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Let A to be a partially ordered set without infinitely increasing chains and let (G, X)) be a collection
of finite nontrivial permutation groups for A € A. If wreath product of Gy by A is topologically finitely
generated then direct product of abelianizations of G indexed by the set A and direct product of groups
G indezed by the set of mazximal elements of A are topologically finitely generated and there exists such
constant d that number of generators of G is not greater then a product of d and all | X,,| for p > X for
all X € A. If all groups G, are transitive and direct product of Gy by the set A is topologically finitely
generated then wreath product of groups Gy by A is also topologically finitely generated. In this article
we provide sufficient condition when the wreath product of transitive, finite, nontrivial groups indexed
by tree ordered set is topologically finitely generated.
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1 Introduction

Wreath product is one the standard operations on
groups, which plays a fundamental role in many
algebraic constructions. There are several ways
to generalize wreath product. Hall [6], Silcock
[10], Dixon and Fournelle [4] studied restricted
generalized wreath products. Different approaches
to unrestricted wreath product indexed by poset
were proposed by Holland [7], Wells [11] and Fei-
nberg [5]. Later, these definitions were summarized
by Behrendt [1].

Lavrenyuk and Oliynyk [8] studied generali-
zed wreath products of groups indexed by tree
ordered sets. They obtained an isomorphism cri-
terion for such wreath products for certain ordered
sets and permutation groups. In this paper, based
on some preliminary results from [9], we provi-
de certain sufficient conditions for finite generati-
on of wreath products indexed by tree ordered
sets. These conditions are similar to the conditi-
ons given by Bondarenko [2] for infinitely iterated
wreath products (Bondarenko’s result was further
generalized by Detomi and Luchchini [3]).
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2 Basic definitions

Let us fix a partially ordered set (A,<) and a
permutation group (G, X)) for each A € A. Put

X =] X ={(@)rea | 2x € Xp}.
AeA

By symbol () we denote the empty set. Then

if A is maximal element;

({9},
Xx=1 Tl X, otherwise.
u>A

The wreath product W = wryepaGy of groups
(Gx, X2)aea indexed by partially ordered set A is
the permutation group on the set X that consists
of elements

9= (g(y,/\))AeA, yeXy’ where g(, \) € Ga.

The action of an element g on a point x =
(zp)puen € X is given by the following rule:

9(z) = (g 0 (TA))aen € X, where yy = ()42
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The product of two elements g = (g(y,n) €
G)\))\EA, yeXs € W and h (h(y,)\) S
G/\)AEA, yexy € W is defined by the following rule:

9 h = (96w N rer, yexi

The set of all elements of A that larger or equal
to A we denote by AV. The symbol B stands for
the collection of all sets of the form Uy AV, where
I is a finite subset in A. The set B is a directed
set ordered by inclusion, i.e., the set A1 € 9B is less
than the set Ay € 9B if and only if Ay C As.

Let A1,As € B and A1 C As. We consider
the restriction map wa, a, : Wao = wryea, Gy —
W1 = wryen, Gy, ie., for all g € Wy the element
VA, A, (g9) € W1 acts as g on the set Aj. The map
©A1,A, is well-defined and it is a homomorphism,
because for every A\ € Ay \ A; and p € A; ei-
ther A < p or elements A and p are incomparable.
Then the collection of groups (wryxeaGx)aecs and
homomorphisms @, a, form an inverse system,
and we can consider its inverse limit.

Proposition 1. [9] The wreath product of groups
(G, X)) indezed by the poset A coincides with the
inverse limit of groups (wryeAGx)Aes-

We say that a topological group W is topologi-
cally generated by its subset S if the subgroup
generated by S is dense in W. If S is finite, then we
say that W is topologically finitely generated. By
d(W) we denote the minimal number of generators
in topological sense.

3 Main theorem

In this section we consider a poset (A, <) and a
collection of permutation groups (G, X))aea whi-
ch satisfy the following restrictions

1) every group G, is finite and nontrivial;

2) for every A € A the set AV is finite, i.e., A
does not contain infinitely increasing chains.

Then the wreath product W = wryca G,y is
a profinite group. This allows us to consider the
group W as a topological group.

We introduce some notations that we will use
in the article. Let W = wryeaG)y. If A is a subset
of W then for A € A and z € X, we use notati-
on Ay = {9 | 9 € A} C Gy, By max A we
denote the set of all maximal elements of the poset
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A | p < X and there is no v € A such that u <
v < A}. The commutator subgroup of a group G
we denote by G'.

Theorem 3.1. Let a poset A and a collection of
transitive permutation groups (Gx)aea satisfy the
conditions 1) and 2). Additionally, we suppose that
the following conditions hold:

(i) LN(A)(LN(u) =0 for any different p, A €

A;
(i1) there exists a constant C  such that
d IT Gu><C'forall)\€A;
HELN(X)

II Gy

puEmMax A

(ii1) d( ) < 005

(iv) d (g GA/GA’> < .

Then the group W = wraeaGy is topologically fi-
nitely generated.

Let Ay = {A € A\ maxA | G, is abelian}.
The conditions of the theorem imply that we can

choose a finite system of generators for the followi-
ng groups:

H G,LL <p17p27'-'7pa>;
pEmMax A

II 6. = di<i<o),
HELN(X)

A A .
where ¢;' = (¢}, ueLN (V)i

H (G)\/GA/) <S/17 5/27 ) S/ﬁ>7 5; = (S’Ii)\))\EAv

AEA
/ /.
where s ) € G\/G);

[T

AeEA

(a1, az,...,ay), a; = (@;\)re, -

For A € A we denote by |A| the distance from
A to the maximal element of A. Also we denote by
A —1 an element of A at distance i from A towards
the maximal element of A. The set AV is a finite
chain for every A € AL If AV = {\ > Ao > ... >
An} then we will denote each element x in X, by
the word z),xy, ... 2,

For each A we define the following group

Gz\la
Since the group H) is non-trivial, there exists a

if A € A UmaxA;
otherwise.

A. Also for A € A we define the set LN(A\) = {¢x € permutation m\ € H) such that m)(1)) = 2, for

10
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two points 1y # 2). Let 1) = Doy - I Let A be the group generated by all elements

Note that 1)_,) is the empty word for n > |Al.

In order to prove Theorem 3.1 we will use a
sufficient condition for finite generation of wreath
products established in [9, Lemma 4]. For this it
is sufficient to show that for any finite set A € B
the following upper bound holds:

Il o

+3C +
pEmax A

+ 2d <H(G,\/GA’)) :

AEA
We choose the system of generators for
wraea Gy as follows:

d(wryeaGy) < d

(a) We chose elements p; such that (pz)
(pﬁAyand(ﬁﬁcmM is trivial for o # 0.

(b) Forall 1 <i< C we set:
@) _ ;\/\1, if [\|=1and x =2)_1,
G e, otherwise.
(c) We fix a finite collection a7, a,...,a, € W:
Q4 \s ifAxeAiNA
(@) (@) = and =1\ 22,1,
e, otherwise.

We iieﬁne two similar collections. Let us defi-
ne b;,1 < i < C as follows:

A—1

c;y 7, Af [A] =2, [A] is even
(bi) (@) = and z = 1y_32)_22)_1,
e, otherwise.

Also we choose a similar collection of h;, 1 <
i < C for the case when || is odd:

A—1

ciy, if [A] =2, )] is odd
(hi) (@) = and x = 1)_32)_22)_1,
e, otherwise.

For each i we choose s; = (s \)aea € [] Ga
AeA
such that for every A € A it holds: s;\ €

st \G)\' where s, ,G)' is coset of the group
G). Let us fix 5; € wraea Gy as follows

six, 1Al >0
() (@) = and x = 1)_92)_1,
e, otherwise.

11

Ajp Qg - -

from items (a)—(e). Before we prove Theorem 3.1
we need the following auxiliary statement.

Lemma 1. For any A € A there are subgroups
F\, S, < A such that

(F) Hy, ifpu=Xandx=1)_g;

A {e}, otherwise.

(53) e, Hy, ifp=Xandz=15_92)1,
{e}, otherwise.

Proof. We prove this lemma by induction on |v|. If
|v| = 0 then v is a maximal element and elements
{P1,p2, ...} from item (a) can generate the requi-
red groups. For induction step we assume that for
all |A\| < |v| the induction assumption holds. We
suppose that we are able to generate S,,. Then we
can get F,, by conjugating S,,. Then we conjugate
the group S, by the element ¢ given by

%N:{

Element ¢ is in A by the induction assumption.
Now we fix f € H, and g € S,:

@) = {f’

67
Since t(l,/,l) = 1V,27T1,,1(11,,1) = 1,,,221,,1, we
get

ifr=1, sand A=v —1;
otherwise.

Ty—1,
€,

ifx=1,_92,_
otherwise.

1 and A =v;

-1 -1
(tgt™") =t 9em D lged

- g(lu—ZZU—I:V)

11/71’1/)

)
= f.

Other projections of the element (tgt_l)(xyu) are
trivial. In this way we can generate F,. So it is
enough to generate S),.

We consider the following cases:

(1). We suppose that the group G, is abeli-
an. For an arbitrary f € G, we can choose a
sequence i1,1%2,...,%; such that a; a;,...a;
(9u)perina, where g, = f and g, is trivial for
w € A\ {v}. Now we consider the product
G- Let = (25)s5>u = 1u—22,—1 for
some g € Ay NA. The definition of @; implies that

ai(z) = (@) 1.5 (@s))s>u = (Ts)s>u = . So

(@i05) (2,p) = (@) (@) (@5) (2,) = @it We have
a similar situation for a more number of multipli-
ers. Therefore (@; ag, ... @), = f for p =
and x = 1, 92, 1; projections are trivial for all
other cases. Thus we can generate S,,.
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(2). Let |v] = 1 and G, be non-abelian. We
choose t as follows

; _fmy, fz=0and A #v—1;
@A) 7 Ye,  otherwise.
Let ¢ € (g;,1 < i < C). We have (tqt_l)(m)\) =
-1
2% A)Q(t(z),A)t(q(t($))7A). IfAl] =0and A # v —1

then t(1y) = t(@)\)(l)\) = 7x(1x) = 2). Then

A2y, H[Al=1,2=1,_ and

A—1#v—1;
(tqtil)(x)\) = 92,10 if A =1,z=2,_1 and
A—1l=v—-1,;
e, otherwise.

We choose an arbitrary p € (¢;,1 < ¢ < C). Then

[(tqt_1)>p] (z,\) —

[q(2vflv)‘)’p(2u—17)\)]7 lf’)‘| =lLz=2,,
and A\ —1=v—-1;

e, otherwise.

Thus for an arbitrary r = (rA)aeLnw-1) €

II G, there exists g € A such that 9@
AELN(v—1)
is trivial for x # 2,1 and g(s,_, ) = ra. Since

[T GY=( TII G,) then for an arbi-
AELN(v—1) AELN(v—1)
trary f € H, there exists g such that d, ) is tri-
vial for @ # 2,1, A # v and dy y = [ which
gives us S,.

(3). Let |v| > 1 and G, be non-abelian. We
consider the case when |v| is even (the proof for
the case when of odd |v| is similar; we can just
replace elements b; by h7)

We denote

v—1,V

Y = {1/\_22)\_12/\ | AEA, |)\| =1, ‘)\| — |V| is Odd}.

We choose two arbitrary elements d,g from a
group (b;|1 < i < C) (from a group (h;|1 <i < C)
if [v| is odd). We note that if d, y) is not trivial
then z € Y (this is true for both cases of even and
odd |v|).

We need to choose an element ¢ such that

tdt™, gl = (1)

[d(m2u722ufla>\)7 g(m2V7221/71,)\)]7
ifA\e LN(v —1);

e, otherwise.

We choose t using the induction assumption.
The equality (tdt_l)(%/\) = t(x,)\)d(t(:p),)\)t(_dl(t(z)),)\)

12
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implies
7y, if x is the empty word, |v| is odd
and A # v — |v;
TNy ifx = 11,_2;
; Jm,  fax=1,,1 4, nisodd, 3 <
(@A) = <n<|v[+1land A #v—n+2;
71';1, ife=1,_,2\_1,nis odd, 3 <
<n<ly/+land A #v—1;
e, otherwise.

In order to prove that t satisfies (1) it is
enough to show that an arbitrary word from the
set t(Y) \ {1,-32,-22,_1} is not a prefix of a
word from Y and an arbitrary word from the set
Y\ {1,-32,-22,_1} is not a prefix of a word from
the set #(Y). The word 1, 32, 92, 1 must be
contained in both sets. If z = 1,_32,_92,_1 then
t(x) = . The proof goes as follows: fix some word
z €Y \{1,-32,-22,_1}; compute t(z); we show
that ¢(z) is not a prefix of a word from Y and
arbitrary word from Y is not a prefix of ¢(z). We
choose A and the smallest n such that  can be
written as x = lll—nl)\—|)\\+|y|—n+l N 1)\,22)\,12/\.
Then n < |v| + 1. We consider all possible cases
for n.

Let n > 3, |A]| = |v|] — n+ 2 (then z
Ty—n2x-12)) , A # v — 1. Since |A| — |v] is odd,
then n is odd. Then t(z) = 1,_,2)_11,. It is obvi-
ous that an element ¢(z) is not a prefix of a word
from Y and arbitrary word from Y is not a prefix

of t(x).
Let n > 3, [\| > |v|] = n + 2 (then =z =
1y—nl. ...2x-12)), nis even. If 1,_,, is the empty

word then n = |v| + 1 and the number |v| is odd
in this case. We have t(z) = 1,_,2....2)_12). It
is obvious that an element ¢(x) is not a prefix of
a word from Y. Now we choose some word y € Y
and assume that it is a prefix of ¢(x). Then y =
1,-n2,-12, for some p. We have |u| = [v|—n+2,
where |u| — |v| = —n+ 2 is even. Therefore y € Y.
Let n > 3, |A] > |v] — n + 2 (then
x Ty—nl. ...2x_12)), n is odd. Since |A| —
lv| is odd, then |A — |v| + n is even. As
Al = |v] +n > 2 then (A — |v| +n > 4
,,,,,, ...2)x-12)). Then t(z) =
...... ...2x_12). It is obvious that an element
t(x) is not a prefix for some word in Y. Now we
choose some word y € Y and assume that it is a
prefix of ¢(z). Then y = 1,_,1,-22,12, for some
w. We have |u| = |v|—n+3, where |u|—|v| = —n+3
is even. Therefore y € Y.
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Let n < 3 (then z = 1,.9...2y_12)). by A Wefix v € A and g € G,. If v is a maxi-
Therefore [A\| — |[v — 2| > 2. Since |A\| — |v| is mal element then we can generate the group G,
odd, then |A| — | — 2| is odd and |A| — |v — 2| > using elements from the item (a) . Now we consi-

3 (then = 1,91 ...2y-12)). Then t(x)
1,22 ...2y_12). It is obvious that an element
t(x) is not a prefix of a word from Y. Now we
choose some word y € Y and assume that it is a

prefix of t(z). Then y = 1,92, 12, for some p.

Then || = |v| and therefore |u| — |v] = 0 is even.
Hence y € Y.

So the condition 1 holds. Therefore for an
arbitrary r = (rA)aeznw-1) € [ Hi

AELN(v—1)

there exists g € A such that g(, ) is trivial for
x # 1,32, 92, 1 and 9T 320020 1,0) = Ta-
Since II GY = ( [l G\) then for

AELN(v—1) AELN(v—1)
an arbitrary f € H, there exists g such that
d(m%_z%_l,u) = f and d(, ) is trivial for other
cases. To complete the proof we conjugate received
element by the following element

() o) = {

Then

(tdt™") ) = {

We have shown how to generate S, what finishes
the proof of the lemma. O

ifr=1,3, A=v—2;
otherwise.

Ty—2,
€,

if x = 11,_22,/_1, A= v
otherwise.

f,

€,

Now we prove the main theorem.

Proof. For each A € A we define the group @ as
G)n

follows
)~ {{6}7

By Lemma 5 from [9] it is enough to show that all

ifr = 1)\,22)\,1and/¢ = )\;
otherwise.

(G (o

groups G are contained in the group generated
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der the case when v is not a maximal element.
There exists ¢ € G, /G, such that g € ¢'G,/ .
Now we choose a sequence il,.. i such that

Ca S, g and s} \ ... 8] )
)\ e A \ {1/} Then we consider the product
slk Let us compute 5i(Ia_22x1) =
1)\,22)\,1 Therefore

= €

g(:):,)\) S g/Gul7 if x = E2y—1 and A = v;
S € G, ifz=1,92)1 and \ #v;
S(zN) = 6 otherwise.

By Lemma 1 for an arbitrary A € A\ {v}
we can choose elements wy, € A such that
<. . . Q. -1

ST Slk)l(l,\—ﬂx—h/\)
Hy. Then (wi) g 52,00 = )5, 20d
(Wx)(z,u) 18 trivial in the other case. We can

also choose w, € A such that (wy); 70, |, =
1

(W) G52

g and (w,) is trivial in the other

(g)(_ll,i_gz,_l,y) (z,1)
case. Let A = {A1,...,A|a/}. Then we consider
the product w = wy, - S WA,
N—1 .
(w)(EQA,l,)\) ( )(1{\ 22— 1,\)’ AEA \ {V}a
(w)(m2l,,17y) = (8)(11/—221/—1, )g7

e, otherwise.

(w)(x,u)

The product sw is a required element:

(5w) (1, 552,10 9
(5W) () = e, otherwise.
Thus we can generate (/?\1, for any v € A. O
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