УДК 539.3

Рудаков К.М., д.т.н., проф.

НТУУ «Київський політехнічний інститут» м. Київ, Україна

МОДЕЛЮВАННЯ ВЕЛИКИХ ДЕФОРМАЦІЙ. ПОВІДОМЛЕННЯ 6. ТЕРМОПРУЖНО-ПЛАСТИЧНИЙ АНАЛІЗ, ФОРМУЛЮВАННЯ ТОТАL LAGRANGIAN

Rudakov K.

National Technical University of Ukraine «Kyiv Polytechnic Institute», Kyiv, Ukraine (mmi@kpi.ua)

MODELING OF LARGE STRAINS. MESSAGE 6. THERMOELASTO-PLASTIC ANALYSIS, TOTAL LAGRANGIAN FORMULATION

У Повідомленнях 1 - 4 було розглянуто, як ідею мультиплікативного розкладання Лі градієнта пружно-пластичних деформацій Коші-Гріна можна застосувати для узагальненого розкладання на випадок одночасної присутності чотирьох типів деформацій: температурної, пружної, пластичних і повзучості, а також встановлені допустимі форми рівнянь стану. У Повідомленні 5 проаналізована проблема вибору відлікової конфігурації для пружних деформацій у випадку термопружності: "розвантаженої" або "початкової".

Мета цього Повідомлення — запропонувати варіант ефективного алгоритму для розв'язування крайових задач термопружно-пластичності з великими деформаціями.

Застосовували обтрунтований на основі другого закону термодинаміки закон пластичної течії, мультиплікативний розклад градієнта термопружно-пластичних деформацій Коші-Гріна, формулювання Total Lagrangian та підхід, коли пружні та пластичні деформації визначаються відносно "розвантаженого" стану. Матеріал – ізотропний метал.

Розробили ефективний скінченно-елементний алгоритм обчислення напружень та великих деформацій в твердому тілі з ізотропного матеріалу при термопружно-пластичності, у формулюванні Total Lagrangian. Алгоритм запрограмований в авторській скінченно-елементній програмі. Теоретичні викладки перевірено на числовому тестовому прикладі.

Розроблений алгоритм є узагальненням ефективного алгоритму, запропонованого автором в 1989 році для малих деформацій.

<u>Ключові слова:</u> великі деформації, формулювання Total Lagrangian, мультиплікативне розкладання, термопружнопластичний аналіз, алгоритм, метод скінченних елементів.

Вступ

Моделювання значних деформацій матеріалу, які одночасно містять деформації різного типу (температурні, пружні, пластичні, повзучості), є складною проблемою. Такий комплекс деформацій може виникати, зокрема, в околі вершини в'язкої тріщини в аварійних режимах роботи енергетичного агрегату з невиявленою заздалегідь тріщиною.

У серії Повідомлень [1-5] розглядалися проблеми, характерні для моделювання великих деформацій.

Зокрема, в [1] розглянуто, яким чином ідею мультиплікативного розкладу Лі [6] градієнта пружнопластичних деформацій Коші-Гріна [X] можна застосувати для узагальненого розкладу на випадок одночасної наявності чотирьох типів деформацій: температурних, пружних, пластичних та повзучості. В [4] з другого закону термодинаміки отримані теоретичні обмеження щодо зв'язків швидкостей необоротних деформацій з напруженнями. А в [5] теоретично та на числовому прикладі показано, що при моделюванні процесу деформування з великими термопружними деформаціями при застосуванні міри деформацій Гріна-Лагранжа вірним є підхід, коли пружні деформації визначаються відносно "розвантаженого", а не "початкового" стану.

Зазначимо, що є значна кількість практично важливих задач, для яких можна застосувати формулювання Total Lagrangian (TL), коли історія деформування не впливає на поточний стан. Але в літературі при TL-формулюванні звичайно використовують логарифмічні деформації (як й при формулюванні Update Lagrangian), що приводить до значного збільшення кількості дій при обчисленні напружень та деформацій в точках тіла [7-9], а якщо рекомендують використовувати деформації Гріна-Лагранжа, то це проводиться без належних обгрунтувань моделі матеріалу або при відсутності температурних деформацій [10].

Мета цього Повідомлення – запропонувати варіант ефективного алгоритму визначення напружень при моделюванні процесу деформування з великими деформаціями трьох типів: температурних, пружних та пластичних, із застосуванням формулювання Total Lagrangian та підходу, коли пружні та пластичні деформації визначаються відносно "розвантаженого" стану через деформації Гріна-Лагранжа.

Буде застосовуватися тільки декартова система координат. Матеріал – ізотропний метал. За принципом зручності будемо застосовувати записи в матричній та/або індексній формах.

Тензори Гріна-Лагранжа різних типів деформацій

У випадку наявності температурних, пружних та пластичних деформацій мультиплікативний розклад матриці градієнтів деформацій [X] (див. [1], формулу (19)), скорочується до

$$[X] = [X^{e}][X^{p}][X^{\theta}].$$
(1)

Компоненти матриці [X] визначаються виразом $\delta^{mn} + \partial u^m / \partial a^n$; m, n = 1, 2, 3, де u^m – переміщення, a^n – координати вихідного базису. Верхнім індексом *е* відмічаються пружні, p – пластичні, а θ – температурні компоненти. Матриця [X^{θ}] з властивостями

$$[X^{\theta}] = \mathcal{G}[I]; \quad \mathcal{G} = \mathcal{G}(\theta) = 1 + \overline{\alpha}_{\theta}(\theta - \theta_0); \quad J^{\theta} = \det[X^{\theta}] = \mathcal{G}^3 > 0 \tag{2}$$

описує тільки температурний градієнт і містить просторові похідні від температурних переміщень [2]. Тут θ й θ_0 – температури: поточна та початкова; $\bar{\alpha}_{\theta}$ – коефіцієнт температурного подовження, [I] – одинична матриця. Згідно з груповими властивостями операторів відображення процес трансформації елементарного об'єму матеріалу тіла, що деформується, в часі може бути описаний операторами неперервних відображень, які розглядаються (записуються) справа-наліво [11]. Подібний підхід використовував, зокрема, Л.І. Сєдов в своїх публікаціях з механіки суцільних середовищ, наприклад, в Главі II на стор. 66 книг [12, 13]. Він теж розглядав процес деформування як сукупність послідовних трансформацій. Там же Л.І. Сєдов відмічав, що так званий "початковий стан" можна обирати довільним. Саме так побудоване мультиплікативне представлення процесу деформування (1): як би спочатку відбувається температурне деформування, потім – пластичне, і лише потім – пружне.

Щодо введення мір деформації в послідовно розглядуваних процесах деформування, в [5] на прикладі термопружності теж показано, що потрібно використовувати саме проміжний модифікований ("розвантажений") стан. При наявності трьох типів деформацій це будуть такі вирази матриць з компонентами правого тензора деформацій Гріна-Лагранжа:

$$[\epsilon^{\theta}] = 0.5([X^{\theta}]^{T}[X^{\theta}] - [I]) = 0.5([C^{\theta}] - [I]) = 0.5(\theta^{2} - 1)[I];$$
(3)

$$[\epsilon^{p}] = 0.5([X^{p\theta}]^{T}[X^{p\theta}] - [X^{\theta}]^{T}[X^{\theta}]) = 0.5([C^{p\theta}] - [C^{\theta}]);$$
(4)

$$[\epsilon^{e}] = 0.5([X]^{T}[X] - [X^{p\theta}]^{T}[X^{p\theta}]) = 0.5([C] - [C^{p\theta}]),$$
(5)

а також повні деформації Гріна-Лагранжа:

Тут

$$= 0.5([X]^{T}[X] - [I]) = 0.5([C] - [I]).$$
(6)

введені матриці
$$[C^{\theta}] = [X^{\theta}]^{T} [X^{\theta}], [X^{p\theta}] = [X^{p}] [X^{\theta}], [C^{p\theta}] = [X^{p\theta}]^{T} [X^{p\theta}], [C] = [X]^{T} [X].$$

Важливе, що при такому підході маємо адитивну властивість деформацій різних типів:

[∈]

$$[\epsilon] = [\epsilon^{e}] + [\epsilon^{p}] + [\epsilon^{\theta}] = 0.5(([C] - [C^{p\theta}]) + ([C^{p\theta}] - [C^{\theta}]) + ([C^{\theta}] - [I])) = 0.5([C] - [I]).$$
(7)

Згідно з (3) і (6) в якості "початкового стану" температурної та повної деформації обирається недеформований стан; для пластичних деформацій (4) – проміжний модифікований "розвантажений" стан, в якому вже реалізовані температурні деформації, а для пружних деформацій (5) – проміжний модифікований "розвантажений" стан, в якому вже реалізовані температурні та пластичні деформації. Три формули (3), (4) і (5) відповідають ідеології мультиплікативного представлення процесу деформування, а формули (6) цей розклад не стосується.

Базові співвідношення між приростами пластичних деформацій та напруженнями

Відзначимо, що, згідно з допустимим з точки зору другого закону термодинаміки співвідношенням (57) з [4], а саме

$$d_{mn}^{p} = \dot{\lambda}^{p} \frac{\partial g}{\partial (\Xi^{mn})_{s}}; \quad \underline{w}_{mn}^{p} = \dot{\lambda}^{p} \frac{\partial g}{\partial (\Xi^{mn})_{w}}; \quad m, n = 1, 2, 3,$$
(8)

компоненти $L_{mn}^{p} = d_{mn}^{p} + w_{mn}^{p}$ матриць приведених швидкостей деформацій $[L_{mn}^{p}] = [d_{mn}^{p}] + [w_{mn}^{p}]$ пов'язані з компонентами напружень Менделя Ξ^{mn} [14], причому в (8) $(\Xi^{nm})_{s} = 0.5(\Xi^{nm} + (\Xi^{nm})^{T})$, а $(\Xi^{nm})_{w} = 0.5(\Xi^{nm} - (\Xi^{nm})^{T})$.

Щодо практичного застосування допустимих співвідношень (8) зазначимо, що при переході до нескінченно малих деформацій $d_{mn}^{p}dt \rightarrow d\varepsilon_{mn}^{p} = de_{mn}^{p}$; $(\Xi^{mn})_{s} \rightarrow \sigma^{mn}$, а всі компоненти $w_{mn}^{p} \rightarrow 0$ й $(\Xi^{mn})_{w} \rightarrow 0$. Тут рівність прирощень тензора та девіатора нескінченно малих пластичних деформацій $d\varepsilon_{mn}^{p} = de_{mn}^{p}$ постулює незмінність об'єму за рахунок пластичних деформацій, а σ^{mn} є компонентами тензора напружень Ейлера-Коші.

Крім того, з урахуванням незмінності об'єму від пластичних деформацій постулюються зв'язки прирощень пластичних деформацій не з тензорами напруженнями, а з їх девіаторами (важливо, що при цьому головні ось напружень та прирощень пластичних деформацій не змінюються); для ізотропних матеріалів з ізотропним зміцненням це вираз $de_{mn}^{p} = d\lambda^{p}S_{mn}$ [15].

Тому й з напружень у виразах (8) потрібно видалити об'ємну складову.

Позначимо "об'ємну" частину *несиметричного* тензора напружень Менделя як Ξ_{v}^{mn} (в матричній формі запису $[\Xi_{v}]$) і "девіатор" Менделя

$$\Theta^{mn} = \Xi^{mn} - \Xi^{mn}_V; \quad [\Theta] = [\Xi] - [\Xi_V]. \tag{9}$$

Функціонал g у виразах (8), як це прийнято для ізотропного матеріалу з ізотропним зміцненням, будемо вважати квадратичним відносно Θ^{mn} . Тоді замість (8) маємо:

$$d_{mn}^{p} = \dot{\lambda}^{p} \cdot (\Theta^{mn})_{s}; \quad w_{mn}^{p} = \dot{\lambda}^{p} \cdot (\Theta^{mn})_{w}.$$
⁽¹⁰⁾

Нагадаємо, що $\underline{L}_{mn}^{p} = \underline{d}_{mn}^{p} + \underline{w}_{mn}^{p}$ [1]. Ще відзначимо, що $\dot{\lambda}^{p} dt = d\lambda^{p}$ й $(\Theta^{mn})_{s} + (\Theta^{mn})_{w} = \Theta^{mn}$. Тому замість (10), в різних формах запису:

$$L^{p}_{mn}dt = d\lambda^{p} \cdot \Theta^{mn}; \quad [L^{p}]dt = d\lambda^{p}[\Theta].$$
⁽¹¹⁾

Але при формулюванні Total Lagrangian потрібно застосовувати енергетично спряжений з тензором деформацій Гріна-Лагранжа \in_{mn} другий тензор напружень Піола-Кірхгофа (ТН2ПК) відносно початкової конфігурації, тобто (σ^{mn})₀, а не тензор напружень Менделя [10]. Потрібно переходити до формул з ТН2ПК.

Введемо об'ємну складову $(\underline{\sigma}_V)_0$ та девіатор ТН2ПК $(\underline{S}^{mn})_0$:

$$(\underline{\sigma}_V)_0 = \delta_{ij} \cdot (\underline{\sigma}^{ij})_0 / 3; \quad (\underline{S}^{mn})_0 = (\underline{\sigma}^{mn})_0 - \delta^{mn} \cdot (\underline{\sigma}_V)_0.$$
⁽¹²⁾

З їх використанням введемо матриці об'ємних напружень та девіатора ТН2ПК:

$$[\underline{\sigma}_{V}]_{0} = (\underline{\sigma}_{V})_{0}[I]; \quad [\underline{S}]_{0} = [\underline{\sigma}]_{0} - [\underline{\sigma}_{V}]_{0} = [\underline{\sigma}]_{0} - (\underline{\sigma}_{V})_{0}[I].$$
(13)

З формул (16), (34) і (9) зі статті [4], а саме $[\overline{S}] = J[X^e]^{-1}[\sigma][X^e]^{-T}$, $[\Xi] = [C^e][\overline{S}]$ та $[\sigma]_0 = J[X]^{-1}[\sigma][X]^{-T}$, з врахуванням, що $[C^e] = [X^e]^T [X^e]$, маємо матрицю з напруженнями Менделя

$$[\Xi] = [X^e]^T [X] [\sigma]_0 [X]^T [X^e]^{-T} .$$
(14)

3 (13) і (14) матриця з компонентами "девіатора" напружень Менделя

$$[\Theta] = [X^e]^T [X] [\S]_0 [X]^T [X^e]^{-T} .$$
(15)

Підставимо (15) в (11):

$$[\underline{L}^{p}]dt = d\lambda^{p}[X^{e}]^{T}[X][\underline{S}]_{0}[X]^{T}[X^{e}]^{-T}.$$
(16)

Цей вираз запишемо відносно $d\lambda^{p}[S]_{0}$, тобто у вигляді, подібному (11) для правої частині. Для цього помножимо його зліва на $[X]^{-1}[X^{e}]^{-T}$ та справа на $[X^{e}]^{T}[X]^{-T}$, результат позначимо як

$$[d \in]^{p}] = [X]^{-1} [X^{e}]^{-T} ([\underline{L}^{p}]dt) [X^{e}]^{T} [X]^{-T} = d\lambda^{p} [\underline{S}]_{0}.$$
(17)

Оскільки компоненти матриці $[d \in p]$ пропорційні компонентам *симетричної* матриці $[S]_0$ з компонентами девіатора ТН2ПК, то вони можуть містити тільки компоненти *симетричного* тензора прирощень пластичних деформацій, можливо – масштабованих відносно $[d \in p]$. Але тут значення масштабу не важливе, оскільки, по-перше, в формулі є ще невідомий функціонал (скаляр) $d\lambda^p$, який теж масштабує, а по-друге, цей вираз використаємо лише для встановлення факту співвісності $[d \in p]$ та $[S]_0$. Тобто можна прийняти, що $[d \in p] = [d \in p]$. Отже, з (17) маємо, що (в різних формах запису)

$$[d \in^{p}] = d\lambda^{p} [\mathfrak{L}]_{0}; \quad \{d \in^{p}\} = d\lambda^{p} \{\mathfrak{L}\}_{0}.$$
⁽¹⁸⁾

3 цієї формули звичайно отримають вираз $d\lambda^p = \frac{3}{2} \frac{d \bar{\epsilon}_u^p}{(\bar{q}_u)_0}$, де $d \bar{\epsilon}_u^p = d\chi = \sqrt{2d \epsilon_i^p d \epsilon_i^p / 3}$ тобто ϵ

інтенсивністю приростів пластичних деформацій (приріст $d\chi$ параметра Одквіста χ).

Але цих формул для обчислення напружень та деформацій недостатньо, оскільки в них всі величини є невідомими. Потрібні додаткові співвідношення.

З врахуванням формул закону Гука $\{\sigma_{0}^{e} = [D] \{\epsilon^{e}\}$ і властивості суперпозиції (7), тобто (в іншій формі запису) $\{\epsilon\} = \{\epsilon^{e}\} + \{\epsilon^{e}\} + \{\epsilon^{e}\}$, введемо вектор напружень (зі властивостями ТН2ПК), компоненти якого в методі скінченних елементів (МСЕ) на момент поточного часу $t + \Delta t$ можна обчислити відразу після отримання значень вузлових переміщень (див. формули (6), (3) та алгоритми наприкінці Повідомлення):

$$\{\tilde{\boldsymbol{\sigma}}\}_{0}^{*} = [\tilde{\boldsymbol{\mathcal{D}}}]({}^{t+\Delta t}\{\boldsymbol{\epsilon}\} - {}^{t+\Delta t}\{\boldsymbol{\epsilon}^{\theta}\} - {}^{t}\{\boldsymbol{\epsilon}^{p}\}) = [\tilde{\boldsymbol{\mathcal{D}}}]{}^{t+\Delta t}\{\boldsymbol{\epsilon}\}^{*},$$

$$\tag{19}$$

де позначено ${}^{t+\Delta t}\left\{ \in \right\}^{*} = {}^{t+\Delta t}\left\{ \in \right\} - {}^{t+\Delta t}\left\{ \in^{\theta} \right\} - {}^{t}\left\{ \in^{p} \right\}$.

В (19) наповнення всіх векторів деформацій є таким: $\{\in\} = \{\in_{11}, \in_{22}, \in_{33}, \in_{12}, \in_{33}, \in_{31}\}^T$, а матриця модулів пружності для ізотропного матеріалу (металу)

$$[\underline{D}] = 2\underline{G} \cdot \begin{bmatrix} a & b & b & 0 & 0 & 0 \\ b & a & b & 0 & 0 & 0 \\ b & b & a & 0 & 0 & 0 \\ 0 & 0 & 0 & c & 0 & 0 \\ 0 & 0 & 0 & 0 & c & 0 \\ 0 & 0 & 0 & 0 & 0 & c \end{bmatrix}; \quad 2\underline{G} = \underline{E} / (1 + \underline{\mu}); \quad a = \frac{1 - \underline{\mu}}{1 - 2\underline{\mu}}; \quad b = \frac{\underline{\mu}}{1 - 2\underline{\mu}}; \quad c = 1,$$
(20)

де $\underline{E} = \underline{E}(\theta)$ – модуль Юнга; $\mu = \mu(\theta)$ – коефіцієнт Пуассона.

Коли стануть відомими прирости пластичних деформацій {*d* ∈^{*p*}}, тоді шуканий вектор напружень:

$$\{\underline{\sigma}\}_0 = \{\underline{\sigma}\}_0^* - [\underline{\mathcal{D}}]\{d \in \mathcal{P}\}.$$
(21)

В загальному випадку з того факту, що det $X_{mn}^{p} = 1$ (немає зміни об'єму за рахунок пластичних деформацій), не слідує, що $\delta_{mn} \in_{mn}^{p} = 0$. Але для невеликих значень *прирощень* пластичних деформацій $d \in_{mn}^{p}$ можна з достатньою для моделювання процесу термопружно-пластичного деформування точністю прийняти, що

$$\delta_{mn}d \in_{mn}^{p} = 0.$$
⁽²²⁾

Якщо в (21) скласти перші три компоненти, то з урахуванням (22) отримуємо, що

$$\delta_{ij}(\underline{\sigma}^{y})_{0} = 3(\underline{\sigma}_{y})_{0} = \delta_{ij}(\underline{\sigma}^{y})_{0}^{*} = 3(\underline{\sigma}_{y})_{0}^{*}; \quad i, j = 1, 2, 3,$$
(23)

тобто маємо об'ємну складову ТН2ПК

$$(\boldsymbol{\sigma}_{\boldsymbol{V}})_0 = (\boldsymbol{\sigma}_{\boldsymbol{V}})_0^* \,. \tag{24}$$

У випадку пружної ізотропії матеріалу, з використанням (20) та (22)

$$[\tilde{D}]\{d \in {}^{p}\} = 2\tilde{G} \cdot \{d \in {}^{p}\}, \qquad (25)$$

тому замість (21) будемо використовувати вираз

$$\{\boldsymbol{\sigma}\}_{0} = \{\boldsymbol{\sigma}\}_{0}^{*} - 2\boldsymbol{G} \cdot \{\boldsymbol{d} \in \boldsymbol{\beta}^{p}\}.$$
(26)

Аналогічно (13) введемо вектори з об'ємною складовою $\{g_{V}\}_{0}^{*}$ та девіатор $\{g_{V}\}_{0}^{*}$

$$\{\underline{\sigma}_{V}\}_{0}^{*} = (\underline{\sigma}_{V})_{0}^{*}\{1, 1, 1, 0, 0, 0\}^{T}; \quad \{\underline{S}\}_{0}^{*} = \{\underline{\sigma}\}_{0}^{*} - \{\underline{\sigma}_{V}\}_{0}^{*}.$$
(27)

3 урахуванням (13), (27) та (24), з (26) маємо:

$$\{\underline{S}\}_{0} = \{\underline{S}\}_{0}^{*} - 2\underline{G} \cdot \{d \in^{p}\}.$$
(28)

Співвідношень (18), (19) і (28) між компонентами прирощень пластичних деформацій та напружень достатньо для побудови алгоритмів знаходження характеристик напружено-деформованого стану матеріалу в актуальній точці тіла. Один з них запропоновано автором в [16], але для нескінченно малих деформацій.

Метод "радіального повернення" (radial return method) для знаходження напружень та прирощень пластичних деформацій

Згідно з (18) вектори $\{d \in P\}$ та $\{\tilde{S}\}_0 \in$ співвісними. Тому в (28) їм співвісний і вектор $\{\tilde{S}\}_0^*$. У зв'язку з цим існує пропорція

$$\{\underline{S}\}_{0} = r \cdot \{\underline{S}\}_{0}^{*}, \qquad (29)$$

де $0 < r \le 1$ – скаляр ("коефіцієнт повернення"). Підставимо (29) в (28): $r \cdot \{S\}_0^* = \{S\}_0^* - 2G\{d \in P\};$ $(1-r)\{S\}_0^* = 2G\{d \in P\},$

$$\{d \in \mathcal{P}\} = \frac{1-r}{2G} \{\tilde{\mathfrak{S}}\}_0^*.$$

$$(30)$$

Необхідно визначитися зі значенням скаляра r.

Повернемося до виразу (29), обчислимо з його частин інтенсивності напружень $(q_u)_0$ та $(q_u)_0^*$ за формулами

$$(\underline{\sigma}_{u})_{0} = \sqrt{1.5(\underline{S}^{imn})_{0}(\underline{S}^{mn})_{0}}; \quad (\underline{\sigma}_{u})_{0}^{*} = \sqrt{1.5(\underline{S}^{imn})_{0}^{*}(\underline{S}^{mn})_{0}^{*}}; \quad m, n = 1, 2, 3$$
(31)

Коефіцієнт r – скаляр, тому, підставив компоненти (29) у (31), отримаємо, що

$$r = \frac{(\underline{\sigma}_u)_0}{(\underline{\sigma}_u)_0^*}.$$
(32)

У правій частині виразу (32) невідома величина $(\sigma_u)_0$. Її можна визначити, спираючись на "миттєву термомеханічну поверхню" [15].

Розглянемо два (із багатьох можливих) варіанта аналітичного запису "миттєвої термомеханічної поверхні" [17].

Застосування "миттєвої термомеханічної поверхні", вираженої через "активні" деформації

Вираз для "миттєвої термомеханічної поверхні" з використанням "активних" деформацій запишемо (узагальнено) рівнянням, в якому напруження і деформації є спряженими:

$$(\tilde{\mathcal{Q}}_u)_0 = K(\epsilon_u^a, \theta, (\tilde{\mathcal{Q}}_V)_0), \qquad (33)$$

де \in_{u}^{a} – інтенсивність "активних" деформацій

$$\{\epsilon\} = \{\epsilon\} - \{\epsilon^{\theta}\} . \tag{34}$$

Формула (32), з урахуванням (33) і (24), набуває вигляду:

$$r = \frac{K(\epsilon_u^a, \theta, (\underline{\sigma}_V)_0^*)}{(\underline{\sigma}_u)_0^*},$$
(35)

де \in_{u}^{a} , θ , $(\sigma_{V})_{0}^{*}$ – відомі, так само як і $(\sigma_{u})_{0}^{*}$ згідно з (32). Отже, величину *r* визначено.

{∈'

Підставивши знайдене значення r < 1 в (29), а саме $\{S\}_0 = r \cdot \{S\}_0^*$, з (13) та (24) отримаємо напруження

$$\{\underline{\sigma}\}_0 = r \cdot \{\underline{S}\}_0^* + \{\underline{\sigma}_V\}_0^*.$$
(36)

Якщо потрібно, підставивши знайдене значення *r* <1 в (30), можна обчислити компоненти приросту пластичних деформацій і повних пластичних деформацій

$$\{d \in {}^{p}\} = \frac{1-r}{2\tilde{G}} \{\tilde{S}\}_{0}^{*}; \quad {}^{t+\Delta t} \{\epsilon^{p}\} = {}^{t} \{\epsilon^{p}\} + \{d \in {}^{p}\},$$
(37)

а також напруження Ейлера-Коші

$$[\sigma] = \frac{1}{J} [X] [\sigma]_0 [X]^T.$$
(38)

Якщо r = 1, то, згідно з (37), нові пластичні деформації не виникають, оскільки $\{d \in p^{p}\} = \{0\}$, а з (36) і (37) маємо, що $\{g\}_{0} = \{g\}_{0}^{*}$ та $t^{t+\Delta t} \{e^{p}\} = t^{t} \{e^{p}\}$.

Застосування "миттєвої термомеханічної поверхні", вираженої через параметр Одквіста

Вираз для "миттєвої термомеханічної поверхні" з використанням параметра Одквіста запишемо (узагальнено) рівнянням, в якому, як і в (33), напруження і деформації є спряженими:

$$(\underline{\sigma}_{u})_{0} = H(\chi, \theta, (\underline{\sigma}_{V})_{0}), \qquad (39)$$

де χ – параметр Одквіста:

$$\chi = \int d \chi = \int d \epsilon_u^p \approx \sum d \epsilon_u^p = {}^t \left(\sum d \epsilon_u^p \right) + d \chi = {}^t \chi + d \chi .$$
(40)

Підставивши (39) в (32), з урахуванням (24), тобто $(\sigma_V)_0 = (\sigma_V)_0^*$, отримаємо

$$= \frac{H(\chi, \theta, (\underline{\sigma}_V)_0^*)}{(\sigma_v)_0^*},$$
(41)

де поточна температура θ , середнє напруження $(\sigma_v)_0^*$ та інтенсивність напружень $(\sigma_u)_0^*$ є відомими, але параметр Одквіста χ – невідомий. Тому значення r стане відомим лише після визначення χ .

Використаємо (40), тобто $\chi \approx {}^{t}\chi + d\chi$. Застосуємо вираз (30), запишемо його як $(1-r){\{S\}}_{0}^{*} = 2G\{d \in {}^{p}\}$. Перемножимо вектори, що стоять в лівій і правій частинах цього виразу, і результат помножимо на 3/2:

$$(1-r)^{2} \frac{3}{2} (\{S\}_{0}^{*})^{T} \{S\}_{0}^{*} = (1-r)^{2} ((\sigma_{u})_{0}^{*})^{2} = \frac{3}{2} (2G)^{2} \frac{2}{3} \{d \in \mathcal{P}\}^{T} \{d \in \mathcal{P}\}^{3} \frac{3}{2} = (3G)^{2} (d\chi)^{2}.$$

$$(42)$$

Оскільки всі скалярні величини в (42) є невід'ємними, то, звільнившись від квадратів, отримаємо

$$(43)$$

3 використанням (41) та (40)

$$r \cdot (\underline{\sigma}_{u})_{0}^{*} = H(\chi, \theta, (\underline{\sigma}_{V})_{0}^{*}) \approx H({}^{t}\chi + d\chi, \theta, (\underline{\sigma}_{V})_{0}^{*}), \qquad (44)$$

причому при пропорційному навантаженні $\chi = {}^{t}\chi + d\chi$ точно. Підставимо вираз (44) в (43), отримаємо нелінійне скалярне рівняння відносно $d\chi$:

$$\left(\underline{\sigma}_{u}\right)_{0}^{*}-H\left({}^{t}\chi+d\chi,\,\theta,\left(\underline{\sigma}_{V}\right)_{0}^{*}\right)\approx 3\underline{G}d\chi\geq0\,.$$
(45)

Розв'язок рівняння (45) можна шукати різними методами. Застосуємо дуже швидкий алгоритм на основі методу Ньютона, аналогічний описаному в [16, 17]. Розкладемо вираз для функції $H(\chi, \theta, (\sigma_V)_0^*)$ в околі χ^{t} і обмежимося двома членами ряду:

$$H({}^{t}\chi + d\chi, \theta, (\underline{\sigma}_{V})_{0}^{*}) \approx H({}^{t}\chi, \theta, (\underline{\sigma}_{V})_{0}^{*}) + H'({}^{t}\chi, \theta, (\underline{\sigma}_{V})_{0}^{*})d\chi, \qquad (46)$$

де $H' = \partial H / \partial \chi$. Підставимо (46) в (45): $(\underline{\sigma}_u)_0^* - H({}^t \chi, \theta, (\underline{\sigma}_V)_0^*) - H'({}^t \chi, \theta, (\underline{\sigma}_V)_0^*) d\chi \approx 3\underline{G}d\chi$, або відносно $d\chi$:

$$d\chi \approx \frac{(\tilde{\mathcal{Q}}_{u})_{0}^{*} - H({}^{t}\chi, \theta, (\tilde{\mathcal{Q}}_{V})_{0}^{*})}{3\tilde{\mathcal{Q}} + H'({}^{t}\chi, \theta, (\tilde{\mathcal{Q}}_{V})_{0}^{*})}.$$
(47)

Для моделі ідеально пластичного матеріалу $H = (\sigma_T)_0 (\theta, (\sigma_V)_0^*)$ та H' = 0, тому (див. також [18])

$$d\chi \approx \frac{(\underline{\sigma}_u)_0^* - (\underline{\sigma}_T)_0(\theta, (\underline{\sigma}_V)_0^*)}{3G}.$$
(48)

Якщо зміцнення матеріалу моделюється як лінійне, то $H' = A(\theta, (\sigma_V)_0^*)$, і вираз (47) у вигляді

$$d\chi \approx \frac{(\overline{g}_u)_0^{\circ} - H({}^t\chi, \theta, (\overline{g}_V)_0^{\circ})}{3\overline{g} + A(\theta, (\overline{g}_V)_0^{\circ})}$$

$$\tag{49}$$

дає шукане значення $d\chi$.

Залишився не розглянутим нелінійний випадок, коли $H' \neq const$. Враховуючи достатню гладкість функції $H(\chi, \theta, (\sigma_V)_0^*)$ відносно χ , ефективним буде наступний процес Ньютона:

$$d\chi = d\chi^{(1)} = \frac{(\underline{\sigma}_{u})_{0}^{*} - H({}^{t}\chi, \theta, (\underline{\sigma}_{V})_{0}^{*})}{3\underline{G} + H'({}^{t}\chi, \theta, (\underline{\sigma}_{V})_{0}^{*})}; \quad k = 1;$$
(*)
$$Q^{(k)} = (\underline{\sigma}_{u})_{0}^{*} - 3\underline{G}\,d\chi^{(k)};$$

$$\delta\chi^{(k+1)} = \frac{Q^{(k)} - H({}^{t}\chi + d\chi^{(k)}, \theta, (\underline{\sigma}_{V})_{0}^{*})}{3\underline{G} + H'({}^{t}\chi + d\chi^{(k)}, \theta, (\underline{\sigma}_{V})_{0}^{*})};$$

$$d\chi^{(k+1)} = d\chi^{(k)} + \delta\chi^{(k+1)};$$
(50)
$$M_{KIIIO} |\delta\chi^{(k+1)}| > \delta \cdot d\chi^{(k+1)}, \text{ то } k = k+1, \text{ перехід на рядок (*).}$$

Інакше d χ знайдено.

Тут δ – задана точність. При δ = 0.01, за звичай, достатньо двох ітерацій, при δ = 0.001 – трьох.

На рисунку 1 зображено геометричну інтерпретацію ітераційного процесу (50) розв'язування нелінійного рівняння (45). Геометрично одна ітерація – це задача про вписування прямокутного трикутника з заданим кутом α між трьома прямими: 1 – попередній рівень напружень, 2 – попереднє значення параметра Одквіста, 3 – дотична до діаграми деформування (для фіксованої температури θ) в точці, відповідній попередньому значенню параметра Одквіста. Видно, що процес має велику швидкість збіжності.

Визначивши $d\chi$, з $\chi \approx {}^{t}\chi + d\chi$ та виразу (41) знаходимо r, після цього, підставивши r < 1 в (29), а саме $\{S\}_0 = r \cdot \{S\}_0^*$, а також використавши (24), отримаємо компоненти $\{\sigma\}_0$, а також $\{d \in {}^{p}\}$, ${}^{t+\Delta t} \{\in {}^{p}\}$ та $[\sigma]$ згідно з (37) та (38) відповідно.

Якщо r = 1, то, згідно з (37), нові пластичні деформації не виникають, оскільки $\{d \in {}^{p}\} = \{0\}$, а з (36) і (37) маємо, що $\{\sigma\}_{0} = \{\sigma\}_{0}^{*}$ та ${}^{t+\Delta t}\{\epsilon^{p}\} = {}^{t}\{\epsilon^{p}\}$.

Алгоритм для актуальних точок тіла

Отже, для реалізації в МСЕ маємо ефективний алгоритм визначення напружень та деформацій з такою послідовністю дій (формул) в кожній з актуальних точок тіла:

а) обчислення повних деформацій {∈} на основі значень вузлових переміщень та формули (6);

- б) обчислення температурних деформацій згідно з (3);
- в) обчислення компонент матриці пружних характеристик матеріалу (20);
- г) обчислення компонент $\{\sigma_{v}\}_{0}^{*}, (\sigma_{v})_{0}^{*}, \{S_{v}\}_{0}^{*}$ та значення $(\sigma_{u})_{0}^{*}$ згідно з (19), (23), (27) і (32);
- д) при застосуванні "миттєвої термомеханічної поверхні", вираженої через "активні" деформації:
 - обчислення компонент $\{ \in^a \}$ згідно з (34) та інтенсивності \in^a_u ;
 - обчислення, згідно з (33), значення $(\underline{\sigma}_u)_0 = K(\in_u^a, \theta, (\underline{\sigma}_V)_0)$ з урахуванням (24), тобто $(\underline{\sigma}_V)_0 = (\underline{\sigma}_V)_0^*$;
 - перевірка "активності навантаження": чи $(\sigma_u)_0^* > (\sigma_u)_0^2$ Якщо "ні", то перехід на пункт и);
- е) при застосуванні "миттєвої термомеханічної поверхні", вираженої через параметр Одквіста:
 - обчислення, згідно з (39), значення $(\underline{\sigma}_u)_0 = H({}^t \chi, \theta, (\underline{\sigma}_V)_0)$ з урахуванням $(\underline{\sigma}_V)_0 = (\underline{\sigma}_V)_0^*$;
 - перевірка "активності навантаження": чи $(\underline{\sigma}_u)_0^* > (\underline{\sigma}_u)_0^0$? Якщо "ні", то перехід на пункт и);
 - обчислення $d\chi$ згідно з (48), (49) або (50) в залежності від моделі матеріалу;
 - обчислення, згідно з (39), значення $(\underline{\sigma}_u)_0 = H(t_{\chi} + d\chi, \theta, (\underline{\sigma}_V)_0)$ з урахуванням $(\underline{\sigma}_V)_0 = (\underline{\sigma}_V)_0^*$;
- ж) обчислення величини r згідно з (32);
- 3) обчислення $\{g\}_0$, $\{d \in p\}$, ${}^{t+\Delta t}\{e^p\}$ та $[\sigma]$ згідно з (36), (37) та (38), а також $d\lambda^p = \frac{3}{2} \frac{d \bar{e}_u^p}{(\sigma_u)_0}$. Перехід на

пункт а) для нової точки тіла;

и) нових пластичних деформацій немає: $\{d \in P\} = \{0\}$, тому $\{\sigma\}_0 = \{\sigma\}_0^*$ та $t^{t+\Delta t} \{e^p\} = t^* \{e^p\}$. Перехід на пункт а) для нової точки тіла.

Фактично кількість дій цього алгоритму майже така ж, як і при нескінченно малих деформаціях, оскільки додаються лише дії по обчисленню напружень Ейлера-Коші згідно з виразом (38), які потрібні лише після успішного завершення ітераційного процесу з отримання розв'язку крайової задачі.

Алгоритм для всього тіла

Згідно з алгоритмом Ньютона-Рафсона [19, 8], з використанням варіаційного принципу Лагранжа формується система алгебраїчних рівнянь відносно прирощень переміщень $\{dq\}$ у вузлах скінченно-елементної моделі (нижній індекс $_0$, як і раніше, вказує на початкову конфігурацію):

$$[\underline{K}]_{0}^{(k)}\{dq\} \approx \{P\}_{0} - \{R\}_{0}^{(k)}; \quad \{q\}^{(k+1)} = \{q\}^{(k)} + \{dq\},$$
(51)

де на k –й ітерації матриця жорсткості тіла (e – номер скінченного елемента; \sum_{e} означає операцію "збиран-

ня" по всім скінченним елементам у відповідності зі степенями свободи)

$$[\underline{K}]_{0}^{(k)} = [K_{\sigma}]_{0}^{(k)} + [\tilde{K}]_{0}^{(k)};$$
(52)

$$[K_{\sigma}]_{0}^{(k)} = \left(\sum_{e} ([K_{\sigma}]_{0})_{e}\right)^{(k)} = \left(\sum_{e} \int_{\Omega_{0}^{e}} [Y]^{T} [\tilde{S}] [Y] d\Omega_{0}\right)^{(\gamma)};$$
(53)

$$[\tilde{K}]_{0}^{(k)} = \left(\sum_{e} \left([\tilde{K}]_{0}\right)_{e}\right)^{(k)} = \left(\sum_{e} \int_{\Omega_{0}^{e}} [\tilde{B}]^{T} [\tilde{D}] [\tilde{B}] d\Omega_{0}\right)^{(k)};$$
(54)

вектори

$$\{P\}_{0}^{(k)} = \left(\sum_{e} (\{P\}_{0})_{e}\right)^{(k)} = \left(\sum_{e} \left(\int_{\Omega_{0}^{e}} [\phi]^{T} \{O\}_{0} d\Omega_{0} + \int_{(S_{P}^{e})_{0}} [\phi]^{T} \{\underline{p}\}_{0} (dS)_{0} + \sum_{i=1}^{N_{\overline{P}}} \{\overline{P}\}_{i}\right)\right)^{(k)};$$
(55)

$$\{R\}_{0}^{(k)} = \left(\sum_{e} (\{R\}_{0})_{e}\right)^{(k)} = \left(\sum_{e} \int_{\Omega_{0}^{e}} [\tilde{B}]^{T} \{\sigma\}_{0} d\Omega_{0}\right)^{(k)}.$$
(56)

Матриця $[\phi]$ є матрицею базисних функцій; вектори $\{O\}_0$, $\{p\}_0$ та $\{\overline{P}\}_i$ є векторами навантажень: об'ємних, розподілених поверхневих (приведених, з врахуванням змін поверхні, див. Розділ 13.2 в [19]) та зосереджених відповідно. Матриця $[Y]^T[\tilde{S}][Y]$ для вузлів *m* та *n* має наповнення [19]

$$[Y]_{m}^{T}[\tilde{S}][Y]_{n} = \begin{bmatrix} \alpha_{mn} & 0 & 0\\ 0 & \alpha_{mn} & 0\\ 0 & 0 & \alpha_{mn} \end{bmatrix},$$
(57)

де компоненти

$$\alpha_{mn} = p_{1m}\beta_{1n} + p_{2m}\beta_{2n} + p_{3m}\beta_{3n}; \quad \beta_{jn} = (\sigma^{j1})_0 p_{1n} + (\sigma^{j2})_0 p_{2n} + (\sigma^{j3})_0 p_{3n}; \quad p_{in} = \partial \varphi_n / \partial a^i, \quad j = 1, 2, 3.$$
(58)

Матриця диференціювання [B] пов'язує прирощення великих деформацій Гріна-Лагранжа з прирощеннями переміщень $\{dq\}_e$ вузлів елемента, залежить від переміщень, вводиться виразом [19]

$$\{d\in\} = [\tilde{B}]\{dq\}_e.$$
⁽⁵⁹⁾

В формулі (54) матрицю $[\tilde{D}] = \partial \{ \sigma \}_0 / \partial \{ \epsilon \}$ обчислювали наближено, за формулами (див. вирази на стор. 603 у [8] та на стор. 210 у [10]):

$$[\tilde{\mathcal{D}}] = \begin{bmatrix} a & b & b & 0 & 0 & 0 \\ b & a & b & 0 & 0 & 0 \\ b & b & a & 0 & 0 & 0 \\ 0 & 0 & 0 & c & 0 & 0 \\ 0 & 0 & 0 & 0 & c & 0 \\ 0 & 0 & 0 & 0 & c & 0 \end{bmatrix}; \quad a = (\beta + 2\gamma)/3; \quad b = (\beta - \gamma)/3; \quad c = 0.5\gamma; \quad \beta = \frac{E}{1 - 2\mu}; \quad \gamma = \frac{2G}{1 + 2Gd\lambda^p}.$$
(60)

При $d\lambda^{p} = 0$ значення компонент матриць (60) та (20) співпадають.

Числовий приклад (тестування алгоритму)

Розглянули тестову задачу про визначення характеристик напружено-деформованого стану заневоленого між жорсткими стінками стрижня довжиною L та довільного перерізу, який з початкової температури θ_0 рівномірно прогрітий до температури θ . Ідеально-пластичний матеріал стрижня має модуль Юнга $\underline{\mathcal{E}}$, коефіцієнт Пуассона μ , коефіцієнт температурного подовження $\overline{\alpha}_{\theta}$ та межу плинності $\underline{\sigma}_{T}$. Вихідні дані поміщено в Таблицю 1.

Таблиця 1

			Вихідні дані			Tuomių T
L , мм	$ heta_{_0}$, K	heta, K	<i>E</i> , МПа	$\overset{\mu}{\tilde{z}}$	$\overline{lpha}_{ heta}$, 1/K	$arphi_{T}$, МПа
100	0	1000	$2 \cdot 10^5$	0.25	10^{-5}	500

З точки зору опору матеріалів (нескінченно малі деформації) температурне подовження стрижня мало б бути $\Delta L^{\theta} = \overline{\alpha}_{\theta}(\theta - \theta_0) \cdot L = 1$ мм. Жорсткі стінки не дають це зробити, тому виникає осьова сила N, що стискає стрижень. Він "скорочується" на $\Delta L^N = -\Delta L^{\theta} = -\overline{\alpha}_{\theta}(\theta - \theta_0) \cdot L$. Якщо б матеріал був пружним, то, згідно з числовим прикладом в [5], мали б осьове напруження $\sigma^{11} = -2000$ МПа. Але матеріал – ідеально-пластичний, напружений стан – однорідний та одновісний, тому рівень осьового напруження дорівнює значенню межі плинності матеріалу, а всі інші напруження відсутні, тобто ми знаємо всі напруження: $\sigma^{11} = -\sigma_T = -500$ МПа; $\sigma^{22} = \sigma^{33} = 0$. А також ми знаємо і пружні деформації: $\varepsilon_{11}^e = \sigma^{11} / E = -500 / (2 \cdot 10^5) = -0.0025$; $\varepsilon_{22}^e = \varepsilon_{33}^e = -\mu \varepsilon_{11}^e = -0.25 \cdot (-0.0025) = 0.000625$. Оскільки загальна осьова деформація $\varepsilon_{11} = 0$, то пластична осьова деформація складає величину $\varepsilon_{11}^p = -(\varepsilon_{11}^{\theta} + \varepsilon_{11}^e) = -\overline{\alpha}_{\theta}(\theta - \theta_0) + \sigma_T / E = -0.01005 + 0.0025 = -0.00755$. Поперечні термопружні деформації $\varepsilon_{22}^{\theta} + \varepsilon_{22}^{\theta} = \varepsilon_{22}^{\theta} - \mu \varepsilon_{11}^{\theta} = \overline{\alpha}_{\theta}(\theta - \theta_0) + \mu \sigma_T / E$. За рахунок пластичних деформацій об'єм металу не змінюється, тому поперечні пластичні деформації $\varepsilon_{22}^p = \varepsilon_{33}^p = -\varepsilon_{11}^p / 2 = 0.003775$. Отже, поперечні деформації $\varepsilon_{11}^{\theta} = \varepsilon_{22}^{\theta} + \varepsilon_{22}^e + \varepsilon_{22}^p = 0.01 + 0.000625 + 0.003775 = 0.0144$. Враховано, що всі температурні деформації $\varepsilon_{11}^{\theta} = \varepsilon_{22}^{\theta} = \varepsilon_{33}^{\theta} = \overline{\alpha}_{\theta}(\theta - \theta_0)$, а кутових деформацій та дотичних напружень немає.

Застосуємо мультиплікативний розклад (МР).

Згідно з (2), $[X^{\theta}] = \mathcal{G}[I]$, де $\mathcal{G} = \mathcal{G}(\theta) = 1 + \overline{\alpha}_{\theta}(\theta - \theta_0)$.

В МСЕ обчислення компонент матриці [X] передує обчисленню компонент всіх інших матриць. В нашому прикладі матеріал – ідеально-пластичний, напружений стан – однорідний та одновісний, тому ми знаємо всі напруження та, приблизно, деформації. У нашому прикладі для формули (1), тобто $[X] = [X^e][X^p][X^{\theta}]$, в матриці [X] повинно бути $X_{11} = 1$, всі $X_{ij} = 0$ при $i \neq j$. Щодо $X_{22} = X_{33}$ (описують зміни розмірів стрижня в поперечних напрямках), то їх значення можемо оцінити наближено як $X_{22} = X_{33} \approx 1 + \epsilon_{22}^{\theta} + \epsilon_{22}^{e} + \epsilon_{22}^{p}$. Аналогічно можемо наближено оцінити $X_{11}^e \approx 1 + \epsilon_{11}^e$, $X_{11}^p \approx 1 + \epsilon_{11}^p$, $X_{22}^e = X_{33}^e \approx 1 + \epsilon_{22}^e$ та $X_{22}^p = X_{33}^p \approx 1 + \epsilon_{22}^p$. Отримані розрахункові дані поміщено в таблиці 2 і 3. Ще задачу розв'язали авторською програмою OKA-3D, в якій використаний метод скінченних елементів (MCE), мультиплікативний розклад та викладений вище алгоритм (через параметр Одквіста χ). Застосували гексагональні ізопараметричні CE другого порядку наближення (Parabolic Solid Hex20). При цьому для набуття встановленої точності в 0.01% по квадратичній нормі зміни деформацій знадобилося п'ять ітерацій. Отримали результати, близькі до результатів MP на основі малих деформацій (див. табл.2 та табл.3). Додамо, що в MCE, згідно з описаним алгоритмом, обчислювати компоненти $[X^p]$, $[X^e]$ та $[\in^e]$ не потрібно, тому останні обчислили додатково: спочатку знайшли компоненти $[\in^p]$ (див. формули (37)), потім, згідно з виразом (4), визначилися з $[C^{p\theta}]$ та $[X^{p\theta}]$, після чого знайшли $[X^e] = [X][X^{p\theta}]^{-1}$. Ще використовували формули (5) та (6). Для MCE+MP довжину виписаних в матрицях чисел обмежили 9-ю вірними знаками після розділового знаку.

Таблиця 2

Depression:	r		
г озрахункові дані, іў	гатриці з компонентами	градієнтів	деформации

Метод	[X]	$[X^{\theta}]$	$[X^p]$	$[X^e]$
MP	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1.014400 & 0 \\ 0 & 0 & 1.014400 \end{bmatrix}$	1.01 [1]	$\begin{bmatrix} \kappa & 0 & 0 \\ 0 & \eta & 0 \\ 0 & 0 & \eta \end{bmatrix}$	$\begin{bmatrix} \alpha & 0 & 0 \\ 0 & \nu & 0 \\ 0 & 0 & \nu \end{bmatrix}$
MCE + MP	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1.014347077 & 0 \\ 0 & 0 & 1.014347077 \end{bmatrix}$	1.01 [1]	$\begin{bmatrix} \overline{\kappa} & 0 & 0 \\ 0 & \overline{\eta} & 0 \\ 0 & 0 & \overline{\eta} \end{bmatrix}$	$\begin{bmatrix} \overline{\alpha} & 0 & 0 \\ 0 & \overline{\nu} & 0 \\ 0 & 0 & \overline{\nu} \end{bmatrix}$

 $\begin{array}{ll} \exists \alpha \in \kappa \approx 0.992450 \;, & \eta \approx 1.003775 \;, & \alpha \approx 0.997631 \;, & \upsilon \approx 1.000579 \;, & \overline{\kappa} = 0.992571172 \;, & \overline{\eta} \approx 1.003693716 \;, \\ \hline \alpha \approx 0.997509335 \;, & \overline{\upsilon} \approx 1.000608075 \;. \end{array}$

Таблиця 3

ľ	озрахункові дані. 🛽	матриці з компонентамі	и тензорів деформаціи
_ <i>θ</i>]		Г _ ^e]	Г <i>– Р</i> Т

Метод	$[\in^{\theta}]$	$[\in^e]$	$[\in^p]$
		☐ −0.002500 0 0 ☐	☐ −0.007550 0 0 ☐
MP		0 0.000625 0	0 0.003775 0
	$-\theta$ [1]	0 0 0.000625	0 0 0.003775
MCE	$\in_{11} \cdot [I]$	☐ −0.002500000 0 0]	☐ −0.007550000 0 0 ☐
+		0 0.000625000 0	0 0.003775000 0
MP		0 0.000625000	0 0.003775000

де $\in_{11}^{\theta} = \in_{22}^{\theta} = \in_{33}^{\theta} = 0.01005$.

Для обох випадків отримали (σ^{11})₀ = -500 МПа, всі інші напруження або точно дорівнювали нулю (MP), або майже дорівнювали нулю (MCE + MP). Згідно з (38), напруження Ейлера-Коші $\sigma^{11} \approx 485.96$ МПа.

Дані таблиці 3 показують, що значення всіх деформацій, обчислені як для малих деформацій, так і великих, співпадають. Це має таке логічне пояснення. Температурні деформації – однакові та не залежать від інших. Пружні деформації залежать лише від незмінних σ_T через E та μ (закон Гука), тому їх значення теж співпадають. Значення повних повздовжніх деформацій співпадають. Тому й величини повздовжніх пластичних деформацій теж повинні співпадати. Оскільки поперечні деформації пов'язані з повздовжніми коефіцієнтом Пуассона (пружні) та законом пружної зміни об'єму (пластичні), то й їх значення теж співпадають. Такі властивості даної тестової задачі.

Примітка. Якщо межа плинності задана через напруження Ейлера-Коші σ_T , то потрібно її перераховувати у σ_T . Для цього достатньо створити матрицю $[\sigma]$ з нулями, окрім $\sigma^{11} = \sigma_T$, застосувати формулу $[\sigma]_0 = J[X]^{-1}[\sigma][X]^{-T}$ і обчислити інтенсивність напруження $(\sigma_u)_0$. Це й буде величина σ_T . Щодо матриці [X], то її компоненти повинні відповідати σ_T , тобто містити тільки пружні градієнти. Тому $X_{11} = 1 + \sigma_T / E$, $X_{22} = X_{33} = 1 - \mu \sigma_T / E$, а всі недіагональні компоненти матриці [X] дорівнюють нулю. Після видалення "пустих" операцій остаточно отримали, що $\sigma_T = \sigma_T X_{22}^2 / X_{11}$. Для нашого числового прикладу, щоб мати $\sigma_T = 500$ МПа, потрібно задати $\sigma_T = 501.877$ МПа, тобто різниця між ними не перевищила 0.4%, що явно менше погрішності експериментального визначення межи плинності реальних матеріалів.

Висновки

Для термопружно-пластичної задачі застосування формулювання Total Lagrangian, мультиплікативного розкладу, закону пластичної течії, отриманого із застосуванням другого закону термодинаміки (див. [4]), та підходу, коли пружні та пластичні деформації визначаються відносно "розвантаженого" стану, дозволило:

 отримати адитивну властивість великих деформацій різних типів: температурних, пружних та пластичних;

 запропонувати варіант ефективного алгоритму визначення в тілі напружень та всіх типів деформацій при моделюванні процесу термопружно-пластичного деформування з великими деформаціями при застосуванні методу скінченних елементів. Він є узагальненням алгоритму, запропонованого автором в 1989 році [16] для малих деформацій;

 отримувати вірні розв'язки термопружно-пластичних задач, про що свідчить наведений тестовий числовий приклад.

Поправки виявлених технічних помилок в цитованих публікаціях автора

Повідомлення 4 [4]: в формулі (15), в передостанньому рядку замість $[\dot{X}^p]^T$ повинно бути $[X^p]^T$, тобто ця частка формули повинна виглядати так: $+[X^{\theta}]^T[X^c]^T[X^p]^T[C^e][X^p][\dot{X}^c][X^{\theta}] + .$

Повідомлення 5 [5]: на початку формули (44) замість $(\sigma^{mn})_0 = E^{mnij} (\tilde{\epsilon}_{ij} - \epsilon_{ij}^{\theta}) =$ повинно бути $(\sigma^{mn})_0 = E^{mnij} (\epsilon_{ij} - \epsilon_{ij}^{\theta}) =$.

Стаття [16]: формула (26) повинна виглядати так: $\sigma_i^{(k)} = \sigma_i^a - 3G(T)\Delta \chi$.

Стаття [16]: шостий рядок зверху на стор. 21 повинен виглядати так: происходящей упруго, зависимости (11) и (17) не применяются.

Аннотация. В Сообщениях 1 - 4 было рассмотрено, каким образом идею мультипликативного разложения Ли градиента упруго-пластичных деформаций Коши-Грина можно применить для обобщенного разложения на случай одновременного присутствия четырех типов деформаций: температурных, упругих, пластичных и ползучести, а также установлены допустимые формы уравнений состояния. В Сообщении 5 проанализирована проблема выбора отсчетной конфигурации для упругих деформаций в случае термоупругости: "разгруженной" или "начальной".

Цель этого Сообщения – предложить вариант эффективного алгоритма для решения краевых задач термоупругопластичности с большими деформациями.

Применяли обоснованный вторым законом термодинамики закон пластического течения, мультипликативное разложение градиента термоупругопластических деформаций Коши-Грина, формулировку Total Lagrangian и подход, когда упругие и пластические деформации определяются относительно "разгруженного" состояния. Материал – изотропный металл. Разработали эффективный конечно-элементный алгоритм вычисления напряжений и больших деформаций в твердом теле из изотропного материала при термоупругопластичности, в формулировании Total Lagrangian. Алгоритм запрограммирован в авторской конечно-элементной программе. Теоретические выкладки проверены на числовом тестовом примере. Разработанный эффективный алгоритм является обобщением алгоритма, предложенного автором в 1989 году для малых деформаций.

<u>Ключевые слова:</u> большие деформации, формулирование Total Lagrangian, мультипликативное разложение, термоупругопластический анализ, алгоритм, метод конечных элементов.

Abstract. It was considered in previous articles (Reports 1,2,3 and 4) how the idea of Lee's multiplicative decomposition of the elastic-plastic Cauchy-Green deformation gradient can be implemented to a generalized decomposition of thermal, elastic, plastic and creep deformations gradient and the admissible forms of the constitutive state equations were established. The objective of the 5-th report is to determine which type of the reference configuration 'unloaded' or 'initial' is more suitable in case of thermo-elasticity with respect to general hyper-elastic postulates.

The purpose of this Message - to offer version of effective algorithm for the solution of thermoelasto-plasticity problems with the large strains.

Applied proved on the basis of the second law of thermodynamics the law of plastic flow, multiplicative decomposition of a gradient thermoelasto-plastic deformations Koshi-Green, Total Lagrangian formulation and the approach when elastic and plastic deformations are determined concerning the "unloaded" condition. A material – isotropic metal.

Have developed effective is finite-element algorithm of calculation of stresses and the large strains in a firm body from an isotropic material at thermoelasto-plasticity, in Total Lagrangian formulation. The algorithm is programmed in the author's FEM-program. The algorithm are checked up on a numerical test example.

The developed effective algorithm is generalisation of the algorithm offered by author in 1989 for small strains.

Keywords: large strains, Total Lagrangian, multiplicative decomposition, thermoelasto-plastic analysis, algorithm, FEM.

Бібліографічний список використаної літератури

1. *Рудаков К.М.*, Добронравов О.А. Моделювання великих деформацій. Повідомлення 1. Мультиплікативний розклад при наявності чотирьох типів деформацій // Вісник НТУУ "КПІ". Сер. Машинобудування, 2012. – № 64. – С.7–12.

- 2. *Рудаков К.М.*, Яковлєв А.І. Моделювання великих деформацій. Повідомлення 2. Температурні деформації // Вісник НТУУ "КПІ". Сер. Машинобудування, 2012. № 65. С. 10–18.
- 3. *Рудаков К.М.*, Добронравов О.А. Моделювання великих деформацій. Повідомлення 3. Теоретичні основи застосування логарифмічної міри деформації Генкі // Наукові вісті НТУУ "КПІ", 2012. № 6. С. 86–93.
- 4. *Рудаков К.М.*, Яковлєв А.І. Моделювання великих деформацій. Повідомлення 4. Загальні співвідношення термопластичності та повзучості при застосуванні логарифмічної міри деформації Генкі // Наукові вісті НТУУ "КПІ", 2013. №2. С. 110–118.
- 5. *Рудаков К.М.*, Яковлєв А.І. Моделювання великих деформацій. Повідомлення 5. Термопружність // Вісник НТУУ "КПІ". Сер. Машинобудування, 2015. №1(73). С. 43–51.
- 6. Lee E.H. Elastic-plastic deformations at finite strains // J. Appl. Mech. (ASME), 1969. 36. P. 1–6.
- Eterović A.L., Bathe K.J. A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropickinematic hardening using the logarithmic stress and strain measures. Int. J. Numer. Meth. Engng, 1990. - 30. - pp. 1099 -1114.
- 8. Bathe Klaus-Jürgen. Finite Element Procedures. New Jersey: Prentice-Hall, 1996. 1037 p.
- 9. *Montans F.J.*, Bathe K-J. Computational issues in large strain elasto-plasticity: an algorithm for mixed hardening and plastic spin. Int. J. Numer. Meth. Engng, 2005. **63**. pp. 159–196.
- 10. Коробейников С.Н. Нелинейное деформирование твердых тел. Новосибирск: Издательство СО РАН, 2000. 262 с.
- 11. Жермен П. Курс механики сплошных сред. Общая теория: Пер. с фр. В.В. Федулова. М.: Высш. шк., 1983. 399 с.
- 12. *Седов Л.И.* Механика сплошной среды. Т.1. М.: Наука, 1970. 492 с.
- 13. Седов Л.И. Механика сплошной среды. Т.1. М.: Наука, 1994. 528 с.
- Mandel J. Thermodynamics and plasticity. In Foundations of Continuum Thermodynamics, Delgado J.J., Nina N.R., Whitelaw J.H. (eds). Macmillan: London, 1974. – P. 283–304.
- 15. Hill R. The Mathematical Theory of Plasticity. Oxford: Clarendon Press, 1950. 355 p.
- Рудаков К.Н. Об эффективности алгоритмов определения напряжений и пластических деформаций при численном моделировании процессов термосилового нагружения элементов конструкций // Пробл. прочности. – 1992. – №9. – С. 18-24.
- 17. *Рудаков К.Н.* Чисельні методи аналізу в динаміці та міцності конструкцій: Навч. посібник. К.: НТУУ "КПІ", 2007. 379 с.
- 18. *Krieg R.D.*, Krieg D.B. Accuracies of numerical solution for the elastic-perfectly plastic model // J. Pressure Vessel Technology: Trans. ASME, 1977. 99. N.4. P. 510-515.
- Оден Дж. Конечные элементы в нелинейной механике сплошных сред / Пер. с англ. А.М. Васильева; Под ред. Э.И. Григолюка – М.: Мир, 1976. – 464 с.

References

- Rudakov K.M., Dobronravov O.A. [Modelling of large strains. Message 1. Multiplicate decomposition in the presence of four types of strains] J. of Mechanical Engineering of NTUU "KPI", 2012. no.64. pp.7–12.
- 2. *Rudakov K.M.*, Jakovlev A.I. [Modelling of large strains. Message 2. The temperature strains] J. of Mechanical Engineering of NTUU "KPI", 2012. no.65, pp.10–18.
- Rudakov K.M., Dobronravov O.A. [Modelling of large strains. Message 3. Theoretical bases of use of a logarithmic measure of strains of Hencky] Research Bulletin of NTUU "KPI", 2013. no.6, pp.86–93.
- Rudakov K.M., Jakovlev A.I. [Modelling of large strains. Message 4. The physical equations of thermoplasticity and creep at use of a logarithmic measure of strains of Hencky] Research Bulletin of NTUU "KPI", 2013. no.2, pp.110–118.
- 5. *Rudakov K.M.*, Iakovliev A.I. [Modelling of large strains. Message 5. Thermoelasticity]. J. of Mechanical Engineering of NTUU "KPI", 2015. no.1(73). pp.43–51.
- 6. *Lee E.H.* Elastic–plastic deformations at finite strains. J. Appl. Mech. (ASME), 1969. 36. pp.1–6.
- 7. *Eterović A.L.*, Bathe K.J. A hyperelastic-based large strain elasto–plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures. Int. J. Numer. Meth. Engng, 1990. **30**. pp.1099–1114.
- 8. Bathe Klaus-Jürgen. Finite Element Procedures. New Jersey: Prentice-Hall. 1996. 1037 p.
- 9. *Montans F.J.*, Bathe K-J. Computational issues in large strain elasto-plasticity: an algorithm for mixed hardening and plastic spin. Int. J. Numer. Meth. Engng, 2005. **63**. pp.159–196.
- 10. Korobejnikov S.N. [Nonlinear deformation of firm bodies]. Novosibirsk: Izdatel'stvo SO RAN, 2000. 262 p
- 11. Germain P. [Course of mechanics of continuous environments. General theory] Moskow: Vyssh. shk., 1983. 399 p.
- 12. Sedov L.I. [Mechanic of continua] T.1. Moscow: Nauka, 1970. 492 p.
- 13. Sedov L.I. [Mechanic of continua] T.1. Moscow: Nauka, 1994. 528 p.
- 14. *Mandel J.* Thermodynamics and plasticity. In Foundations of Continuum Thermodynamics, Delgado J.J., Nina N.R., Whitelaw J.H. (eds). Macmillan: London, 1974. pp.283–304.
- 15. Hill R. The Mathematical Theory of Plasticity. Oxford: Clarendon Press, 1950. 355 p.
- *Rudakov K.N.* [Effectiveness of algorithms for determining stresses and plastic deformations in numerical modeling of processes of thermomechanical loading of structural members. J. Strength of Materials, 1992. 24(9). pp.543-548]. Probl. prochnosti. 1992. no.9. pp.18-24.
- 17. *Rudakov K.N.* [Numerical methods of the analysis in dynamics and strength of designs: Manual] K.: NTUU "KPI", 2007. 379 p.
- 18. *Krieg R.D.*, Krieg D.B. Accuracies of numerical solution for the elastic-perfectly plastic model. J. Pressure Vessel Technology: Trans. ASME, 1977. 99. no.4. pp.510-515.
- Oden Dzh. Konechnye jelementy v nelinejnoj mehanike sploshnyh sred [Oden J.T. Finite elements of nonlinear continua. New York: McGraw-Hill, 1972]. Per. s angl. A.M. Vasil'eva; Pod red. Je.I. Grigoljuka. Moscow: Mir, 1976. 464 p.

Подана до редакції 28.09.2015