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Вивчаються неперервнi трикутнi вiдображення квадрату [0, 1]2 в себе, iтерацiї яких
утворюють скiнченну групу. Доведено, що якщо напiвгрупа iтерацiй неперервного трикутного
вiдображення квадрату в себе є скiнченною циклiчною групою, то воно або тривiальна, або
складається з двох, або з чотирьох елементiв. Введено поняття канонiчного зображення
циклiчної групи неперервними вiдображеннями. Доведено, що групи, якi зображаються
вiдображеннями iнтервалу, мають канонiчне зображення, але група C4 не має канонiчного
зображення трикутними вiдображеннями. Введено поняття типу траєкторiї перiодичної
точки трикутного вiдображення квадрату та доведено, що обмеження та спiвiснування типiв
перiодичних точок перiоду 4 для трикутних вiдображень, що зображають групу C4, вiдсутнi.

Ключовi слова: Трикутне вiдображення, тип перiодичної траєкторiї, спiвiснування типiв
перiодичних траєкторiй.

So called triangular continuous square maps, whose iterations semigroup is finite are considered
in the article. These are maps of square into itself, such that the first coordinate of the image is
independent on the second coordinate of preimage. It is proved that this semigroup is a finite cyclic
group only in the case if it is either trivial or has order 2 or 4. The notion of canonical representation
of a cyclic group with triangular maps is introduced as such representations, where group identity
corresponds to the identity map as a function, which does not move any point. It is proved that
those groups, which can be exactly represented by interval maps have the canonical representation by
triangular maps, but the group C4 does not. The notion of a type of a cyclic trajectory of a point is
introduced for triangular maps. All possible types of periodical trajectories for continuous interval maps
are described. The coexistence of all types of periodical points for triangular map, which represents a
group C4, is proved.

Key Words: Triangular map, periodical trajectory type, coexistence of periodical trajectories types.
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Introduction

Triangular square I2 into itself maps whose it-
erations semigroup is finite are considered in the
article. Here we denote with I the interval [0, 1].

A map F : I2 → I2 are called continuous
triangular, if it is of the form

F (x, y) = (f(x), g(x, y)) (1)

for some continuous functions f : I → I and
g : I2 → I. This means, that the first coordinate
of the image of F is independent on the second
coordinate of the argument.

Triangular maps form a semigroup with re-

spect to compositions. Remind, that compositions
of a map F with itself is called iterations and the
n-th iteration of F is denoted by Fn for n > 1.

Denote by Fid a triangular map, which does
not move any elements of I2. This map is the iden-
tity element of semigroup of all triangular maps.
We will differ representations of monoids (pre-
cisely, groups), where identity element is repre-
sented by Fid, or not.

For any point x0 of the period n under the
action of a map f of the interval I into itself, a
permutation π ∈ Sn corresponds to x0 in the fol-
lowing rule (see. [5, p. 53], or a classical work [4]).
Let x1 < . . . < xn be an ordered orbit of x0. Then
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permutation π of the set {1, . . . , n} is defined by
the rule f(xi) = xπ(i) for 1 6 i 6 n.

Definition 1. The permutation π which is con-
structed above is called the type of periodical point
x0 in the action of the map f .

The work [4] by O. Sharkovskii contains the
world known theorem about the linear ordering of
the sets of interval maps and about impossibility
to specify this ordering. It is proved that sets Bn

of those continuous interval I maps, which have
the periodical point of a period n are linearly or-
dered by inclusion as follows.

B1 ⊃ B2 ⊃ B22 ⊃ B23 ⊃ . . .

. . . ⊃ B22·5 ⊃ B22·3 ⊃ . . . ⊃ B2·5 ⊃ B2·3 ⊃ . . .

. . . B9 ⊃ B7 ⊃ B5 ⊃ B3,

and all the inclusions are strict i.e. for all different
n1, n2 ∈ N the inequality Bn1 6= Bn2 holds.

Remark 1 (see. [5], p. 58). A cycle of period

3 may be only of the type π3 =
(

1 2 3
2 3 1

)
or

inverse. The cycle of a period 4 may be of some

types: for example of π
(1)
4 =

(
1 2 3 4
2 3 4 1

)
or

π
(2)
4 =

(
1 2 3 4
3 4 2 1

)
. If the map f has a cy-

cle of the type π
(1)
4 then it is easy to show that

it also has a cycle of the period π3 and whence
the Sharkovskii theorem gives that it has points of
all periods. In the same time interval map f may
have a cyclic point with type π

(2)
4 and have no other

point’s periods except of those which yield from the
Sharkovskii theorem i.e. 2 and 1.

This remark explains the naturalness of con-
sidering of types of points trajectories in the study
of properties of periodical points of maps.

It is proved at [7], that Sharkovskii theorem
can be generalized to triangular maps.

In our work we will introduce the notion of
canonical representation of a cyclic group by trian-
gular map as such representation, where identity
element of a group corresponds to Fid, mentioned
above.

We mention in the Section 1, that only groups
of 1, 2, or 4 elements can be exactly represented
by triangular maps.

In Section 2 we prove, that there is no canon-
ical representation of the group C4 by continuous

triangular map, whence all its representations are
non-canonical.

Is Section 3 we generalize definition 1 for tri-
angular maps and define the type of periodical
point of triangular map. We call a type of the peri-
odical trajectory of triangular map representable,
if there exists a triangular map with a periodical
point of such type. We describe all representable
types and prove that any set of different repre-
sentable types can be the whole set of all types of
periodical trajectories of some triangular map.

1 Prelinaries

It is proved at [3] that if the semigroup of it-
erations of continuous map f : I → I is a finite
group then this group consists of 1, or 2 elements.
Also the following lemma is proved.

Lemma 1. If the map f ∈ C0(I, I) has a period-
ical point with a period m > 2 then the semigroup
of iterations of f is infinite.

Simple algebraic reasonings give the following
lemma (see. [3]).

Lemma 2. For an arbitrary map H which maps
some set M into its subset the uniformly bounded-
ness of points orbits is equivalent to the fact that
iterations semigroup of this map is finite.

Graphs of maps of I into itself, whose iter-
ations semigroup is a finite group are described
at [1]. Also the following theorem is proved.

Theorem 1. If the map f of the interval I repre-
sents the finite group, then there exists an interval
[a, b] ⊆ I, such that f(I) = [a, b] and one of the
following two conditions holds.

1. For any x ∈ [a, b] the equality f(x) = x
holds and in this case the group of iterations of f
is trivial;

2. The graph of f is symmetrical in the line
y = x for x ∈ [a, b] but does not coincide with it.
In this case the group of iterations of f is C2.

All the semigroups which can be represented
exactly with triangular maps of n-dimensional
cube In are described at [2]. It is proved there
that if cyclic group has exact representation of tri-
angular maps of I2 then its order is either 1, or 2,
or 4.
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Example 1. Let us give an example of a triangu-
lar map F of the square I2 such that the equality
F = Fn holds for its iterations and the condition
Fn = F does not hold for 1 < n < 5.

The deal of the example. Use the notation of def-
inition 1 for the map F . Let the first coordinate
f be defined with the formula f(x) = 1− x for all
x ∈ I. Define the second coordinate g as follows.

Let x < 1
2 . Define g(x, y) = x for y ∈ [0, x];

g(x, y) = y for y ∈ (x, 1 − x) and g(x, y) = 1 − x
for y ∈ [1− x, 1].

Also for x > 1
2 define g(x, y) = x for y ∈

[0, 1 − x]; g(x, y) = 1 − y for y ∈ (1 − x, x) and
finally g(x, y) = 1− x for y ∈ [x, 1].

The graphs of g0,4 and g0,8 are given at fig-
ure 1a). Now check the equality F 5 = F .

For x ∈ (0, 1
2) and y ∈ [0, x) we have F (x, y) =

= (1 − x, x); F 2(x, y) = F (1 − x, x) = (x, 1 − x);
F 3(x, y) = F (x, 1−x) = (1−x, 1−x); F 4(x, y) =
= F (1 − x, 1 − x) = (x, x); F 5(x, y) = F (x, x) =
= (1− x, x) whence F (x, y) = F 5(x, y).

For x ∈ (0, 1
2) and y ∈ [x, 1 − x] we have

F (x, y) = (1 − x, y); F 2(x, y) = F (1 − x, y) =
= (x, 1−y); F 3(x, y) = F (x, 1−y) = (1−x, 1−y);
F 4(x, y) = F (1 − x, 1 − y) = (x, y) whence
F 5(x, y) = F (x, y).

For x ∈ (0, 1
2) and y ∈ (1 − x, 1] we

have F (x, y) = (1 − x, 1 − x); F 2(x, y) =
F (1− x, 1− x) = (x, x); F 3(x, y) = F (x, x) =
(1 − x, x); F 4(x, y) = F (1 − x, x) = (x, 1 − x);
F 5(x, y) = F (x, 1 − x) = (1 − x, 1 − x) whence
F (x, y) = F 5(x, y).

The equality F = F 5 for x > 1
2 is proved in

the same way.

Definition 2. A representation of a cyclic
group Cn by iterations of the map F is called ex-
act if there is one-to-one correspondence between
elements of Cn and iterations of F and this cor-
respondence is concerted with the group operations
in Cn.

Definition 3. An exact representation of a
cyclic group Cn by iterations of the map F is called
canonical representation if the identity of a group
Cn corresponds to the neutral element of the semi-
group of all maps which belongs to the set of iter-
ations of F .

Remark 2. Theorem 1 yields that canonical rep-
resentation of either trivial or the group C2 by the
maps of interval I is canonical if and only if f is

a bijection i.e. the equality [a, b] = I holds where
a and b are from the theorem formulation.

Remark 3. It is constructed at the example 1 the
exact representation of the group C4 but it is not
canonical, because the group identity is represented
by a map F 4, which is not identity element of the
semigroup of all square I2 maps.

2 Canonical representations of cyclic
groups with triangular maps

The main theorem of this section is the fol-
lowing.

Theorem 2. There is no canonical representation
of the group C4 with triangular maps of I2.

Remark 4. If a triangular map F represents
the group C4 canonically, then for every point
(x1, y1) ∈ I2 the condition F 4(x1, y1) = (x1, y1)
holds.

Lemma 3. If the semigroup of iterations of a tri-
angular map F is finite, then trajectory of any pe-
riodical point of the period 4 is of the form

(x1, y1) → (x2, y2) → (x1, y3) →
→ (x2, y4) → (x1, y1),

(2)

where y1 6= y3.

Proof. Let the map F and point (x1, y1) be as in
the condition of the lemma. Then x1 is a periodi-
cal point of the map f .

If x1 is a periodical point of the period 4 for
the map f then Lemma 1 yields that semigroup
of iterations of f is infinite whence semigroup of
iterations of F is also infinite.

If x1 is a fixed point of f then the point y1 is a
periodical point of the map gx1(y) = g(x1, y1) and
its period is 4 and trajectory of (x1, y1) under the
action of F is looks as Fn(x1, y1) = (x1, gn

x1
(y1)).

Lemma 1 yields that semigroup of iterations of
gx1 is infinite which means that semigroup of iter-
ations of F is also infinite.

So, the period of x1 as a periodical point of f
equals 2 which finishes the proof.

Lemma 4. If iterations of the triangular map F
represent the group C4 canonically then for every
x ∈ I the map gx(y) = g(x, y) is a homeomor-
phism of I with itself.
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Proof. We will prove this lemma by contradiction.
Consider an arbitrary point (x1, y1) ∈ I2 and

consider the following two cases.
1. f(x1) = x1;
2. The point x1 has a period 2 under the ac-

tion of the map f .
According to Lemma 3 there are no other pos-

sibilities for periods of x1.
If f(x1) = x1 then trajectory of (x1, y1) is

Fn(x1, y1) = (x1, gn
x1

(y1) and the fact that gx1 is
a bijection yields from Remark 2 and Lemma 2.

Let now the period of the point x1 be equal 2
under the action of the map f . If the lemma does
not hold then one of the following two cases holds.

1. For some x1 ∈ I and for two distinct
y∗1, y∗∗2 ∈ I the equality g(x1, y∗1) = g(x1, y∗∗2 )
holds.

2. For some x1 ∈ I the map gx1(y) = g(x1, y)
maps the interval I into the interval J which does
not coincide with I.

Consider each of these cases separately.
If for some x1 ∈ I and for points y∗1, y∗∗2 ∈ I

the equality g(x1, y∗1) = g(x1, y∗∗2 ) holds, then
it means that F (x1, y∗1) = F (x1, y∗∗2 ). But this
equality contradicts to equalities

{
F 4(x1, y∗1) = (x1, y∗1);
F 4(x1, y∗∗1 ) = (x1, y∗∗1 ),

which yield from the fact that representation of
C4 with iterations of F is canonical and from that
points y∗1 and y∗∗2 are different.

If for some x1 ∈ I the map gx1(y) = g(x1, y)
maps the interval I into J which does not coin-
cide with I then consider an arbitrary point y2 ∈ I
such the equation g(x1, y) = y2 has no solutions
for y. Denote x2 = f(x1) and consider the tra-
jectory of (x2, y2) under the action of F . Ac-
cording to the Remark 4 this trajectory is cyclic

i.e. there is some k ∈ N such that the equal-
ity F k(x2, y2) = (x2, y2) holds. It means that
fk−1(x2) = x1, i.e. F k−1(x2, y2) = (x1, y) where
y ∈ I is some point if I. But whence gx1(y) = y2

which contradicts the way of constructing of y2.
The obtained contradiction finishes the proof

of the lemma.

There is the following corollary from this
lemma and the continuity of F .

Corollary 1. It iterations of F represent the
cyclic group C4 canonically then for any x ∈ I
the bijective map gx(y) is either increase for all
y ∈ I, or decrease for all y ∈ I.

Lemma 5. If for the triangular map F the con-
dition holds then for any x ∈ I the map gx(y) =
g(x, y) is a bijection then either F 2 = F or the
semigroup of iterations of F is infinite.

Proof. It is enough for proving this lemma to con-
sider the map

F 2(x, y) = (f2(x), gf(x)(gx(y))).

Denote it as F 2(x, y) = (f̃(x), g̃(x, y)).
Lemma 3 and Theorem 1 yield that if the

semigroup of iterations of F is finite then for every
x ∈ I the equality f̃(x) = x holds.

As for any x ∈ I the map gx is a bijection
then for any x ∈ I the map g̃x increase. In this
case Theorem 1 yields that the semigroup of iter-
ations of F 2 is finite if and only if for all x ∈ I
and for every y ∈ I the equality g̃(x, y) = y holds.
But this equality together with the obtained prop-
erty of f̃ means that F 2 = F which finishes the
proof.

Now Theorem 2 is a corollary of Lemma 5.

a) b) c)

Figure 1:

36



Вiсник Київського нацiонального унiверситету
iменi Тараса Шевченка
Серiя: фiзико-математичнi науки 2015, 2

Bulletin of Taras Shevchenko
National University of Kyiv

Series: Physics & Mathematics

3 Non canonical representations of cyclic
groups

We will consider in this section the question
about possible types of periodical points of the
period 4 under the action of the triangular map
whose semigroup of iterations is finite.

Definition 4. We will call periodical sequences
{(xk, yk)} and {(x̃k, ỹk)} to have the same type
if for some fixed t ∈ N and all i, j inequalities
yi 6 yj and ỹi+t 6 ỹj+t are equivalent and also
inequalities xi 6 xj and x̃i+t 6 x̃j+t are equiva-
lent.

Remark 5. Note that trajectories of periodical
points (x1, y1) and (x̃1, ỹ1) under the action of tri-
angular map F have the same type then points x1

and x̃1 as periodical points of the map f have the
same period and the type of periodical trajectory in
the sense of the Definition 1.

Definition 5. A type of a periodical sequence
P = {(xk, yk)} is a finite sequence of points T =
= {(ak, bk)} of the set N2 which have the following
properties:

1. The set of first values of the first coordi-
nates of points of the set T together with the set
of the second coordinated T are sets of some first
natural numbers.

2. All elements of T are different.
3. Periodical sequences P and T̃ have the

same type where the infinite sequence T̃ is obtained
from the finite T one by its repeating infinite num-
ber of times.

Definition 6. We will a type of periodical
point the type of its trajectory.

Remark 6. From Lemma 3 yields that a period-
ical point of the triangular map whose semigroup
of iterations is finite may have either type

T1 = (1, y1), (2, y2), (1, y3), (2, y4), (3)

of the type

T2 = (2, y1), (1, y2), (2, y3), (1, y4), (4)

for some natural numbers y1, y2, y3 and y4.

Definition 7. The finite sequence of natural num-
bers T = {(ak, bk)} is called an admissible type
of periodical point if items 1 and 2 of Definition 5
hold.

Definition 8. The admissible type T of periodi-
cal point is called representable if there exists a
continuous triangular map F whose semigroup of
iterations is a finite group and which has a period-
ical point of the type T .

The main result of this section is the following
theorem.

Theorem 3. Each representable type of periodical
point T of the period of the form ( 3) and ( 4) is
representable.

Consider some lemmas which let decrease the
number of types of periodical points whose repre-
sentability should be studied.

Lemma 6. If for some natural numbers y1, y2, y3

and y4 the type of periodical points T1 = [(1, y1),
(2, y2) (1, y3), (2, y4)] is representable then type
of periodical point T2 = [(2, y1), (1, y2), (2, y3),
(1, y4)] is also representable.

Proof. Let triangular map F = (f, g) have a peri-
odical point of the type T1. Consider the map F̃ ,
defined as F̃ (x, y) = F (f(x), g(1− x, y)).

The periodical point which whose period type
is T1 under the map F will be of the type T2 under
the map F̃ .

Note that all trajectories of F̃ are symmetrical
in the line x = 0, 5 to the correspond trajectories
of F .

Lemma 6 lets to prove Theorem 3 only for
admissible trajectories types T of period 4 of the
form (3) and not to consider types of the form (4).

Lemma 7. If for some natural numbers y1, y2, y3

and y4 the type of trajectory T of the form ( 3) is
representable the a type of trajectory T̃ = [(1, y1),
(2, y4), (1, y3), (2, y2)] is also representable.

Proof. If the map F has a point of the type T
then this point has a type T̃ under the action of
the map F̃ = F 3.

Lemma 8. If the type T of a periodical point of
the form ( 3) is representable then the type

T̃ = (1, yπ(1)), (2, yπ(2)), (1, yπ(3)), (2, yπ(4))

of periodical point is also representable for any per-
mutation π ∈ S4.
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Proof. Definition 5 of a periodical trajectory yields
that type of a periodical point T of the form (3)
will not change if we “permutate cyclicly” points
of the sequence T i.e. obtain

T1 = (2, y2), (1, y3), (2, y4), (1, y1),

T2 = (1, y3), (2, y4), (1, y1), (2, y2)

and

T3 = (2, y4), (1, y1), (2, y2), (1, y3).

Now lemma yields from Lemmas 6 and 7.

Lemma 9. Type of trajectory T of the form ( 3)
where {y1, y2, y3, y4} = {1, 2} is representable.

Proof. Lemma yields from the example 1 and
Lemma 8.

Lemma 10. Type of periodical point T of the
form ( 3) where {y1, y2, y3, y4} = {1, 2, 3} is rep-
resentable.

Proof. Taking into attention Lemma 8 it is enough
to prove that there exists a triangular map F
whose iterations form an exact representation of
the group C4 and which has a periodical point of
the type

T = (1, 1), (2, 1), (1, 2), (2, 3).

We will construct the map F with the period-
ical point of the type T in the same way as it was
done at the Example 1.

Let the map f be defined with the formula
f(x) = 1− x for all x ∈ I.

For x 6 1/2 let g be defined as gx(y) = y+1/2
for y ∈ [0, 0, 5 − x) and let be gx(y) = 1 − x for
y > 0, 5− x.

For x > 1/2 take gx(y) = 0, 5 for y ∈ [0, 0, 5];
g(y) = 1−y for y ∈ (0, 5, x) and gx(y) = 1−x for
y > x.

Graphs of g0(y), g0,4(y), g0,8(y) and g1(y) are
given at the figure 1b).

The fact that this map really has that prop-
erties as it is necessary can be proved with the
direct checking in the same way as it was done at
the Example 1.

Lemma 11. The type of the sequence T of the
form ( 3) where {y1, y2, y3, y4} = {1, 2, 3, 4} is
representable.

Proof. The idea of the prove of this lemma is also
analogical to the proof of the Lemma 9 and the
Example 1.

According to Lemma 8 it is enough to prove
that there exists a triangular map F whose itera-
tions represent the group C4 which have periodical
point of the type

T = (1, 1), (2, 2), (1, 3), (2, 4).

Take f(x) = 1− x for all x ∈ I.
For x 6 1/2 take gx(y) = 1/3 + x/3 for

y 6 x/3; gx(y) = y + 1/3 for y ∈ (x/3, 2/3 − x)
and gx(y) = 1− x for y > 2/3− x.

For x > 1/2 take gx(y) = 1/3 + x/3 for
y 6 2/3−x/3; gx(y) = 1−y for y ∈ (2/3−x/3, x)
and gx(y) = 1− x for y > x.

Graphs of maps g0(y) and g4(y) are given at
figure 1c).

Theorem 3 yields from Lemmas 9, 10 and 11.

4 Coexistence of types of periodical
points

Remark 4 shows that the problem about co-
existence of cycles of periodical points for interval
maps was considered at first by A. Sharkovskii at
his classical work [4]. In fact it is in this work the
notion of type of periodical point of continuous in-
terval map was given at first and the impotentness
of some additional characteristic of a cycle except
its period was explained.

Lemma 12. If a triangular map F whose semi-
group of iterations if finite has a periodical point
of period 4 then it has a periodical point of the type
T = (1, 1), (2, 1).

Proof. Let (x1, y1) be a periodical point of the pe-
riod 4. According to Lemma 3 its trajectory is of
the form (2) i.e. x1 is a periodical point of f and
its period is 2.

Consider the map

g̃(y) = gx2(gx1(y)).

As a continuous interval I into I map it has a pe-
riodical point i.e. there exists a point y0 such that
trajectory of the point (x1, y0) looks as

(x1, y0) → (x2, y0) → (x1, y0).

This point has that type which is necessary.
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a) b) c) d) e)

Figure 2:

Remark 7. Note that all triangular maps which
were constructed in the process of proving of Lem-
mas 9, 10 and 11 have the following properties.

1. g0,5(y) = y for all y ∈ I in particularly for
x = 0, 5 the unique periodical point of F is its fixed
point (0, 5, 0, 5).

2. The points of period 4 have the same type
for each of three constructed maps.

Taking into attention the Remark 7 we may
obtain the following construction of triangular
maps which have points of period 4 of different
types.

Consider the transformation Ψ1 which acts on
the set of triangular maps and moves the map
F (x, y) = (f(x), g(x, y)) to Ψ1(F ) which is de-
fines as (Ψ1(F ))(x, y) = (f̃(x), g(x, y)) where
the function f̃ is defined as follows. If x 6 1/4
then f̃(x) = f(−2x + 1/2); if 1/4 < x 6 3/4
then f̃(x) = f(2x − 1/2) and if x > 3/4 then
f̃(x) = f(−2x + 3/2).

For example the figure 2a) contains a shaded
area of the square I2 which is the periodical points
set of the map F from the Example 1. Sets of pe-
riodical points of maps which were constructed at
Lemmas 10 and 11 are given at figures 2b) and 2c).
The bold curve at all three figures denotes the pe-
riodical points of period 2 and the point at the
center of a rectangle is a fixed point.

The following lemma holds.

Lemma 13. Let the triangular map F is such that
its the first coordinate is defined as x 7→ 1−x and
F (0, 5, y) = 0, 5 for all y ∈ I then the following
holds for H = Ψ1(F ).

1. H(0, 5, y) = H(0, y) = H(1, y) = 0, 5 for
all y ∈ I;

2. Sets of types of periodical points of maps F
and H coincide.

3. Semigroups of iterations of the maps F and
H coincide.

This lemma is proved with the direct checking.

For example the set of periodical points of
map Ψ1(F ) from the Example 1 if given at the
figure 2d).

Define a transformation Ψ2 which makes pos-
sible to construct the triangular map Ψ2(F, G)
with two given triangular maps F and G and Ψ2

will be such that the set of types of periodical
points of the image map will be union of types
of periodical points of F and G.

Additionally assume that as the triangular
map F , as triangular map G are defined with the
formula x → 1− x for the first coordinate. Let Fl

be the restriction of F to the set [0, 1/2]× I and
let Fr be restriction of F to the set [1/2, 1] × I.
Then the transformation Ψ2(F, G) is schemati-
cally shown on the figure 2e) and it can be de-
fined analytically as follows. (Ψ2(F, G))(x, y) =
F (2x, y) for x 6 1/4, (Ψ2(F, G))(x, y) = G(2x−
1/2, y) for 1/4 < x 6 3/4 and (Ψ2(F, G))(x, y) =
F (2x − 1, y) for x > 3/4. The following lemma
yields from the construction of Ψ2.

Lemma 14. Let the triangular map F and G are
as in Lemma 13. Then the following holds for
H = Ψ2(Ψ1(F ), Ψ2(G)).

1. H(0, 5, y) = H(0, y) = H(1, y) = 0, 5 for
all y ∈ I;

2. Sets of types of periodical points of H is a
union of sets of types of periodical points of F and
types of periodical points of G;

3. If semigroups of iterations of the maps F
and G are finite groups the the semigroup of iter-
ations of H is bigger of these two groups.

The reasonings above can be generalized in
the following theorem.

Theorem 4. For arbitrary representable types
T1, . . . , Tk of periodical points of period 4 there is
a triangular map F whose iterations exactly rep-
resents a group C4 and which has periodical points
of each of types T1, . . . , Tk and has no periodical
points of another period 4 types.
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Proof. As is was noted in the Remark 7 the points
of period 4 have the same type for each maps which
were constructed at Lemmas 9, 10 and 11.

The constructions which were presented in
the proof of further lemmas till Lemma 13 are

just transformations which construct new map all
phose periodical period 4 points have the same
type.

Now application of transformations Ψ1 and Ψ2

introduced above finishes the proof.
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