿 from right to left and look for

the first class, in which there is a direct ancestor such
that all its descendants and all previous with respect
to relation 푝푟푒푑 classes have already been chosen,
and it is not already selected. Add it to the sequence
퐿 .

3) Repeat step 2 until it is possible.

Conclusion. The paper clarified multiple

inheritance classes (object-oriented): direct
inheritance, linked couples, and cycles of direct
inheritance, a class hierarchy, the graph of direct
inheritance hierarchy, its transitive closure and
linearization method of conflict resolution and its
monotonicity. In these formal terms we specified
linearization algorithms LOOPS and CLOS. The
formal specification allows the formal proof of the
correctness of these algorithms. It is the purpose of
the subsequent work.

Список використаних джерел

1. Ducournau R. Proposal for a Monotonic

Multiple Inheritance Linearization / R. Ducournau,
M. Habib, M. Huchard and M. L. Mugnier //
OOPSLA'94 Proceedings of the ninth annual
conference on Object-oriented programming systems,
languages, and applications, 1994, P. 164–175.

2. Ducournau R. Monotonic conflict resolution
mechanisms for inheritance / R. Ducournau,
M. Habib, M. Huchard and M. L. Mugnier //
OOPSLA’92 Proceeding conference proceedings on
Object-oriented programming systems, languages,
and applications, 1992, P. 16–24.

3. Knuth D.E. The art of computer programming.

Vol. 1. Fundamental Algorithms / D.E. Knuth. –
Addison-Wesly Publishing, Inc., 1998.

4. Simionato M. The Python 2.3 Method
Resolution Order [Електронний ресурс] /
M. Simionato – Режим доступу до ресурсу:
https://www.python.org/download/releases/2.3/mro/

5. Guido V. R. Method Resolution Order

[Електронний ресурс] / van Rossum Guido. – 2010.
– Режим доступу до ресурсу: http://python-
history.blogspot.com/2010/06/method-resolution-
order.html.

6. Par Gaël Pegliasco Python Tutorial:

Understanding Python MRO Class search path
[Електронний ресурс] / Pegliasco Par Gaël. –
2014. – http://makina-corpus.com/blog/metier/2014/
python-tutorial-understanding-python-mro-class-
search-path

References

1. Ducournau, R., Habib, M., Huchard, M. and
Mugnier, M.L. (1994) Proposal for a Monotonic
Multiple Inheritance Linearization. Proceedings
of the ninth annual conference on Object-oriented
programming systems, languages and
applications, OOPSLA’94, pp. 164–175, 1994.

2. Ducournau, R., Habib, M., Huchard, M. and
Mugnier, M.L. (1992) Monotonic conflict
resolution mechanisms for inheritance. Proceeding
conference proceedings on Object-oriented
programming systems, languages, and
applications, OOPSLA’92, pp. 16–24. 1992.

3. Knuth, D.E. (1998) The art of computer
programming. Vol. 1 Fundamental Algorithms
Addison-Wesly Publishing, Inc., 1998.

4. Michele, Simionato The Python 2.3 Method

Resolution Order” [Електронний ресурс].
Режим доступу до ресурсу:
https://www.python.org/download/releases/2.3/
mro/
5. Guido, van Rossum (2010) Method

Resolution Order [Електронний ресурс].
Режим доступу до ресурсу: http://python-
history.blogspot.com/2010/06/method-resolution-
order.html June

6. Par Gaël, Pegliasco (2014) Python Tutorial:
Understanding Python MRO Class search path
[Електронний ресурс]. Режим доступу до
ресурсу: http://makina-corpus.com/blog/metier/
2014/python-tutorial-understanding-python-mro-
class-search-path

Надійшла до редколегії 16.03.15

102

