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Introduction
One of the key areas of modern research is the kinetics 

of the nearly integrable quantum many-body systems. From 
this perspective the one-dimensional (1D) systems are 
particularly relevant as some exact solutions are known [1-
2] that can be used to solve more general models in which 
integrability is broken weakly. Integrability ensures that 
the scattering of particles in 1D many-particle system 
is exactly equivalent to the sequence of the pair-particle 
collisions, and hence the set of initial momenta for each 
scattering event coincides with the set of  nite momenta. 
Such scattering does not change the distribution function 
and are unable to lead the system to thermal equilibrium. 
A striking example of such long-lived non-equilibrium 
quantum states is a quantum Newton pendulum created 
using 1D-Bose gas in a trap [3].

To describe the 1D electron crystals (Wigner crystals) 
that are formed in the quantum wires, the nanotubes and 
the edge states, we can use exactly solvable Tomonaga-
Luttinger model [4-6]. This model predicts the special 

properties of 1D electron systems: the power-law anomalies 
in the tunneling density of states [7] and the effect of charge 
and spin separation [8]. However, this model has some 
serious de  ciencies. Particularly in the framework of the 
model excitations have an in  nite lifetime, which implies a 
lack of equilibration. 

Renewed interest in 1D electron crystals stems 
from the new experimental results that do not  t into the 
paradigm of the Tomonaga-Luttinger model. Tunneling 
spectroscopy of quantum wires [9,10] and thermometry of 
quantum edge states [11,12] are a direct proof of thermal 
equilibrium in 1D electron systems. The deviations from 
perfect conductance quantization [13-17] and a violation 
of the Wiedemann-Franz law [18,19] in the wires with a 
low electron density are found. These observations have 
attracted considerable attention and require construction of 
a new theoretical model. 

In the present paper we study the microscopic 
mechanisms of relaxation in the generalized Tomonaga-
Luttinger description of one-dimensional electron liquids, 
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which amounts to keeping anharmonic interactions between 
plasmons. We follow and extend the way used in [20]. The 
1D Wigner crystal [21-22] represents an extreme case of 
the Tomonaga-Luttinger liquid with small interaction 
parameter 2 / 1ms . Here  is particle density, 
m  is electron mass, s  is sound velocity of plasmons. 

We model the system of strongly interacting spinless 
electrons of mass m  by the Hamiltonian (hereafter 1 ) 

2 1 ( ),
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l l l

p
H U x x

m
                  (1)

where lp  and lx  are the momentum and coordinate of the 

th particle, and ( )V x  is the interaction potential.
In order to involve the standard second-quantized 

representation we expand (1) with respect to small l lu u , 
which measures deviations of electrons from their 
respective equilibrium positions /l lx l u , and 
introduce collective coordinates
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where N  is a number of electrons in a crystal, and plasmon 
creation and annihilation operators obey canonical 
commutation relations 

† † †, 0, , 0, , ,[ ] [ ] [ ]q q q q q q qqb b b b b b

The resulting Hamiltonian consists of the usual 
Wigner crystal part

†
0 ( 1/ 2),q q q

q
H b b                            (3)

and anharmonic terms discussed in the next section in 
details. Here the plasmon dispersion is given by
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             (4)

At the suf  ciently small temperatures T  the 

characteristic value of plasmon momentum q  is small also, 

and we can simplify the dispersion relation to 
2| | (1 ), ~ / 1.q s q q q T s

Here 22 /s V m , 24 22/ 24V V , and
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The nonlinearity of the dispersion strictly prohibits 
the decay of a single boson into two or more because of 
the momentum and energy conservation. The simplest 
scattering process involves two bosons both in the initial 

and in the  nal states and the typical relaxation rate scales 
as the  fth power of temperature [20]. Essential feature of 
the two-into-two process is the conserving of the number 
of plasmons. So, this process leads the system to not-exact 
equilibrium state. Indeed, the resulting “equilibrium” 
distribution function is expected to have a chemical 
potential. Below we discuss the two-into-three process 
which changes the number of plasmons and thereby relaxes 
the chemical potential. 

Two-into-three scattering process
As discussed in the introduction we expand the 

Hamiltonian H with respect to deviations l lu u  keeping 
terms up to the  fth order, 0 3 4 5H H H H H ,
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where 1 1n nq q q  and
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The leading order inelastic scattering process that not 
conserving the plasmon numbers, involves two plasmons 
in the initial state and three plasmons in the  nal, or vise 
versa. The corresponding rate is generated to the  rst order 
in the interaction Hamiltonian 5H , to the second order in 
the crossed terms between 3H  and 4H , and  nally from 

3H  iterated to the third order. For the purpose of  nding 
this rate we introduce -matrix

5 4 0 3 3 0 4 3 0 3 0 3 ,H H G H H G H H G H G H      (6)

where 1
0 0( )iG H , with energy i  of the initial 

plasmons. Then the transition rate for plasmon scattering is 
de  ned by -matrix and given by the Fermi golden rule 
expression

22 | | | | ( ),f

i

Q
Q f i f iW Q Q              (7)

where /i fQ  and /i f  abbreviate total initial/  nal momenta 

and energies of the plasmons respectively.

Scattering rate
The detailed calculation of the transition rate is 

cumbersome and technically. Here we shortly describe the 
steps taken to calculate the rate. After applying Eq. (5) into 
Eq. (6) and then into Eq. (7) we express the matrix element 
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| |f iQ Q  as a sum of the averaged products of the 
creation and annihilation operators. Each of these averaged 
products can be reduced by commutation relations to the 
composition of Kronecker’s delta symbols. As a result we 
get the transition rate in the following form

2
,2 ( ),| |f f

i i i f

Q Q
Q Q Q Q i fW A               (8)

where amplitude of the scattering rate can be written in the 
following form,
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Here the summation over { } { }p q  means the 

summation over variables 1,2,3,4,5p  taking different value 

from set of initial momenta 1,2q  and  nal momenta with the 

opposite sign 1,2,3q . In other words the sets of { }p  and 

{ }q  coincide,

1 2 3 4 5 1 2 1 2 3{ , , , , } { , , , , }.p p p p p q q q q q

Then the sign “ ” in superscript of 1 2( , )p p  

should be chosen as “ ” if 1p  and 2p  is the both initial or 

 nal momenta and “ ” otherwise,
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Equation (8), (9), and (10) describe the scattering of 
plasmons with arbitrary possible momenta. However 

expression for 1

1 2

2 3, ,
,

q q q
q q  is crucially simpli  ed in the low 

temperature limit. In this limit the plasmon momentum 
~ / 1q T s , and within the leading logarithmic accuracy 

1

1 2

2 3, ,
,

q q q
q q  is independent of momenta. 

For example,
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in the case of the screened Coulomb interaction potential,
2 2

2 2
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| | 4

e eV x
x x d

where 1d  is a distance to screen and e  is an 
elementary charge.

Relaxation of the arti  cial chemical potential
Now we assume that the crystal is brought out from 

equilibrium. The main scattering process that relaxes the 
crystal is the two-in-two process studied in [20]. This 
process conserves the number of plasmons and therefore 
drives the distribution function qn  of the plasmons to 
Fermi-like distribution

( )/ 1[ 1] ,q T
qn e                            (11)

where  is arti  cial chemical potential that should relax to 
zero due to the two-to-three scattering process.

The evolution of the distribution function can be 
described by Boltzmann equation

[ ],q
q

n
n

t
                                 (12)

where [ ]qn  is the collision integral that corresponds to 
the two-to-three scattering process,
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In order to simplify Eq. (12) we summarize it over q ,
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and substitute Eq. (11) in it. Finally we get
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Here we assume that the crystal is near equilibrium, so 
chemical potential is small enough, | | T , and it is 
negative to prevent the distribution function from 
singularity.

In order to calculate the characteristic time 0  that 
determine the relaxation of the arti  cial chemical potential, 
we should examine the kinematics of the two-in-three 
scattering process.

Kinematic constraints
Here we study the kinematics of the two-to-three 

scattering process and determine the combination of 
momenta that contributes substantially into the collision 

Scattering process without conserving plasmon number in one-dimensional Wigner crystal



9  ,  1135,  « »,  . 21, 2014

integral and 0 . Now we assume that 1 0q  (case of 

1 0q  can be studied analogously). The momenta and 

energy conservation laws give

1 2 3 1 2
2 2 2

1 1 2 2 3 3
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The  rst equation sets 
3 1 1 22, , .

i fQ Q q q q q q  In the 

case when all momenta is positive 1,2 1,2,3, 0q q  the 

nonlinearity plays the key role because the linear terms in 
Eq. (14) cancel each other and, excluding 3q , we get the 
quadratic equation for 2q ,
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Then the energy -function transforms into
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q q q q
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where q  are the roots of the quadratic equation (15). 

In all other cases when one or several momenta are 
negative linear terms in Eq. (14) do not cancel each other 
and do not produce such denominator as in Eq. (16). For 
example, assume that 2 0q  and 1,2 1,3, 0q q . Then the 
energy conservation gives

2 1 2 1 1 1 2

( )

1 [ 3 ( )( )( ) / 2].

i f

q q q q q q q
s

Comparing the last equation with Eq. (16) one can 
conclude that the contribution in 0 , Eq. (13), is much 

smaller to factor 2 2 2( ) ~ ( / ) 1q q T s  in the 

denominator in Eq. (16) when momenta are of different 
signs. Then in the further calculation we assume all 
momenta to be of the same sign. 

Calculation of characteristic time
Now we can calculate the characteristic time 0 . For 

that purpose we apply the scattering rate in the form of 
Eqs. (8) and (9) into Eq. (13) and integrate only over 
momenta of the same sign,

1 3 1 5
0 ( ) .2/s sT

where  is a dimensionless integral originated from the 
sum over momenta in Eq. (13),
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with 1( ) sinhx x x , and x  are roots of Eq. (15) with q  

changed to ,
3 3 3

1 2 3 1 2 3
3

1 2 3

4( ) 11
2 33( )

[ ].x x x x x x
x

x x x

It should be noted that integration in Eq. (17) 
performed over domain where 1,2,3 0, 0x x .

Conclusions
In the present paper we study the scattering of the 

plasmons in the one-dimensional Wigner crystal. The 
leading process involves two plasmons in the both initial 
and  nal states and, therefore, conserves the number of 
the plasmons. This process drives the crystal to the non-
exact equilibrium that can possess the arti  cial chemical 
potential. This chemical potential should be relaxed by the 
process that not conserving the plasmon number. The main 
process of such a kind involves two plasmons in the initial 
state and three in the  nal, or vice versa. We determine the 
scattering rate of this process, derive equation of relaxation 
of the arti  cial chemical potential, and calculate the 
characteristic time of the relaxation.
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