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A mathematical model for the characteristic impedance: 

the dependence on temperature and frequency 
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This paper is devoted to the estimation of the dependence of the characteristic imped-

ance of the material on the temperature and the frequency of the incident electromag-

netic field. The result is illustrated with plots of dependencies of moduli of real and 

imaginary parts of the characteristic impedance on the reduced temperature. 
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field. 

Робота присвячена оцінці залежності характеристичного імпедансу матеріалу від 

температури і частоти збуджуючого електромагнітного поля. Результат ілюстро-

вано графіками залежності модулів дійсної та уявної частин характеристичного 

імпедансу від приведеної температури. 

Ключові слова: характеристичний імпеданс, коефіцієнт заломлення, надпровідність, 

електромагнітне поле. 

Работа посвящена оценке зависимости характеристического импеданса материа-

ла от температуры и частоты возбуждающего электромагнитного поля. Резуль-

тат проиллюстрирован графиками зависимости модулей вещественной и мнимой 

частей характеристического импеданса от приведенной температуры. 

Ключевые слова: характеристический импеданс, коэффициент преломления, сверх-

проводимость, электромагнитное поле. 

 

The rigorous set of the two-dimensional scattering and diffraction problem for 

a plane monochromatic electromagnetic wave which depends on time as i te ω−  on non 

perfectly conducting objects leads to the Robin boundary condition for the Helmholtz 

equation as was shown in [1]. 

This boundary condition contains a parameter depending on the characteristic im-

pedance of the material which the reflecting object consists of. We consider 

the materials whose atoms contain rigidly attached electrons and so-called free elec-

trons providing the conduction of the material. The number of rigidly attached elec-

trons is not considered. We consider a material in which all the electrons of the atoms 

are free and a material where the number of free electrons depends on the temperature. 

We have used the dependencies obtained in the papers of C. J. Gorter and H. Casimir 

[2], D. A. Bonn and coauthors [3], G. F. Dionne [4], O. G. Vendik, A. Y. Popov [5]. 

We are obtained the explicit formulae that enable us to estimate the characteristic im-

pedance of materials. For all the dependencies ceteris paribus the plots of moduli of 

real and imaginary parts of the characteristic impedance were built and they are close 

to each other. 

In this paper in contrast to other papers (e. g. [6-8]), the characteristic impedance is 

associated with the refraction coefficient of the electromagnetic wave. A physical in-

terpretation of real and imaginary parts of this coefficient is given. For niobium and 

lead the plots of dependencies of moduli of real and imaginary parts of 

the characteristic impedance from the temperature were built. The dependencies of 
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the real and imaginary parts of the impedance on the frequency were obtained. 

The word “material” stands for a mathematical model of the material, the set of 

atoms. We assume that the atoms do not interact during the oscillation caused by ex-

citing electromagnetic field. Thus to characterize the oscillation of the whole system it 

is sufficient to know the character of the oscillation of an atom.  

The right orthogonal coordinate system is chosen so that the atom is situated at 

the point with zero coordinates and the z-axis is directed opposite to the wave vector 

of the exciting electromagnetic field; the x-axis direction coincides with the direction 

of the vector of the exciting electric field. 

Consider an E modes electromagnetic wave falling on an atom. The electric field 

has the form ( ) ( ) ( )( ) ( )( ), , ,0,0i i i i i
xE x t y t z t E t=

uur

, where ( )i i i t
x xE t E e ω−= . 

The magnetic field has the form ( ) ( ) ( )( ) ( ) ( )( ), , 0, ,i i i i i i
y zH x t y t z t H t H t=

uuur

, where 

( )i i i t
y zH t H e ω−=  and ( )i i i t

z zH t H e ω−= . We assume that forced oscillations of 

the electron do not depend on ( )ix t , ( )iy t , ( )iz t , y- and z-components of 

( ) ( ) ( )( ), ,
i i i i

H x t y t z t

uuur

. 

As in [9] we assume that the model of the atom of the material is a dissipative iso-

tropic oscillator with own cyclic oscillation frequency 0ω , 0
k
m

ω = , where k  is 

a dependence coefficient linking the restoring force and the deviation of electron from 

the equilibrium position and m  is the mass of the oscillating electron. 

Under the effect of the electromagnetic field free electrons inside the atom begin 

forced oscillations. The isotropism provides the same restoring force of the electron 

for any direction of the electric field. 

Thus three forces act on the electron. The first is an outside force caused by 

the electric field. The second is a dissipative force equal to ( )x tγ− &  where γ  is 

the dissipation coefficient and ( )x t  is a coordinate. The third is the restoring force 

equal to ( )2
0 x tω− . 

Let us denote the force acting on the electron from the side of the field as xF  then 

i i t
x e xF q E e ω−=  where eq  is the electron charge. Then the second Newton law will 

take the following form 

( ) ( ) ( )2
0

i i t
e xmx t q E e m x t m x tω γ ω−= − −&& & .      (1) 

We are going to search the solution of (1) in the form ( ) 0
i tx t x e ω−=  where 0x  is 

a constant. We get that 

( )
( )

( )
2 2

0

ie
x

q
x t E t

m i mω ωγ ω
=

− − +
.      (2) 

From (2) one can see that ( )x t  is proportional to ( )i
xE t . Similarly, we can prove 
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that in the case of exciting of the material by H modes electromagnetic wave ( )x t  is 

proportional to ( )i
xH t . 

The projection of the induced dipole moment of the atom on the x-axis is given in 

[9] by the formula ( ) ( )0
i

x xp E tε α ω=  where ( )α ω  is the atomic polarizability. From 

the other hand ( )x ep q x t=  we have 

( )
( )

2

0 2 2
0 0

ie
x x

q
p E t

m i m
ε

ε ω ωγ ω
=

− − +
 

therefore ( ) ( )
2

2 2
0 0

eq

m i mε ω ωγ ω
α ω

− − +
= . 

Let us denote the polarization vector by P
ur
 and the number of free electrons in 

the atom by N . Then the dependence of the projection of P
ur
 on x-axis on N  will take 

the form ( )0x xP N Eε α ω=  (see [9]). 

Consider a material that fill the half of the space that is the set 

( ){ }3, , : , , 0x y z x y z∈ ∈ ∈ ≤� � �  consisting of atoms whose model is presented 

above. The exciting field is the same. The Maxwell equations in the matter have 

the following form 

( ) ( )

( ) ( )

( )

( )
0

,
, ,

,
, ,

1
, ,

, 0,

e
e

e
e

e

e

B z t
rotE z t

t

D z t
rotH z t

t

divE z t divP

divH z t

ε

 ∂ = −
 ∂


∂
 = −
 ∂

 = −


 =

uur
uur

uuur
uuur

uur ur

uuur

 

where eE

uur

 is the electric field, eH

uuur

 is the magnetic field, eB

uur

 is the magnetic induc-

tion and eD

uuur

 is the electric induction. 

Knowing that 0
e eD E Pε= +

uuur uur ur
 we get 

( ) ( )( ) ( )2

2 2 2

, ,1
1

e e
x xE z t E z t

N
z c t

α ω
∂ ∂

= +
∂ ∂

.     (3) 

The length of the electromagnetic wave in the matter is defined by the formula 
2 c

n
π
ωλ = ⋅  where n  is the refraction coefficient. The change of the wave length is 

the result of the imposition and the interference of the incident wave and the waves 

caused by the oscillating electrons. 

We are going to search the solution of (3) in the form ( ),e e i t ikz
x xE z t E e eω−=  where 
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2k π
λ=  is the wave number. We get that 

( )( )2 2 1 1k N
c

ω α ω= + .       (4) 

From (4) using the formula n
c

k ω=  we get 

( )
2

2

2 2
0 0

1
1 1 eNq

n N
m i m

α ω
ε ω ωγ ω

= + = +
− − +

.     (5) 

The number 
2

0

eNq

mε  is called the plasma frequency and is denoted by pω . For radio 

waves up to ultra short waves the condition of smallness of ω  compared to pω  takes 

place. For free electrons 0ω  is equal to zero. 

For materials that model ordinary elements γ  is not equal to zero and for materials 

that model superconducting elements γ  is equal to zero. Consider ordinary elements. 

Ignoring 1 and 2ω  in (5) we get 

2
2

0

1eNq
n i

mε ωγ
= . 

In the equation whose solution describes the motion of the electron, the force re-

sisting its motion ( )m x tγ− &  was used. As the averaged motion of electrons under 

the effect of the electric field is uniform (see [9]) the averaging of the resistance force 

must be equal to the force acting on an electron from the side of the electric field. We 

obtain that e xm v q Eγ =  where v  is the averaged velocity. From the other hand we 

have e xq E

m
v τ= ⋅  where τ  is the average time of the free path of the electron. There-

fore 1τ γ −= . 

The conductivity of a material is given by formula 
2
eNq

m
σ τ= ⋅  then the refraction 

coefficient will take the form 
0

2 in σ
ε ω= . Using the following fact 

2 2 2 2

sgn
2 2

a b a a b a
a ib i b

 
+ + + − + = ± +  

 

 

finally we obtain the formula for the refraction coefficient 

( )
2

0

1
2

eNq
n i

m

τ
ε ω

= + ,         (6) 

where the branch of the square root is chosen such that Im 0n ≥ . This condition pro-

vides the decrease of electromagnetic wave amplitude during the penetration of 

the wave into the material. Substituting (6) in ( ),e e i t ikz
x xE z t E e eω−=  we obtain 
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( )

2
0

2
0

2

2,

e

e

z

mNq
iz

Nqe e i t m
x xE z t E e e e

ω τµ
ω τµω

−

−= . 

Thus one can see that the real part of (6) defines the change of the wave length in 

the material and the imaginary part defines the coefficient of wave attenuation. 

Now we consider an equation ( ) ( ), ,e e
t

rotH z t D z t∂
∂

= −
uuur uuur

. We have that 

( ) ( )2
0

,
,

e
e E z t

rotH z t n
t

ε
∂

= −
∂

uur
uuur

.      (7) 

In E-mode case the equation (7) will take the following form 

( ) ( )2
0

, ,e e
y yH z t E z t

n
z t

ε
∂ ∂

= −
∂ ∂

. 

Let ( ),e e i t ikz
y yH z t H e eω−=  then 

0

1e e
x yE H

c nε
= . 

Denote the characteristic impedance by Z . Finally we obtain that 

( ) 0
2

1
2 e

m
Z i

Nq

µ ω

τ
= − . 

Consider a material all the electrons of which form a superconducting system i.e. 

all of them are free. In this case 0ω  and γ  are equal to zero. Ignoring 1 in (5) we get 

2
2

2
0

1eNq
n

mε ω
= − , 

2

2
0

eNq
n i

mε ω
= . 

Thus the refraction coefficient is pure imaginary. 

Using arguments similar to presented above we obtain a formula for the characte-

ristic impedance 

2
0
2
e

m
Z i

Nq

µ ω
= − . 

Now we consider a material in which free electrons form two subsystems a normal 

one with particles number density nN  and a superconducting one with particles num-

ber density sN . Note that n sN N N= + . Each of them gives a contribution to polari-

zability of the material with atomic polarizabilities ( )nα ω  and ( )sα ω  respectively. 

From the Maxwell equations we have 

( ) ( ) ( )( ) ( )2

2 2 2

, ,1
1

e e
x x

n n s s

E z t E z t
N N

z c t
α ω α ω

∂ ∂
= + +

∂ ∂
. 
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It follows that for the square of the refraction coefficient we have 

2 2
2

2 2 2 2
0 00 0

1 1
1 n e s eN q N q

n
m mi m i mε εω ωγ ω ω ωγ ω

= + +
− − + − − +

.   (8) 

Ignoring the first term in (8) and 2 2
0mω ω− +  in the denominator of the second 

term and noticing that in the third term 0ω  and γ  are equal to zero we obtain 

22 2
2

2
0 0

1 1 pn e s e s nN q N q N N
n i

m i m N N

ω
ωτ

ε ωγ ε ωω

   
= − − = − +   

  
. 

Taking the square root we get 

2 2 2 2

2 2

p ps n s s n sN N N N N N
n i

N N N N N N

ω ω
ωτ ωτ

ω ω
       

= + − + + +       
       

 

where the branch of the square root is chosen such that Im 0n ≥ . This condition pro-

vides the decrease of electromagnetic wave amplitude during the penetration of 

the wave into the material. The characterization impedance is obtained from 

the following formula 

0

1
Z

c nε
= . 

Thus the formula for the characteristic impedance will take the following form 

2 2 2 2

2 2 2 2

0 02 2

s n s s n s

s n s n
p p

N N N N N N

N N N N N N
Z i

N N N N
c c

N N N N

ω ωτ ω ωτ

ε ω ωτ ε ω ωτ

       + − + +       
       

= −
             + +                    

. 

Consider a function from the reduced temperature ( ) nN
n N

f t =  where 
n

T
n T
t =  and 

nT  is a temperature of the superconducting transition of the material. Note that 

( )1sN
nN

f t= − . Then using that 
0 0

1c
ε µ

=  and 0

0
0Z

µ
ε=  we obtain the following 

form of the formula for the characteristic impedance 

( )( ) ( )( ) ( )

( )( ) ( )( )

2 2

0
2 2

1 1

2 1

n n n

p n n

f t f t f tZ
Z

f t f t

ωτω

ω ωτ


− + − +

= −
 − +


 

( )( ) ( )( ) ( )

( )( ) ( )( )

2 2

2 2

1 1

1

n n n

n n

f t f t f t
i

f t f t

ωτ

ωτ


− + + − 

− 
− + 


. 

The average time of free path of a electron can be estimated using the formula 
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2
n e

m

N q

στ =  taking into account the known minimal value of the conduction at 

a temperature over nT . The simplest formula for ( )nf t  is given in the model of 

C. J. Gorter and H. Casimir [2]. It is ( ) 4
n nf t t= . There are other models. The model of 

G. F. Dionne [4] is ( )
W
tn

W

nf t e
−

= , the model of D. A. Bonn [3] is ( ) 4 nt
n nf t t

−= , 

the model of O. G. Vendik and A. Y. Popov [5] is ( )
3
2

n nf t t= . 

To calculate the dependence of the characteristic impedance on the temperature we 

used the following reference information: 

− the absolute zero of the temperature is equal to 273,15−  degrees Celsius; 

− the boiling point of helium is equal to 4,21  degrees Kelvin; 

− the boiling point of hydrogen is equal to 20,4  degrees Kelvin. 

For niobium: 

− the temperature of the superconducting transition is equal to 9,22  degrees 

Kelvin; 

− the ratio of specific conductivities at 20,3  degrees Kelvin and 273  degrees 

Kelvin is equal to 0,338 ; 

− the critical magnetic field strength is equal to 3318,32 10⋅  A/m; 

− the molar mass is equal to 341 10−⋅  kg/mol; 

− the density is equal to 38,4 10⋅  kg/m
3
; 

− the electron density is equal to 296,17 10⋅  1/m
3
; 

− the plasma frequency is equal to 164,43 10⋅  Hz; 

− the specific resistance at 273  degrees Kelvin is equal to 813,1 10−⋅  Om·m; 

− the time of free path of an electron is equal to 151,30 10−⋅  s; 

− the frequency of exciting field is taken equal to 30  GHz and the associated 

wave length is equal to 1 sm. 

 

  
Fig. 1. Fig. 2. 

 

On the figure 1 the dependence of moduli of real and imaginary parts of 
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the characteristic impedance on the reduced temperature under the assumption that 

( ) 4
n nf t t=  is shown. On the figure 2 the same is shown under the assumption that 

( )
W
tn

W

nf t e
−

=  where 1W = . On the figure 3 we assume that ( ) 4 nt
n nf t t

−=  and on 

the figure 4 we assume that ( )
3
2

n nf t t= . The solid line stands for modulus of the real 

part and the dash line is for modulus of the imaginary part. 

 

  
Fig. 3. 

 

 

Fig. 4. 

 

 

  
Fig. 5. Fig. 6. 

 

For lead: 

− the temperature of the superconducting transition is equal to 7,26  degrees 

Kelvin; 

− the ratio of specific conductivities at 20,5  degrees Kelvin and 273  degrees 

Kelvin is equal to 0,0301; 

− the critical magnetic field strength is equal to 363,664 10⋅  A/m; 

− the molar mass is equal to 382 10−⋅  kg/mol; 

− the density is equal to 311,34 10⋅  kg/m
3
; 

− the electron density is equal to 293,33 10⋅  1/m
3
; 
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− the plasma frequency is equal to 163,25 10⋅  Hz; 

− the specific resistance at 273  degrees Kelvin is equal to 819,3 10−⋅  Om·m; 

− the time of free path of an electron is equal to 141,83 10−⋅  s; 

− the frequency of exciting field is taken equal to 30  GHz and the associated 

wave length is equal to 1 sm. 

On the figure 5 the dependence of moduli of real and imaginary parts of 

the characteristic impedance on the reduced temperature under the assumption that 

( ) 4
n nf t t=  is shown. On the figure 6 the same is shown under the assumption that 

( )
W
tn

W

nf t e
−

=  where 1W = . On the figure 7 we assume that ( ) 4 nt
n nf t t

−=  and on 

the figure 8 we assume that ( )
3
2

n nf t t= . The solid line stands for modulus of the real 

part and the dash line is for modulus of the imaginary part. 

 

  
Fig. 7. Fig. 8. 

 

The formulae obtained to calculate the characteristic impedance enable us to esti-

mate its value for different materials at different temperatures and frequencies. For 

materials in normal state the real part and the imaginary part of the characteristic im-

pedance are equal and are proportional to the square root of the frequency. One can 

easily see that real part of the characteristic impedance of a material modeling a metal 

in the superconducting state is proportional to the square of the frequency and imagi-

nary part is proportional to the first degree. Besides, the imaginary part of 

the characteristic impedance is greater than the real part by four to five orders of mag-

nitude for all values of the reduced temperature except for those close to unity. 

The obtained formulae enabling us to estimate the characteristic impedance of dif-

ferent materials let us get physically based solutions of wave scattering and diffraction 

problems. The method of obtaining such solutions was proposed in [1] developed in 

[10] widely presented in [11] and modified in [12]. 

The author thanks professor Yu. V. Gandel for his interest to this work. 
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