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Досліджується циклічна поведінка аморфного полімеру – полікарбоната – в умовах гармонічного 

навантаження. Для моделювання нестаціонарної фізично нелінійної поведінки матеріалу 
використовуються еволюційні рівняння Заїрі. В умовах гармонічного кінематичного навантаження 
будуються амплітудні фізичні співвідношення, які пов’язують амплітуди основних польових величин і 
використовують концепцію комплексних модулів. Для знаходження дійсної та уявної частини цих 
комплексних модулів (модулів накопичення і втрат) використовується модифікована схема методу 
еквівалентної лінеаризації з використанням циклічних діаграм. Побудовано залежності комплексних 
модулів від амплітуди інтенсивності навантаження. Показано, що стандартна схема методу 
еквівалентної лінеаризації завищує значення амплітуди напруження більше ніж на 10%. 

Ключові слова: гармонічне навантаження, амплітудні співвідношення, непружна деформація, 
комплексні модулі. 

 
The problem of characterization of material response to harmonic loading is addressed. In the present 

research, Zaїri unified constitutive model is used to predict the time dependent inelastic response of 
amorphous glassy polymer, a polycarbonate (PC). The approach that uses the complex-value amplitude 
relations is preferred rather than direct numerical integration of the complete set of constitutive equation for 
the material. The key point of the approach adopted lays in determination of complex moduli, i.e. storage 
and loss moduli under harmonic loading. It is usually done by making use of equivalent linearization 
technique. It is shown that this technique leads to overestimation of stress amplitude. To avoid this, the 
modified equivalent linearization technique is used. It relies on special procedure for determination of 
storage modulus which based on the usage of cyclic stress–strain diagram. Obtained histories of main field 
variables evolution were used to find the stress–strain cyclic diagram and real as well as imaginary parts of 
complex shear modulus with making use of both standard and modified equivalent linearization techniques. 
The prediction of stress amplitude obtained in the frame of the former scheme overestimates the actual value 
for more than 10% while the latter scheme gives it with desirable accuracy. 

Key Words: harmonic loading, amplitude relations, inelastic deformation, complex moduli. 
 

Communicated by Acad. Perestyuk M.O. 
 

1. Introduction 
Cyclic loading is one of the most important and 

widely used types of loading imposed on structural 
elements. Materials of structures and their members 
experiencing cyclic deformation can exhibit specific 
time dependent properties and can be deformed 
inelastically being exposed to high stress levels. 
Inelastic deformation of the material is accompanied 
by heat generation caused by the internal 

mechanisms of mechanical energy dissipation. This 
phenomenon is usually called the “dissipative 
heating” [1,2]. It's important to notice here that, 
under some conditions, the dissipative heating, being 
small over one separate cycle of vibration, can lead 
to overheating for long term processes causing the 
change of mechanical properties, degradation of 
performance and durability of the structure.  

At the present, there are two approaches to 
address this issue. In the frame of the first approach, 
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the complex set of constitutive equations governing 
response of numerous internal parameters is 
introduced. For polymers, the constitutive modeling 
utilizes, either directly or with some modifications, 
viscoplastic constitutive equations which have been 
developed for metals. The Schapery single integral 
form has been widely used to characterize the 
nonlinear (stress or strain dependent) viscoelastic 
behavior of polymers. In general, the models can 
divided into two categories. The first category 
additively combines linear viscoelastic and plastic 
constitutive relations (see, for example, [3]). In this 
category, the viscoelastic strain rates depend upon 
loading histories and time, and the plastic strain rates 
depend only upon loading path histories. Second 
category combines linear elastic and viscoplastic 
constitutive relations, such as the models proposed in 
[Perzyna, Perzyna and Wojno, Bodner and Partom , 
Frank and Brockman, Goldberg and Roberts, Gilat 
and Zaïri [4–6]. To describe the material time 
dependent behavior accounting for different features 
and peculiarities over the cycle of vibration, a direct 
integration of the set of constitutive equations is 
necessary. Usually it appears to be time and resource 
costly for multi-cyclic processes. 

Within the second approach, the approximate 
amplitude relations are used to characterize the 
cyclic response of the material, i.e. the relations 
between amplitudes of the main mechanical field 
parameters over the cycle [7]. Naturally, the 
application of this technique is justified for the class 
of problems where there is no need for detailed 
information on the material response during the 
cycle (life prediction of the structure, failure due to 
overheating as a result of internal dissipation etc.). 
The key point of the amplitude theories is concept of 
complex moduli [7]. For an inelastic (particularly 
viscoelastic) material, the modulus governing the 
relation between strain and stress amplitudes is 
represented by a complex quantity with real and 
imaginary parts referred to as storage and loss 
modulus respectively. The former characterizes 
elastic response of material and the latter one defines 
the dissipative ability of the material [2]. In other 
words, the energy is stored during the loading part of 
cycle and released under unloading phase, whereas 
the energy loss occurs during complete cycle due to 
dissipative properties of the material. The drawback 
of the approach was the overestimation of stress 
amplitudes as a result of making use of standard 
equivalent linearization technique for calculation of 
both storage and loss moduli. To overcome this 
difficulty, the modified scheme was proposed in 
[2,7]. But applicability of the method should be 

verified for each particular type of the material. 
This paper is devoted to investigation of the 

technique applicability to the typical elastic-
viscoplastic materials such as Polycarbonates (PC), 
and to determination of complex moduli for 
isothermal loading case for wide range of loading 
amplitudes. Particular attention will be paid to 
simulation of cyclic response of pure polymer 
material (PC) to monoharmonic kinematic loading in 
the frame of the second approach. 
 

2. Constitutive relations 
To accurately predict an overall performance and 

lifetime of polymer, it is necessary to model time 
dependent and inelastic responses. Viscoelastic 
materials such as polymer materials have the 
particularity of possessing viscous, elastic and, under 
some conditions, plastic behavior. Constitutive 
material models of viscoelastic solids have been 
proposed for isotropic materials undergoing small 
deformation gradients whereas the inelastic strain 
can be calculated as the difference of the total strain 
and elastic strain. In order to determine the 
viscoelastic-viscoplastic response of the polymer, 
Zaïri et al. [5] proposed a model for predicting the 
viscoplastic response of neat polymers, utilizing a set 
of state variables as an indication of the resistance of 
polymeric chains against flow. It should also be 
mentioned that polymer’s mechanical properties and 
loading/strain rate are the two main parameters that 
govern the nonlinear response of the polymer. 
Bodner and Partom model [4] is a typical 
representative of the class of constitutive theories 
that constitutes a state variable approach with no 
yield surface. In the frame of this model, the 
viscoplasticity contribution exists at all non zero 
stress levels, and it is found to be the more adequate 
for the viscoplastic part. The model is modified in 
order to include strain softening immediately after 
yield and subsequent re-hardening in [8]. 
Accordingly, the viscoplastic strain component can 
be expressed in terms of the deviatoric stress 
components as follows:  
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where vpε  is the viscoplastic strain rate which can be 
defined as a function of deviatoric stress; the internal 
state variable 1Z  was initially introduced in [8] to 
account for the horizontal plateau upon yield and the 
subsequent strain hardening exhibited by a glassy 
polymer and 2Z  is internal variable to account for 
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the effect of strain softening. The equivalent 
(effective) stress is given by expression: 

  21:23 σσ e , where 3)( Iσσσ tr  is the 
deviatoric part of the Cauchy stress, σ . Moreover, 

0D  and n are material constants; 0D  represents the 
maximum inelastic strain rate and n is the strain rate 
sensitivity parameter controlling the viscosity of 
flow. The rate of change of the other two internal 
state variables, 1Z  and, 2Z  can be determined using 
the following evolution equations: 
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where PW , inePW εσεεσ  :)(:  , is the inelastic 
work rate and the associated rise of temperature is 
neglected, vevpin εεε    is referred to as inelastic 
strain; 10Z  is the initial value of 1Z  introduced to 
represent the onset of the plasticity, SZ2  is the 
saturation value of 2Z , m and h are the hardening 
and softening rate parameters, respectively, α is a 
parameter controlling the onset of the re-hardening; 
A , cZ 2  and r  are three parameters introduced in the 
model equations to simulate the static recovery. It 
should be emphasized that nonlinearity is also 
included in the viscoelastic part. In order to 
determine the viscoelastic response of the polymer, 
the unmodified Bodner–Partom model [4], used to 
describe the nonlinear pre-peak viscoelastic 
behavior, can be expressed as: 
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where 3Z  is an added internal state variable and the 
remaining terms are as defined earlier. The 
parameter 3Z  is governed by the following 
differential equation: 

   P
s WZZq=Z 

333  , (5) 

where q is the pre-yield hardening rate parameter, 
sZ3  is the saturation value of 3Z  and the initial 

value of 3Z  is defined by the parameter 30Z . 

 

3. Procedure of complex moduli derivation 

Harmonic loading is one of the most widely used 
and important types of loadings imposed upon a 
mechanical structure. In this investigation, 
approximate model of inelastic behavior developed 
in [1,7] for the case of proportional harmonic loading 
has been used. In this case, the cyclic properties of 
the material are described in terms of complex 
moduli. It is important to notice that the inelastic 
deformation is considered to be incompressible and 
thermal expansion is dilatational, it may be more 
convenient in some applications to separate the 
isotropic stress-strain relations into deviatoric and 
dilatational components that can be shown by 
equations as: 

   )(3,2   kkVkk
vevp KG= εεeσ , (6) 

where G  is the shear modulus, VK  is the bulk mod-
ulus, i,j,k = 1,2,3 and repeated index implies a sum-
mation over. Due to incompressibility of plastic de-
formation, 0in

kkε , i.e. the plastic strain rate is devia-
toric: .inin eε    

According to this model, if a body as a system 
subjected to harmonic deformation or loading, then 
its response is also close to harmonic law: 
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The complex amplitudes of the deviator of total 
strain, e~ , inelastic strain, ine~ , and the stress 
deviator, σ~ , are related in the Nth cycle by the 
complex shear modulus, NG~ , and plasticity factor, 

N
~ , as shown below: 
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where N is the cycle number and )(   and )(  denote 
the real and imaginary parts of complex quantities.  

The shear modulus and plasticity factor are 
functions of the intensity of the strain-range tensor, 
frequency and temperature 
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where the square of the intensity of strain-range 
tensor is calculated as eeee  ::2

0e . 
The imaginary parts of the complex moduli are 

determined from the condition of equality of the 
energies dissipated over a period and are calculated 
according to the formula 
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where D  is the rate of dissipation of mechanical 
energy, 0G  is the elastic shear modulus. 

The real parts are found with making use of the 
condition that generalized cyclic diagrams 

),( 0  eaNaN   and ),( 0 eee paNpaN  , which 
relate the ranges of the stress and plastic-strain 
intensities in the Nth cycle, coincide in the frame of 
the complete and approximate approaches 
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where G   and    are the sought-for real part of 
shear modulus and plasticity factor. 
 

4. Problem statement and numerical integra-
tion procedure 

Due to significant nonlinearity of the stiff type, 
the numerical integration of Zaïri equations was 
adopted. Three step scheme of attacking the problem 
of complex moduli determination was designed. At 
the first step, the elastic-viscoplastic response of the 
material to harmonic deformation was calculated by 
direct application of standard MATLAB solver 
ODE45 to constitutive equations for different 
amplitudes of loading strain. At the second step, the 
stabilized cyclic stress–strain and inelastic-strain–
strain diagrams were obtained for the whole set of 
calculated data. At the final step, the complex moduli 
were calculated by the averaging over the period of 
vibration of the results of direct integration and 
making use of cyclic diagrams and formulae (11) and 
(12).  

The system of nonlinear ordinary differential 
equations that describes the polymer response to 
harmonic loading in the case of pure shear consists 

of the one-dimensional equations of Zaïri model 
comprising equations (2), (3), (5) and evolutionary 
equations 
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The law of strain deviator variation ,sin0 tee   
as well as Hooke law for shear stress 

    ,22 invevp εeG=εεeG=   (14) 

should be added to the system. 
The values of material constants for PC, which 

were used for calculations, has been taken from [5]. 
The list of the values is given below 
E 2000 MPa, 0D 104 1/sec, n 10.3, q 2.5, 
10Z 176.5 MPa, cZ2 20 MPa, sZ2 –60 MPa, 
30Z 50 MPa, sZ3 100 MPa,  0.9, a 0.0035, 

h 1.25, m 6.5, r 2.0. 
 

5. Results of calculation 

In this section, we present the results of transient 
response simulation and the complex moduli 
calculations performed in the frame of modified 
technique described in Sec. 3. In Fig. 1, the stress–
strain curve was obtained for PC polymer under 
monotonic loading in pure shear. In this figure, the 
numerical predictions of the model are generated for 
strain rate 1.0·10–2 sec–1 at room temperature. As can 
be seen, this figure demonstrates a very good with 
the results presented in [5]. 

Evolution of stress and inelastic strain for PC 
polymer under harmonic loading in pure shear with 
strain amplitude 0e 7.0·10–2 are shown in Fig. 2 
and Fig. 3 respectively for frequency 1 Hz. The 
material demonstrates cyclically stable response over 
the whole interval of loading amplitudes and 
frequencies investigated. As a result, stabilization of 
the response amplitude occurs after several initial 
cycles. Relatively slow stabilization is observed only 
in the vicinity of yield point. 

Fig. 4 illustrates the mechanical hysteresis 
phenomenon under cyclic loading that enable one to 
measure the phase shift between stress and total 
strain. The energy dissipation capacity for PC 
polymeric material under harmonic loading in the 
maximum dissipation condition ( 0e 7.0·10–2) at the 
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frequency 1 Hz is quite high. Calculated value of the 
normalized loss modulus is about 0.34. 
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Fig. 1. The stress–strain curve under pure shear 
monotonic loading. 
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Fig. 2. Stress evolution under harmonic loading. 
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Fig. 3. Inelastic strain evolution under harmonic 
loading. 
 

As it was mentioned in Sec. 3, this actual loop 
can be approximated with making use of either 
standard or modified equivalent linearization 
scheme. In the same figure, the actual loop (line 1) is 
shown along with the loops calculated in the frame 

of standard (line 2) and modified (line 3) equivalent 
linearization techniques. The cyclic diagram at 
stabilized stage of the vibration )( 0eaa    (i.e. 
concretization of general cyclic diagram 

),( 0  eaNaN   used in the formulae (12) for N ) 
is shown in Fig. 5. The curve is calculated for cyclic 
pure shear. 
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Fig. 4. Hysteresis loops. 
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Fig. 5. Cyclic diagram for PC polymer at 1 Hz. 
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Fig. 6. Normalized values of the real and imaginary 
parts of complex shear modulus for PC polymer. 
 

Having calculated the cyclic diagram and making 
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use of formulae (12), it is easy to find the real parts 
of the complex moduli (storage moduli G  and  ) 
in the frame of modified equivalent linearization 
scheme. The imaginary parts of the complex moduli 
(the loss moduli G   and   ) are determined 
according to the formula (11). The normalized 
improved values of GG  and GG   found 
according to the modified scheme for frequency 1 Hz 
at steady-state cyclic regime and constant 
temperature are shown in Fig.6 for wide range of 
loading amplitudes. This diagram shows the highest 
losses occur at strain amplitude of about seven 
percent for this type of polymer. 
 

6. Conclusions 

The problem of characterization of material 
response to harmonic loading is addressed.  

The approach that uses the complex-value ampli- 

tude relations is preferred rather than direct 
numerical integration of the complete set of 
constitutive equation for the material. The key point 
of the approach adopted lays in determination of 
complex moduli, i.e. storage and loss moduli under 
harmonic loading. It is usually done by making use 
of equivalent linearization technique. In this paper, 
Zaїri model was used simulate the time dependent 
response of PC polymer. Obtained histories of main 
field variables evolution were used to find the stress–
strain cyclic diagram and real as well as imaginary 
parts of complex shear modulus with making use of 
both standard and modified equivalent linearization 
techniques. The prediction of stress amplitude 
obtained in the frame of the former scheme 
overestimates the actual value for more than 10% 
while the latter scheme gives it with desirable 
accuracy. 
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