Bulletin of Taras Shevchenko
National University of Kyiv
Series Physics & Mathematics

Bicnux Kuiscbkoeo Hayionanvno2o yHisepcumemy
imeni Tapaca Lllesuenka
Cepis ghizuxo-mamemamuuni Hayku

2015, 2

YK 681.3, 004.05

[Manuenko T. B., x.¢.-M.H., 1011 T. V. Panchenko, PhD, docent.

Parallel Programs Correctness Proof
Method Using Simplified State with
Applications

Meton noBeieHHSI KOPEKTHOCTI
napaJjejJbHUX NPOrpaM 3 BAKOPHCTAHHAM
CIIPOLLEHOI0 CTaHy Ta HOI'0 3aCTOCYBAaHHS

Taras Shevchenko National University of Kyiv,
64/13, Volodymyrska Street, City of Kyiv, Ukraine,
01601

e-mail: pantaras@ukr.net

KuiBcpknii HalioOHaNbHUHM YHIBEpCUTET iMeHi
Tapaca Illepuenka, Ykpaina, 01601, micto Kwuis,
ByJ1. Bonmopumupcrka, 64/13

e-mail: pantaras@ukr.net

Jlosedennsa KopekmHoCmi nApanenrvuux npocpam € CKIAOHOW 3a0aueio, OCKIIbKU NOMOKU SUKOHAHHSA
MO2HCYMb 6NAUGAMU OOUH HA THWMUL Yepe3 CHINbHI 3MiHHI b0 Mexauizm nogioomuens. Knacuuui memoou
muny @notida-Xoapa He 3acMOCOBHI Y YbOMY GUNAOK)Y HANPAMY | HeOOXIOHI HOBI HeMPUBIANbLHI NIOX0OU, 5Ki
epaxosyioms ye YCckaaoHenHs. Pospobnenuit memoo 0ns 0oeedenusi Kkopexmuocmi npoepam (01s
BUZHAYUEHO20 CNEYIANbHO20 KAACY NPOSPAM — 4 CaMe Cep8ePHO20 NPOZPAMHO20 3a0e3nedeHts 8 apXimeKkmypi
SMP sx-mo cepsep 6a3 danux abo seb-cepsep) — € npedmemom oanoi cmammi. Hozo npocmoma y eunaoxy
8I0CYMHOCMI TOKANbHUX OGHUX NIONPO2pam i 3aCmocCy8ants 00 KAACUYHOL 3a0adi-npuxiady napaieibHo2o
000a8anHs1 00 CNIIbHOL 3MIHHOI HOOAHO Y POOOMI.

Knrouosi cnosa: kopexkmuicmos npozpam, napaneivii npocpamu, KOMRO3UYIUHO-HOMIHAMUGHT MemOoOu.

The correctness proof for programs with parallelism is complicated problem due to possible inference of
one execution path on another via shared data or messaging mechanics. Classical methods like Floyd-Hoare
cannot be applied in this situation directly and new non-trivial methods are required to cope with such
complexity. Developed method for software correctness proof (for defined custom class of programs —
namely server software for SMP architecture like DB-server or Web-server) is the subject of this article. Its
simplicity in case of local subroutine data absence and application to classical sample task of shared

variable concurrent increment are shown here.

Key Words: software correctness, concurrent programs, composition-nominative methods.

CratTio npencrasus 1.¢.-M.H., mpod. byit JI.b.

Introduction

The methodology for software correctness proof
was developed in [1] and presented there in details.
Using this methodology one can formulate and prove
properties of programs developed in Interleaving
Parallel Composition Language (IPCL) [1]. The
syntax and operational semantics of IPCL presented
ibid. Here we concentrate on simplified method for
program properties (including correctness) proof for
some subclass of all IPCL programs. The notion of
simplified state for this kind of reasoning (introduced
in [1]) as well as clarification on specific IPCL
subclass mentioned above are also discussed here.

© T.B. [Tanuenxo, 2015

IPCL Subclass and Method Description

Following [2], the composition languages
class [3] IPCL and methodology proposed by the
author for programs properties (including
correctness) proof in composition languages IPCL
[2] are well suited for the specification and
verification of the server-side software in client-
server environments.

But it should be noted that in the absence of local
data in programs A, B, ..., C (which are subroutines
of program P), it is advisable to consider the concept
of a Simplified State (here we use the notation and
follow the terms according to [2], in particular, the
program P =A"|B"| ... || C* € SeqlLProgs, where

174

Bicnux Kuiscbkoeo Hayionanvno2o yHisepcumemy
imeni Tapaca Lllesuenka
Cepis ghizuxo-mamemamuuni Hayku

SeqlLProgs is the sequential programs subclass of all
IPCL programs). Simplified state is an aggregated
state of the following form N"™xD, where
PmQ = ||Amarks||*|Bmarks|[* - - - +||Crarks|l, 1-€. the sum of
all tags amounts (Amarkss Bmarkss ---» Crmarks) fOr
programs A, B, ..., C (which are subroutines of P),
where Anarks 1S the set of labels for labeled program
A— i.e. when we labeled every particular atomic
operator (or operation, function call etc.) in the text
notation of program A, ||A|| = card(A) is the power of
the set A, and D contains the global (shared,
common) data for all routines in the form of
nominative data [3], which means a set of pairs
name — value.

First ||Amarks|| COmponents of such a state include
the number of programs that are executing now
operators at appropriate labels of program A in this
state, and the sum of these components in each state
for the program P is equal to n — i.e. the number of
instances (copies) of A program in P (in terms of
program P). The following ||Bmaks|| components
contain the number of programs that are executing
now operators at appropriate labels of B program in
this state, and the sum of these components in each
state for the program P is equal to m (the number of
instances of the program B in P) in terms of P
programs and so on. The last component D contains
global shared data for all routines of P.

Simplified state operates with the number of
routines which are executing now at appropriate
label instead of label identification for each instance
of every individual routine (A, B, ..., C). In fact,
routines are not distinguished from each other
accurate to the label of current execution if they do
not change local data (actually — do not have them at
all), but only operate with shared global data.

One can obtain a simplified state for the state
Se AmarksnXBmarksm>< e ><Cmarksk>< Dx Dnumprocs,
numprocs=n+m-+...+k, in the following way. As sets
Anmarks, Bmarks, -y Crmarks are finite, let
Amars={A1, ..., Aa}, -y Chans={Cy, ..., Cc}. Let
Pri(S) be the i-th component of a tuple S. Then for
any regular state S the corresponding simplified state
will be SS=(a;, ..., aa, ..., €1, ..., C, d), where
a=[l{ 1| Pri(S)=A;, i€Npmq }I= Pgja, Vi€Na, ...,

=i Pri(8)=Cj, ieNemg HI= Pyrc p.

dzprnumprocs+1(s)-

The set of simplified states SStates introduced
accordingly. The same goes with simplified initial
states SStartStates (they all have the structure (n, 0,
o 0, ..y K, 0, ..., 0, d), which means all the routines
are at their appropriate start labels), simplified final
states SStopStates (their structure is (0 ..., 0, n, ..., 0,

VjeN,,

2015, 2

Bulletin of Taras Shevchenko
National University of Kyiv
Series Physics & Mathematics

., 0, k, d), which means all the routines have
stopped execution at their exit (“after-program)
label) and the transition function (one step execution
of P program) over the simplified states
SStep: SStates — SStates. For every particular
possible transition of execution control for each
routine this new transition function SStep decreases
the value of some components of the SStates vector
by 1 (eg. first component) and at the same time
increases the value of some other component by 1
(eg. second component), which means the transfer of
execution control from one label (in this case A;) to
another label (in this case A;) for one of the routines
(in this case A), and also changes the value of the last
components (global data) if the current function is in
subclass Oper of class F. All these objects could be
easily obtained by transferring states into their
simplified states appropriately or by direct
construction.

Sample Correctness Task: Parallel Increment
To Shared Variable. Discussion

To prove the properties of both types (defined
in[1,2]) one could apply the methodology given
in[1,2]. To demonstrate the simplicity of the
method [1,2] and the convenience of simplified state
model usage, let us discuss a sample that — de facto —
(see. [4], [5] and others) become "standard" to check
the "efficiency” of parallel programs and methods
concerning modeling, execution, model checking
and correctness proof. Let the program twice
(separately, independently) increments some shared
(global) variable concurrently. In the IPCL notation
program P will look like x:=x+1 || x:=x+1, where x is
a shared (global) variable and the set F={f,}, where
fi(d)=dV [x+ (x=(d)+1)] (here the semantic
function f; has syntactic form of x:=x+1). It is clear
that every action is atomic (read, add +1, write back
the variable value). The problem is formulated as
follows: to prove that when the initial value of
shared (global) variable x is O, the final value of x
(after the program stops) will be equal to 2.

Without going into details, "pure™ Owicki-Gries
method [4] requires program properties to be
formulated and tested for each operator taking into
account their potential interference and "cross"-
interference effects. Recall that inspections quantity
is quadratic with respect to the program operator
count.

The extended version of the rely-guarantee
Owicki-Gries method modification [5] requires two
additional variables (for such a trivial program!)

175

Bicnux Kuiscbkoeo Hayionanvno2o yHisepcumemy
imeni Tapaca Lllesuenka
Cepis ghizuxo-mamemamuuni Hayku

introduction and formulating of nontrivial (1) rely-
and guarantee- conditions for application of the
method to this task. The proof itself takes more than
one page space [5].

TLA [6] offers (for the very similar task) to build
a model that is not much easier than the first two,
and the formulation of the model and, in fact, the
proof itself (with explanations) is again at least the
page of formulas in space.

Sample Correctness Task: Parallel Increment
To Shared Variable. Proof

Let us now consider a detailed proof of
generalization of this property in IPCL. Explore
generalized version of the task first. Thus, let us have
a program P =Inc" (for some fixed neN), where
Inc = x:=x+1. The semantic model described above
with F={f,}. We consider a simplified model, as we
have no local variables for routines (just shared
global x). Labelling algorithm [1] (obviously) will
result to the next for Inc: Inc = [M1] x:=x+1 [M2],
SStates={(si, Sz, d) | s1€N, s;eN, deD}, where s; is
the number of programs (all performed in parallel)
executing currently at the label [M1], s; is the
number of programs executing at the label [M2] (in
fact, finished currently), and d is the shared (global)
data (containing variable x and its value).

It is clear that SStep={((si, Sz, d), (51—1, S>+1,
f1(d))) | s1>0 & s;eN & s,eN }, SStartStates=
{(n, 0, [x— 0]}, SStopStates={s|s=(0, n, d’) &
3sy, Sz, ..., S| ® (S eSStartStates & 5= & (VieN,; o
(Si, Si+1)€SStep)) } — by definition.

Let PreCond(SS) = (x=(d)=0) and
PostCond(SS) = (x=(d)=n), where
SS=(sy, Sz, d)eSStates — (simplified) state. Consider
the invariant Inv(SS) = (s,=x=(d)). Let us verify
InvCond(Inv, PreCond, PostCond):
VvSeSStartStatese (PreCond(S) —» Inv(S)) =
PreCond((n, 0, [x+—>01])) = Inv((n,0,[x+—>01])) =
True —> True = True, VSeSStopStates e (Inv(S) —»
PostCond(S)) = VS=(sy, Sy, d)=(0, n,
d’)eSStopStates o ((s,=x=(d)) — (x=(d)=n)),
since s,=n, then the implication is True, and the
entire predicate is True, V(S, S*)eSStep e (Inv(S) —
Inv(S’))=V(S, S)=((s1,s2 d), (s51-1,s:+1,
f1(d))) eSStep o ((s;=x=(d)) — (S2+1=x=(f1(d)))) =
V(S, S’)eSStep e True, since it is obvious that
Xx=>(f1(d)) = x=(d)+1.

Hence, Inv indeed is invariant for the program P,
besides at the starting states it is a logical

2015, 2

Bulletin of Taras Shevchenko
National University of Kyiv
Series Physics & Mathematics

consequence of the pre-condition and it implies post-
condition at the final states. Q.E.D.

Sample Correctness Task: Parallel Increment
To Shared Variable. Conclusions

Thus, we have proved a generalized property.
Originally formulated (correctness) property can be
derived from a more general just letting n=2.

Note that some of sources mentioned here are
considered a variant of the example
P’ = x:=x+1 || x:=x+2 with pre-condition x=0. To
solve this problem with the method proposed one
should use another (but obvious) invariant
Inv(SS) = (s,+2*s, = x=(d)), where
SS=(sy, S», Ss, S4, d)eSStates is simplified state, for
generalized program P”’=(x:=x+1)" || (x:=x+2)" apart
with labels (labelled program P): [M1] x:=x+1 [M2],
[M3] x:=x+2 [M4], and initial states
SStartStates={(n, 0, m, 0, [x — 0])} (with n=m=1).

Note also that the number of inspections to prove
is linear regarding the number of program operators
in both examples (in general, for every program).
Details on this and other examples as well as detailed
theory can be found in [1].

Conclusions

The simplified method with simplified state
introduced for program properties proof (including
program correctness checking) is appropriate for
parallel programs without local variables which use
only shared ones. This case is appropriate model of
server software (in SMP architecture) like Web-
servers and Database-server applications and such a
kind of computing. The method and the model as
well as Interleaving Parallel Compositional
Languages class (IPCL) are described in details in
[1] and were first presented in [2] and then in [7]
with modifications (simplified state).

All reasoning presented here are in terms of
composition-nominative approach [8,3], but the main
formalism for concurrent behavior modelling is
Abstract State Machines [9,10], which in line with
compositional semantics gives us enough means to
describe interleaving parallel execution within
operational approach indeed.

176

Bicnux Kuiscbkoeo Hayionanvno2o yHisepcumemy

imeni Tapaca Lllesuenka
Cepis ghizuxo-mamemamuuni Hayku

10.

CrnHcox BUKOPHCTaHMX JKepet

Tanuenxo T.B. Kommo3umiiini METOIN
cnequdikanii Ta Bepudikaumii mporpaMHUX
CHUCTEM. HHCGpTaI_IiH Ha 3,[[06YTT$I HAayKOBOI'O
CTYIICHA KaHauaaTa (l)iBI/IKO—MaTCMaTI/I‘lHI/IX
Hayk.. 01.05.03 / TIlanuenko Tapac
Bonogumuposuu — K., 2006. — 177 c.

Hanuenko T.B. Merogonoris OOBEIEHHS
BJIACTHBOCTEH nporpam B KOMHOBI/II_Iif/iHI/IX MOBax
IPCL / Tapac Bonomumuposuu Ilanyenko //
Homogini MixHapoaHoi KOH(]epeHii
“TeopernyHi Ta MPUKIAIAHI aCHEKTH MOOYIOBU
nporpamaux cucrem” (TAAPSD’2004). - K.,
2004. - C. 62-67.

Nikitchenko N. A Composition Nominative
Approach to Program Semantics /
N. Nikitchenko. — Technical Report IT-TR:
1998-020. — Technical University of Denmark,
1998. — 103 p.

Owicki S. An Axiomatic Proof Technique for
Parallel Programs / S. Owicki, D. Gries // Acta
Informatica. — 1976. — Vol. 6, Ne 4. — P. 319-
340.

Xu Q. The Rely-Guarantee Method for Verifying
Shared Variable Concurrent Programs / Q. Xu,
W.-P. de Roever, J. He // Formal Aspects of
Computing. — 1997. — Vol. 9, Ne 2. — P. 149-
174.

Lamport L. Verification and Specification of
Concurrent Programs / L. Lamport //
deBakker J., deRoever W., Rozenberg G. (eds.)
A Decade of Concurrency, Vol. 803. — Berlin:
Springer-Verlag, 1993. — P. 347-374.

Ilanuenxo T.B. Mogens CIIpOLIEHOTO CTaHy JUIs
METOJTy TOBENICHHS BIacTHBOCTeH B MoBax IPCL
ta i 3acrocyBanHs 1 mepeBarm / Tapac
Bonomumuposuu Ilanuenko // Jlomosimi
MDKHapOAHOT HayKOBOI KOH(epeHii
TAAPSD 2007. — Berdyansk, 2007. — C. 319-
322.

Peovko B.H. Kommosuuuum mporpaMm |
KOMITIO3UIITMOHHOC nmporpaMMHupoOBaHuC /
Bragumup Huxudoposuu Penpko 1
[IporpammupoBanue. — 1978. — Ne 5. — C. 3-24.
Reisig W. The Expressive Power of Abstract-
State Machines / W. Reisig // Computing and
Informatics. — 2003. — Vol. 22, Ne 3-4. — P. 209-
219.

Gurevich Y. Reconsidering Turing's thesis
(toward more realistic semantics of programs) /
Y. Gurevich. — Technical report CRL-TR-36-
84. — University of Michigan, 1984. — 13 p.

2015, 2

10.

177

Bulletin of Taras Shevchenko
National University of Kyiv
Series Physics & Mathematics

References

PANCHENKO, T. (2006) Compositional
Methods for Software Systems Specification and
Verification (PhD Thesis). Kyiv. 177 p.

PANCHENKO, T. (2004) The Methodology for
Program Properties Proof in Compositional

Languages IPCL. In Proceedings of the
International Conference "Theoretical and
Applied Aspects of Program Systems

Develpment” (TAAPSD'2004). Kyiv. pp. 62—67.
NIKITCHENKO, N. (1998) A Composition
Nominative Approach to Program Semantics.
Technical Report IT-TR: 1998-020. Technical
University of Denmark. 103 p.

OWICKI, S., GRIES, D. (1976) An Axiomatic
Proof Technique for Parallel Programs. Acta
Informatica. Vol. 6, No 4. pp. 319-340.

XU, Q., DE ROEVER, W.-P. and HE, J. (1997)
The Rely-Guarantee Method for Verifying
Shared Variable Concurrent Programs. Formal
Aspects of Computing. Vol. 9, No 2. pp. 149-
174.

LAMPORT, L. (1993) Verification and
Specification of Concurrent Programs.
deBakker, J., deRoever, W. and Rozenberg, G.
(eds.) A Decade of Concurrency. Vol. 803.
Berlin: Springer-Verlag. pp. 347-374.
PANCHENKO, T. (2007) The Simplified State
Model for Properties Proof Method in IPCL
Languages and its use and advantages. In
Proceedings of the International Conference
"Theoretical and Applied Aspects of Program
Systems Develpment™ (TAAPSD'2007).
Berdyansk. pp. 319-322.

REDKO, V. (1978) Compositions of programs
and composition programming. Programming. 5.
pp. 3-24.

REISIG, W. (2003) The Expressive Power of
Abstract-State Machines. Computing and
Informatics. Vol. 22, No. 3-4. pp. 209-219.
GUREVICH, Y. (1984) Reconsidering Turing's
thesis (toward more realistic semantics of
programs). Technical report CRL-TR-36-84.
University of Michigan. 13 p.

Hapiitnura o peaxonerii 05.05.2015

