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Jlocniooicyemuvest yukivHa noedinka amop@Ho2o noximepy — NOLIKApOOHAMa — 8 YMOBAX 2APMOHIUHO20
Hasaumaoicenns. [ MoOeniosamHs HecmayloHapHol  Di3uuHO  HEeNiMIUHOI NO0GediHKU — Mamepiany
BUKOPUCMOBYIOMbCSL €BONOYIUHI PIBHAHHS 3aipi. B yM08ax eapMOHIUHO20 KIHEMAMUYHO20 HABAHMANCEHHS
6y0yIOmbCst aMAAIMYOHT (DI3UYHT CNIGGIOHOULEHHS, SIKI NOG S3VIOMb AMIJIINMYOU OCHOBHUX NOAbOBUX GCTUHUH |
BUKOPUCTHOBYIOMb KOHYENYil0 KOMNAEKCHUX MOOYi8. [ 3Hax00dcenHs OMCHOT ma yaeHOI 4acmuHu yux
KOMNIEKCHUX MOOYNI@ (MOOYII8 HAKONUYEHHS I 6mMpam) GUKOPUCMOBYEMbCL MOOUPDIKOBAHA cXeMa Memooy
eK8iBaNeHMHOI NiHeapu3ayii 3 6UKOPUCMANHHAM YUKATYHUX Oiazpam. 1106Y006aH0 3anedcHOCmi KOMNIEKCHUX
MOOYI8 IO amnaimyou iHmeHcueHocmi Hasanmadcenus. Iloxazano, wo cmanoapmua cxema Memooy
eKsiganenm1oil Tineapuzayii 3a6UWLYE 3HAYEHHS AMNIIMYOU Hanpyscenns Oinve Hide na 10%.

Kurouosi cnosa: eapmoHiune HABAHMANCEHHS, AMNLIMYOHI CNIGGIOHOUICHHS, HenpydcHa Oepopmayis,
KOMNJIEKCHI MOOYII.

The problem of characterization of material response to harmonic loading is addressed. In the present
research, Zairi unified constitutive model is used to predict the time dependent inelastic response of
amorphous glassy polymer, a polycarbonate (PC). The approach that uses the complex-value amplitude
relations is preferred rather than direct numerical integration of the complete set of constitutive equation for
the material. The key point of the approach adopted lays in determination of complex moduli, i.e. storage
and loss moduli under harmonic loading. It is usually done by making use of equivalent linearization
technique. It is shown that this technique leads to overestimation of stress amplitude. To avoid this, the
modified equivalent linearization technique is used. It relies on special procedure for determination of
storage modulus which based on the usage of cyclic stress—strain diagram. Obtained histories of main field
variables evolution were used to find the stress—strain cyclic diagram and real as well as imaginary parts of
complex shear modulus with making use of both standard and modified equivalent linearization techniques.
The prediction of stress amplitude obtained in the frame of the former scheme overestimates the actual value
for more than 10% while the latter scheme gives it with desirable accuracy.

Key Words: harmonic loading, amplitude relations, inelastic deformation, complex moduli.
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1. Introduction mechanisms of mechanical energy dissipation. This
phenomenon is usually called the “dissipative
heating” [1,2]. It's important to notice here that,
under some conditions, the dissipative heating, being
small over one separate cycle of vibration, can lead
to overheating for long term processes causing the
change of mechanical properties, degradation of
performance and durability of the structure.

At the present, there are two approaches to
address this issue. In the frame of the first approach,

Cyclic loading is one of the most important and
widely used types of loading imposed on structural
elements. Materials of structures and their members
experiencing cyclic deformation can exhibit specific
time dependent properties and can be deformed
inelastically being exposed to high stress levels.
Inelastic deformation of the material is accompanied
by heat generation caused by the internal
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the complex set of constitutive equations governing
response of numerous internal parameters is
introduced. For polymers, the constitutive modeling
utilizes, either directly or with some modifications,
viscoplastic constitutive equations which have been
developed for metals. The Schapery single integral
form has been widely used to characterize the
nonlinear (stress or strain dependent) viscoelastic
behavior of polymers. In general, the models can
divided into two categories. The first category
additively combines linear viscoelastic and plastic
constitutive relations (see, for example, [3]). In this
category, the viscoelastic strain rates depend upon
loading histories and time, and the plastic strain rates
depend only upon loading path histories. Second
category combines linear elastic and viscoplastic
constitutive relations, such as the models proposed in
[Perzyna, Perzyna and Wojno, Bodner and Partom ,
Frank and Brockman, Goldberg and Roberts, Gilat
and Zairi [4-6]. To describe the material time
dependent behavior accounting for different features
and peculiarities over the cycle of vibration, a direct
integration of the set of constitutive equations is
necessary. Usually it appears to be time and resource
costly for multi-cyclic processes.

Within the second approach, the approximate
amplitude relations are used to characterize the
cyclic response of the material, i.e. the relations
between amplitudes of the main mechanical field
parameters over the cycle [7]. Naturally, the
application of this technique is justified for the class
of problems where there is no need for detailed
information on the material response during the
cycle (life prediction of the structure, failure due to
overheating as a result of internal dissipation etc.).
The key point of the amplitude theories is concept of
complex moduli [7]. For an inelastic (particularly
viscoelastic) material, the modulus governing the
relation between strain and stress amplitudes is
represented by a complex quantity with real and
imaginary parts referred to as storage and loss
modulus respectively. The former characterizes
elastic response of material and the latter one defines
the dissipative ability of the material [2]. In other
words, the energy is stored during the loading part of
cycle and released under unloading phase, whereas
the energy loss occurs during complete cycle due to
dissipative properties of the material. The drawback
of the approach was the overestimation of stress
amplitudes as a result of making use of standard
equivalent linearization technique for calculation of
both storage and loss moduli. To overcome this
difficulty, the modified scheme was proposed in
[2,7]. But applicability of the method should be
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verified for each particular type of the material.

This paper is devoted to investigation of the
technique applicability to the typical -elastic-
viscoplastic materials such as Polycarbonates (PC),
and to determination of complex moduli for
isothermal loading case for wide range of loading
amplitudes. Particular attention will be paid to
simulation of cyclic response of pure polymer
material (PC) to monoharmonic kinematic loading in
the frame of the second approach.

2. Constitutive relations

To accurately predict an overall performance and
lifetime of polymer, it is necessary to model time
dependent and inelastic responses. Viscoelastic
materials such as polymer materials have the
particularity of possessing viscous, elastic and, under
some conditions, plastic behavior. Constitutive
material models of viscoelastic solids have been
proposed for isotropic materials undergoing small
deformation gradients whereas the inelastic strain
can be calculated as the difference of the total strain
and elastic strain. In order to determine the
viscoelastic-viscoplastic response of the polymer,
Zairi et al. [5] proposed a model for predicting the
viscoplastic response of neat polymers, utilizing a set
of state variables as an indication of the resistance of
polymeric chains against flow. It should also be
mentioned that polymer’s mechanical properties and
loading/strain rate are the two main parameters that
govern the nonlinear response of the polymer.
Bodner and Partom model [4] is a typical
representative of the class of constitutive theories
that constitutes a state variable approach with no
yield surface. In the frame of this model, the
viscoplasticity contribution exists at all non zero
stress levels, and it is found to be the more adequate
for the viscoplastic part. The model is modified in
order to include strain softening immediately after
yield and subsequent re-hardening in [8].
Accordingly, the viscoplastic strain component can
be expressed in terms of the deviatoric stress
components as follows:

g =ﬁDo[—“e J LA

Z,+72,) o,

where £ is the viscoplastic strain rate which can be
defined as a function of deviatoric stress; the internal
state variable Z, was initially introduced in [8] to
account for the horizontal plateau upon yield and the
subsequent strain hardening exhibited by a glassy
polymer and Z, is internal variable to account for
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the effect of strain softening. The equivalent
(effective) stress is given by expression:

o,=(3/26":6")"*, where ¢'=6—-1r(c)1/3 is the
deviatoric part of the Cauchy stress, o . Moreover,
D, and n are material constants; D, represents the

maximum inelastic strain rate and # is the strain rate
sensitivity parameter controlling the viscosity of
flow. The rate of change of the other two internal
state variables, Z, and, Z, can be determined using

the following evolution equations:

Zz _ch

h(Zzs _Zz)WP_Azzz[

Zl _(l_a)Z]O (2)

J, )

where W', WP =6 :(¢ —6°) =6 : ™, is the inelastic
work rate and the associated rise of temperature is

10

Z,=

28

=& +¢&" 1is referred to as inelastic

the initial value of Z, introduced to

neglected, &”
strain; Z,, is

represent the onset of the plasticity, Z,; is the

saturation value of Z,, m and A are the hardening

2
and softening rate parameters, respectively, o is a

parameter controlling the onset of the re-hardening;
A, Z,, and r are three parameters introduced in the

model equations to simulate the static recovery. It
should be emphasized that nonlinearity is also
included in the viscoelastic part. In order to
determine the viscoelastic response of the polymer,
the unmodified Bodner—Partom model [4], used to

describe the nonlinear pre-peak viscoelastic
behavior, can be expressed as:
1(z,)" o
£” =3D, exp[——[in ., @
2\ o, o,

where Z, is an added internal state variable and the

defined earlier. The
the following

terms
Z 3
differential equation:

remaining
parameter

are as
is governed by

P

Z3 = ‘1(23.; _Z3)W > (%)

where q is the pre-yield hardening rate parameter,
Z,, is the saturation value of Z, and the initial

value of Z, is defined by the parameter Z, .
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3. Procedure of complex moduli derivation

Harmonic loading is one of the most widely used
and important types of loadings imposed upon a
mechanical  structure. In this investigation,
approximate model of inelastic behavior developed
in [1,7] for the case of proportional harmonic loading
has been used. In this case, the cyclic properties of
the material are described in terms of complex
moduli. It is important to notice that the inelastic
deformation is considered to be incompressible and
thermal expansion is dilatational, it may be more
convenient in some applications to separate the
isotropic stress-strain relations into deviatoric and
dilatational components that can be shown by
equations as:

O"ZZG(B—SW _Sve),O'kk :3KV(gkk _80): (6)

where G is the shear modulus, K, is the bulk mod-

ulus, 7,7,k = 1,2,3 and repeated index implies a sum-
mation over. Due to incompressibility of plastic de-
formation, &j; =0, i.e. the plastic strain rate is devia-
toric: ¢" =é".

According to this model, if a body as a system

subjected to harmonic deformation or loading, then
its response is also close to harmonic law:

e(t)=e'coswt —e"sin wt,
(7

o(t)=0'coswt—o"sinwt.

The complex amplitudes of the deviator of total
strain, e, inelastic strain, ¢™, and the stress
deviator, &', are related in the N™ cycle by the
complex shear modulus, CN?N, and plasticity factor,

Ay > as shown below:

G'=2Ge, e"=21¢, N=123..., (8
where
e=e+ie", 6=06"+ic", e" =e'" +ie"", )
G=Gly +iGl, Ly =2l +idl,

where N is the cycle number and (-)' and (-)" denote
the real and imaginary parts of complex quantities.

The shear modulus and plasticity factor are
functions of the intensity of the strain-range tensor,
frequency and temperature

5=5N(603w:9)7 IN:IN(eO’w’Q)’ (10)
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where the square of the intensity of strain-range

n

tensor is calculated as e; =e':e'+e":e”".

The imaginary parts of the complex moduli are
determined from the condition of equality of the
energies dissipated over a period and are calculated
according to the formula

D' "
G;"v=—< >2N ar=Sn.
w e G, (11)
1 v 27
<(‘)>N A T(N_])(‘)dl, T=;

where D' is the rate of dissipation of mechanical
energy, G, is the elastic shear modulus.

b

The real parts are found with making use of the
condition that generalized cyclic diagrams
o =0, (ep,w) and e,y =e,y(€e),®) which
relate the ranges of the stress and plastic-strain
intensities in the N cycle, coincide in the frame of
the complete and approximate approaches

s 1/2
’ G[J e 76() "
Gy (e, w) = {LS)_GNZ (eO’a)):| 5
4e,
(12)
I ) 2 v
l&(eOﬂw):{%_ﬂ‘;\'/ (eOﬂa)):| >
4e;

where G’ and A’ are the sought-for real part of
shear modulus and plasticity factor.

4. Problem statement and numerical integra-
tion procedure

Due to significant nonlinearity of the stiff type,
the numerical integration of Zairi equations was
adopted. Three step scheme of attacking the problem
of complex moduli determination was designed. At
the first step, the elastic-viscoplastic response of the
material to harmonic deformation was calculated by
direct application of standard MATLAB solver
ODE45 to constitutive equations for different
amplitudes of loading strain. At the second step, the
stabilized cyclic stress—strain and inelastic-strain—
strain diagrams were obtained for the whole set of
calculated data. At the final step, the complex moduli
were calculated by the averaging over the period of
vibration of the results of direct integration and
making use of cyclic diagrams and formulae (11) and
(12).

The system of nonlinear ordinary differential
equations that describes the polymer response to
harmonic loading in the case of pure shear consists
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of the one-dimensional equations of Zairi model
comprising equations (2), (3), (5) and evolutionary

equations
2 n
év‘v = DO — 30 ) i )
(Z,+2,)* ) |o

1(z2)
£ =D0exp{—5[3;2D ﬁ.

The law of strain deviator variation e = ¢, sin wt,

(15)

(16)

as well as Hooke law for shear stress

o=2Gle-e” —e")=2Gle-")  (14)

should be added to the system.

The values of material constants for PC, which
were used for calculations, has been taken from [5].
The list of the values is given below
E=2000 MPa, D,=10" 1/sec, n=10.3, ¢=2.5,
Z,=176.5 MPa, Z, =20 MPa, Z, =—-60 MPa,
Zy, =50 MPa, Z, =100 MPa, o =0.9, a =0.0035,
h=125 m=6.5,r=2.0.

5. Results of calculation

In this section, we present the results of transient
response simulation and the complex moduli
calculations performed in the frame of modified
technique described in Sec. 3. In Fig. 1, the stress—
strain curve was obtained for PC polymer under
monotonic loading in pure shear. In this figure, the
numerical predictions of the model are generated for
strain rate 1.0-10 % sec ' at room temperature. As can
be seen, this figure demonstrates a very good with
the results presented in [5].

Evolution of stress and inelastic strain for PC
polymer under harmonic loading in pure shear with
strain amplitude e, =7.0-10 are shown in Fig. 2

and Fig. 3 respectively for frequency 1 Hz. The
material demonstrates cyclically stable response over
the whole interval of loading amplitudes and
frequencies investigated. As a result, stabilization of
the response amplitude occurs after several initial
cycles. Relatively slow stabilization is observed only
in the vicinity of yield point.

Fig. 4 illustrates the mechanical hysteresis
phenomenon under cyclic loading that enable one to
measure the phase shift between stress and total
strain. The energy dissipation capacity for PC
polymeric material under harmonic loading in the
maximum dissipation condition ( e, =7.0-10") at the
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frequency 1 Hz is quite high. Calculated value of the
normalized loss modulus is about 0.34.
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Fig. 1. The stress—strain curve under pure shear
monotonic loading.

60

SNNN

20

0 0.02

Stress, MPa
o

SATRTRIRIRIRIRIRIRIN

0 2 4 6 8 10
Time, sec
Fig. 2. Stress evolution under harmonic loading.
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Fig. 3. Inelastic strain evolution under harmonic

loading.

As it was mentioned in Sec. 3, this actual loop
can be approximated with making use of either
standard or modified equivalent linearization
scheme. In the same figure, the actual loop (line 1) is
shown along with the loops calculated in the frame
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of standard (line 2) and modified (line 3) equivalent
linearization techniques. The cyclic diagram at
stabilized stage of the vibration o), =0/(¢,) (i.e.
concretization  of  general cyclic  diagram
o)y =0iy(e),®) used in the formulae (12) for N —»x)
is shown in Fig. 5. The curve is calculated for cyclic
pure shear.

60F 1 1
20 3 f
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Stress, MPa

-201 1

40} ]

.60} ]
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Fig. 4. Hysteresis loops.
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Fig. 5. Cyclic diagram for PC polymer at 1 Hz.
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Fig. 6. Normalized values of the real and imaginary
parts of complex shear modulus for PC polymer.

Having calculated the cyclic diagram and making
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use of formulae (12), it is easy to find the real parts
of the complex moduli (storage moduli G' and A')
in the frame of modified equivalent linearization
scheme. The imaginary parts of the complex moduli
(the loss moduli G" and A") are determined
according to the formula (11). The normalized
improved values of G'/G and G"/G found
according to the modified scheme for frequency 1 Hz
at steady-state cyclic regime and constant
temperature are shown in Fig.6 for wide range of
loading amplitudes. This diagram shows the highest
losses occur at strain amplitude of about seven
percent for this type of polymer.

6. Conclusions

The problem of characterization of material
response to harmonic loading is addressed.
The approach that uses the complex-value ampli-
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tude relations is preferred rather than direct
numerical integration of the complete set of
constitutive equation for the material. The key point
of the approach adopted lays in determination of
complex moduli, i.e. storage and loss moduli under
harmonic loading. It is usually done by making use
of equivalent linearization technique. In this paper,
Zairi model was used simulate the time dependent
response of PC polymer. Obtained histories of main
field variables evolution were used to find the stress—
strain cyclic diagram and real as well as imaginary
parts of complex shear modulus with making use of
both standard and modified equivalent linearization
techniques. The prediction of stress amplitude
obtained in the frame of the former scheme
overestimates the actual value for more than 10%
while the latter scheme gives it with desirable
accuracy.
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