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Let Λ to be a partially ordered set without infinitely increasing chains and let (Gλ, Xλ) be a collection
of finite nontrivial permutation groups for λ ∈ Λ. If wreath product of Gλ by Λ is topologically finitely
generated then direct product of abelianizations of Gλ indexed by the set Λ and direct product of groups
Gλ indexed by the set of maximal elements of Λ are topologically finitely generated and there exists such
constant d that number of generators of Gλ is not greater then a product of d and all |Xµ| for µ > λ for
all λ ∈ Λ. If all groups Gλ are transitive and direct product of Gλ by the set Λ is topologically finitely
generated then wreath product of groups Gλ by Λ is also topologically finitely generated. In this article
we provide sufficient condition when the wreath product of transitive, finite, nontrivial groups indexed
by tree ordered set is topologically finitely generated.
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1 Introduction

Wreath product is one the standard operations on
groups, which plays a fundamental role in many
algebraic constructions. There are several ways
to generalize wreath product. Hall [6], Silcock
[10], Dixon and Fournelle [4] studied restricted
generalized wreath products. Different approaches
to unrestricted wreath product indexed by poset
were proposed by Holland [7], Wells [11] and Fei-
nberg [5]. Later, these definitions were summarized
by Behrendt [1].

Lavrenyuk and Oliynyk [8] studied generali-
zed wreath products of groups indexed by tree
ordered sets. They obtained an isomorphism cri-
terion for such wreath products for certain ordered
sets and permutation groups. In this paper, based
on some preliminary results from [9], we provi-
de certain sufficient conditions for finite generati-
on of wreath products indexed by tree ordered
sets. These conditions are similar to the conditi-
ons given by Bondarenko [2] for infinitely iterated
wreath products (Bondarenko’s result was further
generalized by Detomi and Luchchini [3]).

2 Basic definitions

Let us fix a partially ordered set (Λ,6) and a
permutation group (Gλ, Xλ) for each λ ∈ Λ. Put

X =
∏
λ∈Λ

Xλ = {(xλ)λ∈Λ | xλ ∈ Xλ}.

By symbol ∅ we denote the empty set. Then

Xλ =

{
{∅}, if λ is maximal element;∏
µ>λ

Xµ, otherwise.

The wreath product W = wrλ∈ΛGλ of groups
(Gλ, Xλ)λ∈Λ indexed by partially ordered set Λ is
the permutation group on the set X that consists
of elements

g = (g(y,λ))λ∈Λ, y∈Xλ , where g(y,λ) ∈ Gλ.

The action of an element g on a point x =
(xµ)µ∈Λ ∈ X is given by the following rule:

g(x) = (g(yλ,λ)(xλ))λ∈Λ ∈ X, where yλ = (xµ)µ>λ.
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The product of two elements g = (g(y,λ) ∈
Gλ)λ∈Λ, y∈Xλ ∈ W and h = (h(y,λ) ∈
Gλ)λ∈Λ, y∈Xλ ∈W is defined by the following rule:

g · h = (g(y,λ)h(g(y),λ))λ∈Λ, y∈Xλ .

The set of all elements of Λ that larger or equal
to λ we denote by λ5. The symbol B stands for
the collection of all sets of the form ∪λ∈Iλ5, where
I is a finite subset in Λ. The set B is a directed
set ordered by inclusion, i.e., the set Λ1 ∈ B is less
than the set Λ2 ∈ B if and only if Λ1 ⊆ Λ2.

Let Λ1,Λ2 ∈ B and Λ1 ⊆ Λ2. We consider
the restriction map ϕΛ1,Λ2 : W2 = wrλ∈Λ2Gλ →
W1 = wrλ∈Λ1Gλ, i.e., for all g ∈ W2 the element
ϕΛ1,Λ2(g) ∈ W1 acts as g on the set Λ1. The map
ϕΛ1,Λ2 is well-defined and it is a homomorphism,
because for every λ ∈ Λ2 \ Λ1 and µ ∈ Λ1 ei-
ther λ 6 µ or elements λ and µ are incomparable.
Then the collection of groups (wrλ∈∆Gλ)∆∈B and
homomorphisms ϕΛ1,Λ2 form an inverse system,
and we can consider its inverse limit.

Proposition 1. [9] The wreath product of groups
(Gλ, Xλ) indexed by the poset Λ coincides with the
inverse limit of groups (wrλ∈∆Gλ)∆∈B.

We say that a topological groupW is topologi-
cally generated by its subset S if the subgroup
generated by S is dense inW . If S is finite, then we
say that W is topologically finitely generated. By
d(W ) we denote the minimal number of generators
in topological sense.

3 Main theorem

In this section we consider a poset (Λ,6) and a
collection of permutation groups (Gλ, Xλ)λ∈Λ whi-
ch satisfy the following restrictions

1) every group Gλ is finite and nontrivial;

2) for every λ ∈ Λ the set λ5 is finite, i.e., Λ
does not contain infinitely increasing chains.

Then the wreath product W = wrλ∈ΛGλ is
a profinite group. This allows us to consider the
group W as a topological group.

We introduce some notations that we will use
in the article. Let W = wrλ∈ΛGλ. If A is a subset
of W then for λ ∈ Λ and x ∈ Xλ we use notati-
on A(x,λ) = {g(x,λ) | g ∈ A} ⊂ Gλ. By max Λ we
denote the set of all maximal elements of the poset
Λ. Also for λ ∈ Λ we define the set LN(λ) = {µ ∈

Λ | µ < λ and there is no ν ∈ Λ such that µ <
ν < λ}. The commutator subgroup of a group G
we denote by G′.

Theorem 3.1. Let a poset Λ and a collection of
transitive permutation groups (Gλ)λ∈Λ satisfy the
conditions 1) and 2). Additionally, we suppose that
the following conditions hold:

(i) LN(λ)
⋂
LN(µ) = ∅ for any different µ, λ ∈

Λ;

(ii) there exists a constant C such that

d

( ∏
µ∈LN(λ)

Gµ

)
6 C for all λ ∈ Λ;

(iii) d

( ∏
µ∈max Λ

Gµ

)
<∞;

(iv) d
( ∏
λ∈Λ

Gλ/Gλ
′
)
<∞.

Then the group W = wrλ∈ΛGλ is topologically fi-
nitely generated.

Let Λ1 = {λ ∈ Λ \ max Λ | Gλ is abelian}.
The conditions of the theorem imply that we can
choose a finite system of generators for the followi-
ng groups:∏

µ∈max Λ

Gµ = 〈p1, p2, . . . , pα〉;∏
µ∈LN(λ)

Gµ = 〈cλi | 1 6 i 6 C〉,

where cλi = (cλi,µ)µ∈LN(λ);∏
λ∈Λ

(Gλ/Gλ
′) = 〈s′1, s′2, . . . , s′β〉, s′i = (s′i,λ)λ∈Λ,

where s′i,λ ∈ Gλ/Gλ
′;∏

λ∈Λ1

Gλ = 〈a1, a2, . . . , aγ〉, ai = (ai,λ)λ∈Λ1 .

For λ ∈ Λ we denote by |λ| the distance from
λ to the maximal element of Λ. Also we denote by
λ− i an element of Λ at distance i from λ towards
the maximal element of Λ. The set λ5 is a finite
chain for every λ ∈ Λ. If λ5 = {λ1 > λ2 > . . . >
λn} then we will denote each element x in Xλ by
the word xλ1xλ2 . . . xλn .

For each λ we define the following group

Hλ =

{
Gλ, if λ ∈ Λ1 ∪max Λ;
Gλ
′, otherwise.

Since the group Hλ is non-trivial, there exists a
permutation πλ ∈ Hλ such that πλ(1λ) = 2λ for
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two points 1λ 6= 2λ. Let 1λ = 1λ−|λ| . . . 1λ−11λ.
Note that 1λ−(n) is the empty word for n > |λ|.

In order to prove Theorem 3.1 we will use a
sufficient condition for finite generation of wreath
products established in [9, Lemma 4]. For this it
is sufficient to show that for any finite set ∆ ∈ B
the following upper bound holds:

d(wrλ∈∆Gλ) 6 d

 ∏
µ∈max Λ

Gµ

+ 3C +

+ 2d

(∏
λ∈Λ

(Gλ/Gλ
′)

)
.

We choose the system of generators for
wrλ∈∆Gλ as follows:

(a) We chose elements pi such that (pi)(∅,λ) =
(pi)λ, and (pi)(x,λ) is trivial for x 6= ∅.

(b) For all 1 6 i 6 C we set:

(qi)(x,λ) =

{
cλ−1
i,λ , if |λ| = 1 and x = 2λ−1,

e, otherwise.

(c) We fix a finite collection a1, a2, . . . , aγ ∈W :

(ai)(x,λ) =


ai,λ, if λ ∈ Λ1 ∩∆

and x = 1λ−22λ−1,
e, otherwise.

(d) We define two similar collections. Let us defi-
ne bi, 1 6 i 6 C as follows:

(bi)(x,λ) =


cλ−1
i,λ , if |λ| > 2, |λ| is even

and x = 1λ−32λ−22λ−1,
e, otherwise.

Also we choose a similar collection of hi, 1 6
i 6 C for the case when |λ| is odd:

(hi)(x,λ) =


cλ−1
i,λ , if |λ| > 2, |λ| is odd

and x = 1λ−32λ−22λ−1,
e, otherwise.

(e) For each i we choose si = (si,λ)λ∈Λ ∈
∏
λ∈Λ

Gλ

such that for every λ ∈ ∆ it holds: si,λ ∈
s′i,λGλ

′ where s′i,λGλ
′ is coset of the group

Gλ. Let us fix si ∈ wrλ∈∆Gλ as follows

(si)(x,λ) =


si,λ, if |λ| > 0

and x = 1λ−22λ−1,
e, otherwise.

Let A be the group generated by all elements
from items (a)–(e). Before we prove Theorem 3.1
we need the following auxiliary statement.

Lemma 1. For any λ ∈ ∆ there are subgroups
Fλ, Sλ < A such that

(Fλ)(x,µ) =

{
Hλ, if µ = λ and x = 1λ−1;
{e}, otherwise.

(Sλ)(x,µ) =

{
Hλ, if µ = λ and x = 1λ−22λ−1,
{e}, otherwise.

Proof. We prove this lemma by induction on |ν|. If
|ν| = 0 then ν is a maximal element and elements
{p1, p2, . . .} from item (a) can generate the requi-
red groups. For induction step we assume that for
all |λ| < |ν| the induction assumption holds. We
suppose that we are able to generate Sν . Then we
can get Fν by conjugating Sν . Then we conjugate
the group Sν by the element t given by

t(x,λ) =

{
πν−1, if x = 1ν−2 and λ = ν − 1;
e, otherwise.

Element t is in A by the induction assumption.
Now we fix f ∈ Hν and g ∈ Sν :

g(x,λ) =

{
f, if x = 1ν−22ν−1 and λ = ν;
e, otherwise.

Since t(1ν−1) = 1ν−2πν−1(1ν−1) = 1ν−22ν−1, we
get

(tgt−1)(1ν−1,ν) = t(1ν−1,ν)g(t(1ν−1),ν)t
−1
(g(t(1ν−1)),ν)

=

= g(1ν−22ν−1,ν) = f.

Other projections of the element (tgt−1)(x,µ) are
trivial. In this way we can generate Fν . So it is
enough to generate Sν .

We consider the following cases:
(1). We suppose that the group Gν is abeli-

an. For an arbitrary f ∈ Gν we can choose a
sequence i1, i2, . . . , ik such that ai1ai2 . . . aik =
(gµ)µ∈Λ1∩∆, where gν = f and gµ is trivial for
µ ∈ ∆ \ {ν}. Now we consider the product
ai1ai2 . . . aik . Let x = (xδ)δ>µ = 1µ−22µ−1 for
some µ ∈ Λ1∩∆. The definition of ai implies that
ai(x) = ((ai)(1δ−1,δ)

(xδ))δ>µ = (xδ)δ>µ = x. So
(aiaj)(x,µ) = (ai)(x,µ)(aj)(x,µ) = ai,µaj,µ. We have
a similar situation for a more number of multipli-
ers. Therefore (ai1ai2 . . . aik)(x,µ) = f for µ = ν
and x = 1ν−22ν−1; projections are trivial for all
other cases. Thus we can generate Sν .
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(2). Let |ν| = 1 and Gν be non-abelian. We
choose t as follows

t(x,λ) =

{
πλ, if x = ∅ and λ 6= ν − 1;
e, otherwise.

Let q ∈ 〈qi, 1 6 i 6 C〉. We have (tqt−1)(x,λ) =

t(x,λ)q(t(x),λ)t
−1
(q(t(x)),λ). If |λ| = 0 and λ 6= ν − 1

then t(1λ) = t(∅,λ)(1λ) = πλ(1λ) = 2λ. Then

(tqt−1)(x,λ) =


q(2λ−1,λ), if |λ| = 1, x = 1λ−1 and

λ− 1 6= ν − 1;
q(2ν−1,λ), if |λ| = 1, x = 2ν−1 and

λ− 1 = ν − 1;
e, otherwise.

We choose an arbitrary p ∈ 〈qi, 1 6 i 6 C〉. Then

[(tqt−1), p](x,λ) =

=


[q(2ν−1,λ), p(2ν−1,λ)], if|λ| = 1, x = 2ν−1

and λ− 1 = ν − 1;
e, otherwise.

Thus for an arbitrary r = (rλ)λ∈LN(ν−1) ∈∏
λ∈LN(ν−1)

Gλ
′ there exists g ∈ A such that g(x,λ)

is trivial for x 6= 2ν−1 and g(2ν−1,λ) = rλ. Since∏
λ∈LN(ν−1)

Gλ
′ = (

∏
λ∈LN(ν−1)

Gλ)′ then for an arbi-

trary f ∈ Hν there exists g such that d(x,λ) is tri-
vial for x 6= 2ν−1, λ 6= ν and d(2ν−1,ν) = f which
gives us Sν .

(3). Let |ν| > 1 and Gν be non-abelian. We
consider the case when |ν| is even (the proof for
the case when of odd |ν| is similar; we can just
replace elements bi by hi).

We denote

Y = {1λ−22λ−12λ | λ ∈ ∆, |λ| > 1, |λ| − |ν| is odd}.

We choose two arbitrary elements d, g from a
group 〈bi|1 6 i 6 C〉 (from a group 〈hi|1 6 i 6 C〉
if |ν| is odd). We note that if d(x,λ) is not trivial
then x ∈ Y (this is true for both cases of even and
odd |ν|).

We need to choose an element t such that

[tdt−1, g](x,λ) = (1)

=


[d(1ν−32ν−22ν−1,λ), g(1ν−32ν−22ν−1,λ)],

if λ ∈ LN(ν − 1);
e, otherwise.

We choose t using the induction assumption.
The equality (tdt−1)(x,λ) = t(x,λ)d(t(x),λ)t

−1
(d(t(x)),λ)

implies

t(x,λ) =



πλ, if x is the empty word, |ν| is odd
and λ 6= ν − |ν|;

πλ, if x = 1ν−2;
πλ, if x = 1ν−n1λ−1, n is odd, 3 6

6 n 6 |ν|+ 1 and λ 6= ν − n+ 2;

π−1
λ , if x = 1ν−n2λ−1, n is odd, 3 6

6 n 6 |ν|+ 1 and λ 6= ν − 1;
e, otherwise.

In order to prove that t satisfies (1) it is
enough to show that an arbitrary word from the
set t(Y ) \ {1ν−32ν−22ν−1} is not a prefix of a
word from Y and an arbitrary word from the set
Y \ {1ν−32ν−22ν−1} is not a prefix of a word from
the set t(Y ). The word 1ν−32ν−22ν−1 must be
contained in both sets. If x = 1ν−32ν−22ν−1 then
t(x) = x. The proof goes as follows: fix some word
x ∈ Y \ {1ν−32ν−22ν−1}; compute t(x); we show
that t(x) is not a prefix of a word from Y and
arbitrary word from Y is not a prefix of t(x). We
choose λ and the smallest n such that x can be
written as x = 1ν−n1λ−|λ|+|ν|−n+1 . . . 1λ−22λ−12λ.
Then n 6 |ν| + 1. We consider all possible cases
for n.

Let n > 3, |λ| = |ν| − n + 2 (then x =
1ν−n2λ−12λ) , λ 6= ν − 1. Since |λ| − |ν| is odd,
then n is odd. Then t(x) = 1ν−n2λ−11λ. It is obvi-
ous that an element t(x) is not a prefix of a word
from Y and arbitrary word from Y is not a prefix
of t(x).

Let n > 3, |λ| > |ν| − n + 2 (then x =
1ν−n1... . . . 2λ−12λ), n is even. If 1ν−n is the empty
word then n = |ν| + 1 and the number |ν| is odd
in this case. We have t(x) = 1ν−n2... . . . 2λ−12λ. It
is obvious that an element t(x) is not a prefix of
a word from Y . Now we choose some word y ∈ Y
and assume that it is a prefix of t(x). Then y =
1ν−n2µ−12µ for some µ. We have |µ| = |ν|−n+ 2,
where |µ|− |ν| = −n+ 2 is even. Therefore y 6∈ Y .

Let n > 3, |λ| > |ν| − n + 2 (then
x = 1ν−n1... . . . 2λ−12λ), n is odd. Since |λ| −
|ν| is odd, then |λ| − |ν| + n is even. As
|λ| − |ν| + n > 2 then |λ| − |ν| + n > 4
(therefore x = 1ν−n1...1... . . . 2λ−12λ). Then t(x) =
1ν−n1...2... . . . 2λ−12λ. It is obvious that an element
t(x) is not a prefix for some word in Y . Now we
choose some word y ∈ Y and assume that it is a
prefix of t(x). Then y = 1ν−n1µ−22µ−12µ for some
µ. We have |µ| = |ν|−n+3, where |µ|−|ν| = −n+3
is even. Therefore y 6∈ Y .

12
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Let n < 3 (then x = 1ν−2 . . . 2λ−12λ).
Therefore |λ| − |ν − 2| > 2. Since |λ| − |ν| is
odd, then |λ| − |ν − 2| is odd and |λ| − |ν − 2| >
3 (then x = 1ν−21... . . . 2λ−12λ). Then t(x) =
1ν−22... . . . 2λ−12λ. It is obvious that an element
t(x) is not a prefix of a word from Y . Now we
choose some word y ∈ Y and assume that it is a
prefix of t(x). Then y = 1ν−22µ−12µ for some µ.
Then |µ| = |ν| and therefore |µ| − |ν| = 0 is even.
Hence y 6∈ Y .

So the condition 1 holds. Therefore for an
arbitrary r = (rλ)λ∈LN(ν−1) ∈

∏
λ∈LN(ν−1)

Hλ

there exists g ∈ A such that g(x,λ) is trivial for
x 6= 1ν−32ν−22ν−1 and g(1ν−32ν−22ν−1,λ) = rλ.
Since

∏
λ∈LN(ν−1)

Gλ
′ = (

∏
λ∈LN(ν−1)

Gλ)′ then for

an arbitrary f ∈ Hν there exists g such that
d(1ν−32ν−22ν−1,ν) = f and d(x,λ) is trivial for other
cases. To complete the proof we conjugate received
element by the following element

(t)(x,λ) =

{
πν−2, if x = 1ν−3, λ = ν − 2;
e, otherwise.

Then

(tdt−1)(x,λ) =

{
f, if x = 1ν−22ν−1, λ = ν;
e, otherwise.

We have shown how to generate Sν what finishes
the proof of the lemma.

Now we prove the main theorem.

Proof. For each λ ∈ ∆ we define the group Ĝλ as
follows

(Ĝλ)(x,µ) =

{
Gλ, ifx = 1λ−22λ−1andµ = λ;
{e}, otherwise.

By Lemma 5 from [9] it is enough to show that all
groups Ĝλ are contained in the group generated

by A. We fix ν ∈ ∆ and g ∈ Gν . If ν is a maxi-
mal element then we can generate the group Ĝν
using elements from the item (a) . Now we consi-
der the case when ν is not a maximal element.
There exists g′ ∈ Gν/Gν

′ such that g ∈ g′Gν
′.

Now we choose a sequence i1, . . . , ik such that
s′i1,ν · . . . · s

′
ik,ν

= g′ and s′i1,λ · . . . · s
′
ik,λ

= e
in λ ∈ ∆ \ {ν}. Then we consider the product
s = si1 · . . . · sik . Let us compute si(1λ−22λ−1) =
((si)(1µ−1,µ)(1µ))µ>λ−1(si)(1λ−2,λ−1)(2λ−1) =

1λ−22λ−1. Therefore
s(x,λ) ∈ g′Gν ′, if x = 1ν−22ν−1 and λ = ν;

s(x,λ) ∈ Gλ′, if x = 1λ−22λ−1 and λ 6= ν;

s(x,λ) = e, otherwise.

By Lemma 1 for an arbitrary λ ∈ ∆ \ {ν}
we can choose elements wλ ∈ A such that
(wλ)(1λ−22λ−1,λ) = (si1 · . . . · sik)−1

(1λ−22λ−1,λ)
∈

Hλ. Then (wλ)(1λ−22λ−1,λ) = (s)−1
(1λ−22λ−1,λ)

and
(wλ)(x,µ) is trivial in the other case. We can
also choose wν ∈ A such that (wν)(1ν−22ν−1,ν) =

(s)−1
(1ν−22ν−1,ν)

g and (wν)(x,µ) is trivial in the other
case. Let ∆ = {λ1, . . . , λ|∆|}. Then we consider
the product w = wλ1 · . . . wλ|∆|

(w)(1λ−22λ−1,λ) = (s)−1
(1λ−22λ−1,λ)

, λ ∈ ∆ \ {ν};
(w)(1ν−22ν−1,ν) = (s)−1

(1ν−22ν−1,ν)
g;

(w)(x,µ) = e, otherwise.

The product sw is a required element:{
(sw)(1ν−22ν−1,ν) = g;

(sw)(x,µ) = e, otherwise.

Thus we can generate Ĝν for any ν ∈ ∆.
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