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ABOUT ALGORITHMS OF STATISTICAL SIMULATION
OF SEISMIC NOISE IN THE OBSERVATION PROFILE FOR DETERMINATION
THE FREQUENCY CHARACTERISTICS OF GEOLOGICAL ENVIRONMENT

(PekomeHdo8aHO YneHoM pedakuiliHoi koneeii 0-pom ¢biz.-mam. Hayk, npogp. b.I1. Macnosum)

The article is devoted to the theory and methods of random process and field statistical simulation on the basis of their spectral de-
composition and modified Kotelnikov-Shennon interpolation sums, as well as using these methods in environmental geophysical moni-
toring. The problem of statistical simulation of seismic noise in the observation profile is under consideration for introduction into seis-
mological researches for determination of the frequency characteristics of geological environment. Statistical model and numerical al-
gorithm of simulation realizations of such random fields are built on the basis of modified Kotelnikov-Shennon interpolation decomposi-
tions for generating the adequate realizations of seismic noise. Real-valued random fields §(t, x), t € R, x € R, that are homogeneous
with respect to time and homogeneous isotropic with respect to spatial variable are studied. The problem of approximation of such ran-
dom fields by random fields with a bounded spectrum is considered. An analogue of the Kotelnikov—Shannon theorem for random fields
with a bounded spectrum is presented. Estimates of the mean-square approximation of random fields in the space R xR by a model
constructed with the help of the spectral decomposition and interpolation of Kotelnikov—Shannon formula are obtained. Some proce-
dures for the statistical simulation of realizations of Gaussian random fields with a bounded spectrum that are homogeneous with re-
spect to time and homogeneous isotropic with respect to spatial variable are developed. Teorems on the mean-square approximation of
homogeneous in time and homogeneous isotropic with respect to the other variable random fields by special partial sums have been
proved. A simulation method was used to formulate an algorithm of numerical simulation by means of these theorems. The spectral
analysis methods of generated seismic noise realizations are considered. Universal methods of statistical simulation (Monte Carlo
methods) of multi parameters seismology data for generating of seismic noise in the observation profile of required detail and regularity
have been developed.

Keywords: statistical simulation, seismic noise, random process

Introduction. Due to the rapid development of com-
puter technology, methods of numerical simulation (the so
called Monte Carlo methods) of stochastic processes and
random fields have an expanding range of applications.
They are applied, in particular, in such natural sciences as
geology, geophysics, geoinformatics, seismology, meteor-
ology, oceanography, electrical engineering, statistical ra-
dio physics, nuclear physics, and others. Using statistical
simulation techniques and computers, one can generate
realizations of stochastic processes and random field for
which some necessary statistical data is known.

The statistical simulation of random functions on the
basis of their spectral decomposition (M. Yadrenko, 1983)
is very important to resolve these problems [13]. Modified
Kotelnikov—Shannon interpolation decompositions for sto-
chastic processes and 2D random fields have been studied
by J.Higgins, 1996; Z.Vyzhva, 2003, 2011, 2012;
A. Olenko, 2004 [2—4, 6, 10].

The problem of improving the procedures developed in
the works [4, 5] is considered in the article. The statistical
simulation realizations of random fields &(t,s) of seismic
noise with a bounded spectrum, depending on the time t,
and given to the spatial variable s on profile of regular or
irregular step is presented. These algorithms are based on
the modified Kotelnikov—Shannon interpolation decomposi-
tion for implementation in seismological researches on the
needs of determining the frequency characteristics of the
geological environment at construction sites. Models and
procedures for numerical simulation realizations of random
fields are built on the basis of the errors. Estimates of
mean square approximation of such fields are defined. The
simulated realizations are adequate to realizations of seis-
mogram noise in the case of two variables.

Practically it is important to use the statistical simula-
tion realizations of such random fields for the extract the

seismic noise, that depends on one or more significant
parameters, and external influence and to obtain corre-
sponding estimates of the frequency characteristics of
three-dimensional geological environment of the monitor-
ing profile. These estimates should be considered in the
construction of different objects in order to ensure the
reliability of buildings.

Statistical simulation of seismic noise on monitor-
ing profile with regular step

The method developed on the basis of modified Ko-
telnikov—Shannon interpolation decompositions for ran-
dom fields in the two-dimensional observation area with a
bounded spectrum on a regular grid of observations, is
used for statistical simulation of the observed seismo-
grams noises [2, 3].

If we consider the random field &(t,s) (--0< t, s <+-00) in
the two-dimensional observation area with a bounded
spectrum with a bounded spectrum of each variable, it is
possible to build the model of such field based on the modi-
fied Kotelnikov—Shannon interpolation decompositions [2].
The variable s can be interpreted as the distance between
the point of observation of the simulated noise of seismo-
gram and the initial point of observation.

The representation of separable two-dimensional
random fields as a decomposition in infinite interpolation
series

The representation of two-dimensional random func-
tions in this paragraph as a decomposition in infinite inter-
polation series in this paragraph conduces to the necessity
of researching the approximation errors of these functions
by finite series, because in practice we are often unable to
measure all the parameters of some event with complete
accuracy. The error of experimental result is the most
closely connected to the theorems of simulation, for exam-
ple, the so-called "aliasing errors" [10].
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For the statistical simulation realizations of random
fields on a plane with the uniform grid of interpolation it is
also important to know dependence of the accuracy of
mean square approximation of such fields by series on
the number of harmonics of this series by using in prac-
tice its partial sum. Therefore, the following theorem is
presented [2].

Theorem 1. If &(t,s) (-0 < 1, s < +o0) is a separable ran-
dom field, Mg(t,s)=0, then it can be represented as the
integral:

g(t,s)= [ fi(t.u)f,(s,v)Z(du,dv), (1)
U2
where U is a set of parameters u (a bounded domain of
real numbers), U, =UxU , and Z(du, dv) is a random func-
tion of sets on U xU that satisfy the following condition:
MZ(S,:8,)2(6,G2) =F(8,5:6uCa).
vS,,S,,G,,G, €B,.

Moreover, F is a complex function of sets, that is addi-

tive for all arguments and positive definite and so:

The estimate is given as:

/\A\g(t,s)—g,v(t,s)\2 <16L5L% [LOZ(s)\yz(B,SZ,N)(4L01(t)\}f1(a,s1,N)+1)+Lm(t)\1q(a,91,N)]2 Il |F(an.du)

where

¥i(o,94,N)=

(=98N

‘Pz(B,Sz,N):B++2nei b (8

2
, Loz(s):(%j sinBs| are functions

Loy (t) _(ijzsmt

that finite in any bounded domain of variables t and s re-
spectively, L; is defined as (3), f; (/ =1,2) are functions in

decomposition (1) of random field &(t,s) and &y (t,s) is
the partial sum of series (5) that is

sin a(t—%) sinB(s—%)

Zﬂz\F(dx,du)\@o
ucu

We assume, that the functions fi(t,u), i=1, 2 can be de-
termined in the plane of complex variable according to t to
integer functions of exponential type with finite indexes and
the following restrictions are:

Ly =sup sup [fi(t,u)|<+e, i=12. (3)
uel —oo<t<o

Let qi(u), i=1,2 are indexes of functions f{(t,u), i= 1,2
respectively and the conditions:

9; =supq;(y;) <o, =12 4)
ujel

Then the probability one the next decomposition of ran-
dom field in series as follows:

) sin on(t—%‘) sinB(s—%)

T

where a and B (o=1/At, B=m/As, At, As are sampling
intervals in variables t and s respectively; a,> 91 > 92, 9i,
i=1,2 are numbers that satisfy specified conditions (4).

Bts)= > gftmme

k,m=—0 a B

®)

. (6)

vAu?

Models and procedures of statistical simulation of
the two-dimensional random fields on a regular grid of
interpolation

It is possible to build the statistical model of random
field &(t,s) by means of interpolation decomposition (5) of
this field in the plane with the uniform grid of interpolation.
It has the form as (9) where N is a positive integer number.

The following procedure of the statistical simulation
realizations of the random fields in a plane, which are set
on a uniform grid of interpolations, is presented below. It
is based on the model (9) using the estimate (6) of the
mean square approximation of such fields by the partial
sum of series (5).

Procedure 1.

1. We choose positive integer numbers N for the model
(9) according to the prescribed accuracy € > 0 by using the

= 3 kn mn following inequality
eults)= 3 gt ) gom) @
16L$1L$2[L02(s)\yz(B,sz,N)(4L01(t)\y1(a,91,N)+1)+Lm(t)\y1(a,91,N)]ZB(0)<a, (10)

where Los(t), Loz(s) are finite functions in any bounded do-
main of changing variables t and s respectively, Lf1 are
functions as (3) and f; (i=1,2) are functions in decomposi-
tion (1), a B(0)=Dg(t,s).

2. We generate values of the Gaussian random variables:

{&m}» k.m=-N.N, (11)
which have the following statistical characteristic:
Mg, ., =0, k,m=-N,N,
— (12)
Dy =B(fam ke ) jm—-N.N,
where B(u,v), u,v € R2 is a correlation matrix of random

field &(t,s).

3. We calculate the value of the expression (9) at a
given point (t,s), by substituting the number N and values
of Gaussian random variables (11).

4. We check whether the realization of the random field

&(t,s) generated in step 3 fits the field data by testing the
corresponding statistical characteristics.

Thus the procedure of the statistical simulation realiza-
tions of the random fields in the plane, which are set on the
uniform grid of interpolation, is defined. This procedure
gives an opportunity to generate realizations of the random
field on a plane with accuracy that depends on the selected
number for simulating the interpolation points of uniform
grid in observation area. The procedure is based on a
model as the generalized Kotelnikov—Shannon series for
the two-dimensional random fields and requires using such
statistical information of field data, as the mathematical
expectation and variance of each nodal point.

Before applying the proposed procedure, the data is
verified on type of statistical distribution by means of con-
structing the histogram. Thus, the best approximation of
the random field in the plane by the developed models will
be when this field has Gaussian (normal), lognormal or
approximately Gaussian distributions. The application of
these procedures is possible for other types of distribution
but it will be with lesser accuracy.

The developed procedure can be applied not only
for the random fields, which are defined on a regular
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square grid of joints in a plane of size NxN but also in
any rectangular grid that does not exceed this square
in linear sizes. Thus the empty square joints can be
considered as zero.

N M
gN,M(tas): > X S k,m
k=—N m=—M

where a, B are parameters which are determined by the
Nyquist frequency in each variable; N,M, are some positive
integer numbers, which are associated with the number of
elements in the series of the model; and

Sim=0. km=-N.N; D, =B k)

where B(u,v),u,v € R, is a correlation matrix realization of

random field &(,s).

By using results [6] we find the improved estimate of
mean square approximation of model E_,N‘M(t,s) of such

random field &(t,s) in the form of inequality as:

16
n4(2N—1)(2M—1)B(0)’
Then by using the estimate (15) in the following
procedure, it is possible to determine the positive integer
numbers N and M which are the number of elements in
the series of model &ywm(t,s) according to a prescribed
accuracy &(e>0).

Ele(t.s) - &yp(t.5) < (15)

The procedure for the numerical simulation realizations
of Gaussian random fields &(t,s) in a two-dimensional area
with the rectangular grid of observations with a bounded
spectrum in each variable, is built on the basis of model
(13) and estimate (15), which is:

The pocedure 2.

We choose positive integer numbers N and M for the
model (13) according to a prescribed accuracy € > 0 by
using the following inequality

16

Fen—am—) 20"

where B(0)=D{(t,s) is a variance of random field &(¢,s).

(16)

We generate values of the Gaussian random variables
{&m]. k=-N.N; m=-M.M

with statistical characteristics (14).

We calculate the value of expression (13) at a given
point (t,s) te[0, T], s€[0, S] (T is the length of the time
observation interval, S is the length of spatial observation
interval), by substituting the numbers N and M and values

of Gaussian random variables {ik!m}, k=-N,N;

m=-M,M , that will be the value of the generated realiza-
tion of a given random field &(t,s) at this point.

We check whether the realization of the random field
&(t,s) generated in step 3 on the given regular grid

of points in a two-dimensional domain [0, T] % [0, S] fits
the field data by testing the corresponding statistical
characteristics.

Description of the subject of inquiry and its statistical
simulation.

We considered seismograms of two observation points
in Odessa: BUG3 and PNT1. 9 segments of noise from
seismograms for each of these points were selected. Total
recording time of information that was selected for analysis

Another model EN,M(t,s) (0t <T,0<s <S; (T, S are
lengths of observation intervals in time and in the distances
respectively) for Gaussian random field &(t,s) in two-
dimensional observation area with the following properties:

sin a(t—%) sinB(s—%)

realization lasted 1.5 hours for each of the items. Full vector

> 13
aft—") "p(s—] 19
{&m|» k=-N,N; m=-M,M are sequences of the

Gaussian random variables that have the following statisti-
cal characteristics:

k=-N,N; m=-MM

; , (14)
of seismic waves recorded on components: "East-West" —
EW, "North-South" — NS, and "vertical" — Z.

By means of seismograph recording the chart of motion
the earth's surface in the form of changes the amplitude
over time is obtained.

The method of statistical simulation of random fields
[2, 5] can also solve an important problem of simulating
the imitated realization of output noise seismogram
for the imaginary observation point, located between
observation points BUG3 and PNT1. Amplitude and
phase spectra of such realization of noise can be used to
obtain the frequency characteristics of the geological
environment at the construction site, which describes its
ability to change (increase or decrease) the amplitude of
the seismic waves during earthquakes [1, 4]. The numerical
simulation of frequency characteristics of soil strata, in
some cases, can significantly reduce the cost of works on
seismic zoning of the construction sites by reducing
the number of points of instrumental observations of
earthquakes, explosions and microseisms.

In the works [3, 5] the results of simulation the realization

of noise seismogram (the realization of random field g(t,s)

at the value of spatial coordinate sJ=1/2, t - time) are de-
scribed for an imaginary observation point, that is located in
the middle between the points BUG3 and PNT1 for the
components of NS vibrations. For the calculation the model

(9) of the random field &(t,s) of noise seismogram is used,

that is based on a partial sum of the modified Kotelnikov—
Shannon series for the random fields with a bounded
spectrum on a regular grid of observations [3, p. 281].

Statistical analysis of the generated realization of the
random field of noise in seismogram confirms the ade-
quacy of input data.

For graphic interpretation of the simulated random field
of noise in seismogram the framed map was built in the
program Surfer on the three obtained fragments and the
above-mentioned realization of the random field. Each
fragment contains 100 first samples of these realizations.
Visualization of output data shows correspondence be-
tween these realizations.

Spectral analysis of generated noise in the flat ob-
servation area

Frequency characteristic estimates for the geological
environment in the observation profile points with multidi-
mensional observation area (under construction sites) can
be obtained by calculating and constructing the amplitude
and phase spectra of noise in seismogram observation
points in that observation points, considering fixed space
argument s except time [5]. Calculations of the amplitude
and phase spectra can be made by direct method [1,
p. 179], i.e. periodogram method.
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Fig. 1. The surface of realization of the random field of noise, which is built in points

g(t.s;), §=01/2% t,=kx00% k=1N;

Fig. 2a and 2b show graphs of the Z component am-
plitude spectrum |S(w)| for noise seismograms at obser-
vation points BUG3 and PNT1; Fig. 2c — the amplitude
spectrum of simulated noise realization for the new ob-

N =100, in a seismogram in the direction Z

servation point located equidistantly between points
BUG3 and PNT1.

Graphs of the NS component amplitude spectrum
|S(w)| are shown on the Fig. 3, a, b, c.
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Fig. 2. Graphs of the Z component amplitude spectrum |S(w)| of averaged input seismic noise data at observation points:
a—BUG3 and b — PNT1; ¢ — the amplitude spectrum |S(w)| of simulated noise realization
for the new equidistant observation point located between points BUG3 and PNT1
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Fig. 3. Graphs of the amplitude spectrum |S(w)| of averaged input seismic noise data for NS component at observation points:
a—BUG3 and b — PNT1; ¢ — the amplitude spectrum |S(w)| of simulated noise realization
for the new equidistant observation point located between points BUG3 and PNT1
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Those spectral methods that use frequency as an inde-
pendent parameter provide information about the structure
and filtration properties of the upper crust layers, because
any medium is a filter that due to resonance and reverbera-
tion effects increases the oscillation amplitude for some fre-
quencies and reduces for the others [1, p. 270]. The ability to
simulate the effects depends on amplitude and phase fre-
quency characteristics of the geological environment for
observation points under building sites and operating plat-
forms, allows studying the geological section features and
predicting places where significant increase in the seismic
oscillation intensity is possible due to resonance effects and
oscillation field interference nodes.

Among the many ways to eliminate the influence of
various factors that affect the spectrum shape of seismic
waves during earthquakes, explosions and microseism
except that due to the influence of the upper crust section
part, the way should be noted based on the use of the ver-

tical [SZ(w)| component spectra relations to the horizontal

SN (w)| component. Spectra must be calculated for the

same wave. This ratio is called the crust spectral ratio T(w).
‘Sz(m)‘ / ‘SN (m)‘ =T (o).

The ratio T(w) is independent of the spectrum of inci-
dent seismic waves, but is determined entirely by the geo-
logical environment structure under the observation point.

Fig. 4a and 4b show graphs of the earth crust trans-
mission ratio T(w) for observation points BUG3 and PNT1
respectively. They were plotted as the Z to NS oscillation
components ratio of amplitude spectrum |S(w)| for initial
seismic noise realization. Fig. 4c represents earth crust
transmission ratio graph T(w), that was built as the Z to
NS oscillation components ratio of simulated noise seis-
mogram smoothed amplitude spectrum for the new ob-
servation point located equidistantly between points
BUG3 and PNT1.
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Fig. 4. Graphs of the earth crust transmission ratio T(w) calculated as the Z to NS oscillation component ratio
of amplitude spectrum |S(w)]| for initial seismic noise realization on observation points:
a—BUG3 and b — PNT1. ¢ — earth crust transmission ratio graph T(w), that was built as the Z to NS oscillation
components ratio of simulated noise seismogram smoothed amplitude spectrum for the new observation
point located equidistantly between points BUG3 and PNT1

Interpretation of crust transmission ratio for these
observations was conducted by comparing them with
theoretical ratio calculated for well-known models of the
upper section part.

Horizontally layered, vertically inhomogeneous models
of the geological environment are usually considered to
minimize errors. The frequency characteristic calculations
for more complex models are performed by finite-difference
and finite-element methods [1].

Fig. 4a, 46 and 4B shows graph T(w) of smoothed am-
plitude spectra transmission ratio for all observation points
BUG3, PNT1 and imaginary observation points between
those points that can be used to determine the increase of
seismicity level on different parts of the building site, rela-
tive to the real observation point PNT1 of this paper.

A statistical simulation of seismic noise in observa-
tions profiles with an irregular step

It is necessary to notice that the model (9) and proce-
dure 2 have one significant restriction, that lies in the fact
that samples of data realizations of this random field

g(t,s) can be given on a uniform grid in both variables t

and s. If for the time variable t this condition is mainly
performed, and for the spatial variables, can satisfy
this restriction in very rare cases. Therefore it is proposed
in the space of variables (£,s) te[0, T], s€[0, S] to simulate
realizations of the random fields &(t,s) otherwise, by

using the second approach for constructing the models
and procedures.

The model [3], that based on Kotelnikov—Shannon
decomposition [7] for homogeneous in time t and
homogeneous isotropic with respect to x random fields

g(t,x) (0=t <T, 0< x =X) in unit cylinder in RxS2 with a
bounded spectrum which concentrated on [-d.a], is

constructed and summarized in the cylinder RxS(X);
with arbitrary radius X/2m. This model EN,M(M). has the

representation of a series:

sin(x(t—ﬂj
L\ o)

E’N,M(t,x) =2 nn
o{t —?) (17)

k=—N
x 1 E +§ ﬁ cosmnx+ [E sinmnx
2@0 o = Sk o % Nk o % >

where a (a >d ) is a parameter which is defined by the Nyquist

frequency, {qk (?j}{nk (Tj} k=-N,N,m=0,M, are

values of Gaussian random variables that satisfying the
following conditions:

My ()5, (s) = 8iby (t =),

X
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M (6)n, (5) = 3y (t ).

Mc, (t)n, (s)=0. (18)
where by (t-s) (k=0,12,..) are coefficients of decom-
position in Fourier series the correlation function
B(t-s,/x;—x,|) of the random field &(t,s) in the cylinder

RxS(X)2, which is isotropic with respect to x and homoge-
neous in time t, which can be defined as follows:

M‘g(t,x) ~Eym(t.X)

where X is the length of space interval, p is the index of
functions class Dp, that is to say, the function, that deriva-
tives of order p—1 inclusive and derivative B(p-1)(¢) of or-
der p—1 is absolutely continuous and derivate B(p)(¢) of
order p is summarized and bounded;

K, = max
0<@<2n

B(p)(t—s,\x1—x2\)‘ is a maximum of p-th

derivative of the correlation function B(t—s,
random field &(t,s)in RxS(X)2 and B(0) is a variance of
random field &(t,s).

It is necessary to notice that the cylindrical shape of
variables area of the random fields means that the random
field is a homogeneous in time t and periodic with respect
to variable x (isotropy), that is to say, its correlation function
with respect to the spatial variable x can continue periodi-
cally with a period equal to the interval of correlation.

We describe the constructed procedure for simulation

realizations of the random field g(t,s) homogeneous in

X;—X,|) of

time and isotropic with respect to x with a bounded spec-
trum in the cylinder RxS(X)2 , based on the model (17) and
the estimate (20) of mean square approximation such as
random fields, which are Gaussian distributed.

Procedure 3.

1) We choose positive integer numbers N and M for the
model (17) according to a prescribed accuracy € > 0 by
using the following inequality

P
;‘Bi;(p(ﬁ) Mi2(p+1) (p22).,
n° (2N -1) n) MP(p-1)
where K, is a maximum of p-th derivative for the correla-

tion function B(t-s,

cylinder RxS(X)2.
2) We generate values of the Gaussian random vari-

ables {Qk (knj},{nk (knj}, k=-N,N,m=0,M, that sat-
o o

isfy the conditions (18).

3) We calculate the expression (17) at a given point
(t,x)in RxS(X)2, by substituting the numbers N and M
calculated in step 1 and values of Gaussian random vari-

ables calculated in step 2.
4) We check whether the realization of the random

field £(t,x) generated in step 3 fits the field data by testing

X;—X,|) of random field &(t,s) on the

the corresponding statistical characteristics.

By the constructed procedure it is possible to simulate
realizations of the random fields, that are homogeneous
with respect to t (time) and homogeneous isotropic (sta-
tionary) with respect to spatial coordinate x, and have a
bounded spectrum. These fields can be arrays of noises in
seismograms that are obtained simultaneously in the points
of seismic observation located at some distance x from
each other. The procedure 3 has some advantages over

‘2 4[3(0)
<— 7
n?(2N -1

be(t-s)=[" ™ F, (dn). (19)
where Fy( ) is a sequence of nonrandom spectral meas-
ures on (—a, a).

From [2, 3] and [4] implies that the estimate of mean
square approximation of random field &(t,s) with a
bounded spectrum on the cylinder RxS(X)2 which is ho-

mogeneous in time and isotropic with respect to x by the
model (9) as follows:

)KP[XJPA’”Z(M, (p>2). (20)

T

MP(p—1)

the procedure 2 that was proposed in [5], as samples of
data realizations with respect to the spatial variable x can
be given on the observation profile with an irregular step,
but it is necessary, that the random field with respect to the
variable x should be periodic.

Conclusion. The method of statistical simulation reali-
zations of the random fields gives an opportunity to gener-
ate noises in seismograms by the constructed procedures,
that depend on time t, and set on the spatial variable s on a
profile with the regular or irregular step of placing observa-
tion points for evaluation of frequency characteristics of
geological environment under these seismic stations and in
closely spaced points on them.
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KviBcbkui HalioHanbHuM yHiBepcuTeT imeHi Tapaca LLleByeHka,
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NPO ANFTOPUTMWN CTATUCTUYHOIO MOLAENOBAHHA CEUCMIYHOIO LWYMY
HA NMPO®IJ1I CNOCTEPEXEHHA ANMA BU3HAYEHHA YACTOTHUX XAPAKTEPUCTUK
FEONOri4YHOro CEPEAOBULLA

Po6oma npucesiyeHa nodanbuwiii po3pobyi meopii ma memodie cmamucmu4Ho20 MoOesIlo8aHHs1 eunadKoeux npPouyecie ma rnoJsie Ha OCHo8I ix
cnekmpanbHux po3knadie ma modudpikoeaHux iHmepnonsiyilinux psidie KomenbHukoea-lLleHHOHa, a mMakKo) 3acmocyeaHHO makux memodie y
3adayax 2eo@hi3u4HO20 MOHIMOPUHaY HaBKO/MUWHBLO20 cepedosuwja. Po3anssHymo 3ada4y cmamucmu4Ho20 Modesito8aHHs1 eunadkosux rnorie
celicMi4HO20 WyMy Ha npogini cnrocmepexxeHHs1 NpPuU ernpoead)keHHi y celicMoso2iyHi AocioKeHHs 01l 6U3HaYEeHHsT 4aCMOMHUX XapakmepucmukK
2eosioei4Ho20 cepedosuwja. [lo6ydosaHo Modeni ma cghopmynbL08aHO an2opUMMU HUuceslbHO20 MOOesIto8aHHsI peasi3zayili makux eunadkoesux
nonie Ha ocHoei ModugpikosaHux iHmepnonsauyiliHux po3knadie KomenbHukoea-lLlleHHoHa Onsi 2eHepyeaHHs1 adekeamHux peasi3auii wymy celic-
mozpam. Y cmammi makox eue4yarombcsi dilicHo3HayHi eunadkoei nons §(t, x), t € R, x € R — 00HOpidHi 3a 4acoM ma oOHOpPIOHi i3omponHi 3a
npocmopoeoto 3MiHHOK Ha npogini cnocmepexeHHs. [ns eunadkosux nosiie 3 o6MexxeHUM CrIeKMpPOM ecmaHoe8s/1eHo aHano2 meopemu Komens-
Hukoea-LlleHHoHa. HaeedeHo ouiHKu cepedHboKkeadpamuy4yHo20 HabuXeHHsI makKux eurnadkosux rnoslie Mooessito, No6ydoeaHO Ha OCHOGI criekm-
panbHo2o po3knady ma inmepnonsiyiliiHoi gpopmynu KomenbHukoea-LLleHHoHa. Po3pobieHo anzopummu cmamucmuYyHo20 Modesno8aHHs peaiti-
3ayil 2aycciecbkux 0OHOPiOHUX 3@ YacoM ma 0OHOPIGHUX i30MPOMHUX 3a MPOCMOPOBOH 3MIHHOI Ha NPogini cnocmepexeHHs1 eunadKoeux nosie
3 o6mMexxeHUM cnekmpom. HaesedeHo meopemu npo oyiHku cepedHbokeadpamuy4Hoi anpokcumMayii 0OHOPiIOHUX 3a YacoM ma oOHOpidHuUX i3ompon-
HUX 3a N iHWUMU 3MiHHUMU 8unadkosux rfoJie Yacmkosumu cymamu psidie cneyianbHo20 eueassidy, 3a G0NOMO20t0 SAKUX CGhopMYysIbOBaHO asneo-
pummu 4YucesibHo20 MOOesIl08aHHs peani3zauili makux eunadkoeux nosie. Po32nsiHymo crnocobu npoeedeHHs1 crnekmpasibHO20 aHaslily 32eHepo-
e8aHux peanisayiti wymy celicmozpaM. Po3pobrieHo yHieepcanbHi Memodu cmamucmu4Ho2o ModesoeaHHsi (Memodu MoHme-Kapno) 6azamona-
pamempuyHux celicMosio2iYHuUx daHux, siki datomb MoXJueicms eupiwumu npobreMu 2eHepyeaHHs1 peanisayili wymy celicmoz2paM Ha npogini
crocmepeeHHs i3 KPOKOM HeobxiOHOi demanbHOoCcmi ma pe2ynsipHocmi.

Knro4oei cnosa: cmamucmuy4He modesnto8aHHs1, celicMiyHull wym, eunadkosi npoyecu
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OB AIITOPUTMAX CTATUCTUYECKOIO MOAENUPOBAHUA CENCMUYECKOIO LUYMA
HA NMPO®UNE HABNIOAEHWA ONA ONPEARENEHUSA YACTOTHBIX XAPAKTEPUCTUK
FEOJIOTMYECKOU CPEQNDI

Pa6boma nocesiweHa danbHelwel pa3pabomke meopuu u Memodoe cmamucmu4Yyecko2o0 ModesiupoeaHusi criiy4aliHbiX npoyeccoe u nosel Ha
OCHO8€e UX CreKmpasibHbIX pa3/ioXeHul U MoOupUUUPOBaHHbLIX UHMEPMNONSIUUOHHbLIX psidoe KomenbHukoea-lleHHOHa, a makxe MPUMEHEHUI
makux memodoe e 3ada4yax 2e0ghu3uyecKo2o MOHUMOPUH2a OKpyXxaroujeli cpedbl. PaccMompeHa 3ada4a cmamucmu4ecko20 ModesiuposaHust
cnyyaliHbix nonel Ha npoghusne HabnrodeHus1 Npu eHedpeHUU 8 celicMosioaudeckue uccrnedogaHusi 011 onpedesieHUs1 YaCMOMHbIX XapaKkmepuc-
muk 2eono2u4veckoli cpedsbl. [TocmpoeHb! Modesniu u cghopmynuposaHbl an20pPuUMmbl YUC/TEHHO20 MOOesTupo8aHusi peanu3sayull makux criy4alHbIx
noneli Ha 0CHoBaHUU MOOUbuyUPOBaHHbLIX UHMEPNONASIYUOHHbIX pa3oxeHull KomenbHukoea-LLleHHOHa Ansi 2eHepupoeaHusi adeKkeamHbIX peanu-
3ayutl wyma celicmozpaMm. B cmambe usy4aromcsi delicmeumesibHO3HayYHble cryyalHble noss §(t, x), t € R, x € R — o00HOpoJdHbIe Mo epemMeHU U
00HOPOOAHBLIE U30MPOIMHbIE M0 NPOCMpPaHcmMeeHHOoU nepeMeHHolU Ha npogusie HabnmodeHus. [ns cnyyaliHbix nosel ¢ o2paHU4YeHHbIM CEeKIMPOM
ycmaHoersneH aHanoz2 meopembl KomenbHukoea-llleHHoHa. [MpueedeHbl meopeMbl 06 oueHkax cpedHekeadpamu4yecKo2o MpubnuXeHUsi makux
cny4aliHbIx nosneli Modesibio, KOMopasi MoCcmMpPoeHa Ha OCHO8e CMeKMpaslbHO20 Pa3JsIoXeHUsl U UHMepnonissyuoHHol ¢popmynbi KomenbHukoea-
LlleHHOHa. Pa3pabomaHbl anzopummbl cmamucmu4ecko2o ModesiupoeaHusi peanu3ayull 2ayccoecKux 0OHOPOOHbIX M0 8peMeHU U 0OHOPOOHbIX
u30MpOonHbIX M0 NPOCMpPaHCMeeHHoU nepeMeHHOU cry4YaliHbix nosel ¢ o2paHu4eHHbIM crnekmpoM. [JokazaHbl meopemMbl 06 oyeHke cpedHekeao-
pamu4eckol annpokcumayuu oOHOPOOHbIX M0 8peMeHU U 0OHOPOOHbIX U30MPOIHbIX M0 N Opy2uM nepeMeHHbIM ciy4aliHbIX nonel Yacmu4HbIMU
cymmamu psidoe creyuasnbHO20 8uda, nMpu NoMowu Komopbix c¢hopMyIuUpo8aH as2o0puUMM YUCIIEHHO20 ModeslupogaHus peanusayuli makux ciy-
qaliHbix nonel. PaccMmompeHbl cnocobbl npoeedeHusi cnekmpasnbHO20 aHau3a c2eHepupoeaHHbIX peanu3ayuli wyma celicmozpamm. Paspa6o-
maHbI yHugepcasibHble Memodbl Cmamucmu4ecko20 modenuposaHusi (Memodbl MoHme-Kapno) MHozonapamempuyeckux celicMosio2uyekux daH-
HbIX, KOMopble 0alom 803MOXHOCMb pewums npobrieMbl 2eHepupo8aHuUsi peanu3ayull wyma celicMozpaM Ha NJ0CKOCMU U 8 MPexXMepHOM po-
cmpaHcmee Ha cemke Heo6xodumol demasibLHOCMU U peaynsipHoCcCMu.

Knroyesnie crnosa: cmamucmuyeckoe modesiupogaHue, celicMu4eckul wym, Cﬂy‘laﬂHble npoyeccsl.





