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Analytical-numerical approach to analyze forced and parametric
vibrations of some pendulum systems

A. A. Klimenko, Yu. V. Mikhlin

National Technical University «Kharkov Polytechnic Institute»

The parametric oscillations of physical pendulum and forced vibrations of a system
with pendulum absorber are analyzed using the approach based on combined
application of the concept of nonlinear normal vibration modes, the Rauscher method,
and numerical procedures. Frequency responses are obtained.
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[IpoBenen aHanW3 mMapaMeTPHUYECKUX KoleOaHW (DU3NYECKOro MasTHHKA U
BBIHYK/ICHHBIX KOJNEOAaHWH CHCTEMbl C MAasSTHHKOBBIM TacuUTeleM KoyeOaHuid ¢
MIPUMEHEHHEM €IMHOTO0 MOAX0Ja, 0a3MPYIOIIErocs Ha COBMECTHOM HCIIOJIb30BaHHU

Meroaa Payiepa, MeTosia HEMMHEHHBIX HOPMAJIbHBIX (OpPM KOIeOaHUH M YHCICHHBIX
npouexyp. [1ocTpoeHBI aMIIIUTYAHO-9aCTOTHBIE XapAKTEPUCTUKHL.
Knrwouesvie cnosa: masmuuxosvie cucmemvl, HeauHelHble HOpMaibHble 1<0/1€6an1, Memoo

Paywepa.

[IpoBeneHo anamiz mapaMeTpUYHHUX KOJNMBAaHb (DI3UYHOTO MasTHHKA Ta BHMYIICHHX
KOJIMBaHb CHCTEMH 3 MasTHHKOBHMM TaCUTENIEM KOJHMBAHb i3 3aCTOCYBAHHSAM €JMHOTO
migxomy, mo 0a3yeThesi Ha CIIJIBHOMY BHKOPHCTaHHI Merody Payiepa, meTony
HENiHIMHUX HOpMaJbHUX (OPM KONMBAHb Ta YUCENBHUX mpouexyp. [loOynoBaHo
AMILTITYAHO-9aCTOTHI XapaKTePUCTUKH.

Kniouosi cnoga: masmnuxosi cucmemu, HeniHitini HOpMANbLHI KoaUsanHs, memoo Paywepa.

1. Introduction

It is well-known that resonance forced vibrations of a single-degree-of freedom
(DOF) nonlinear systems under small periodic perturbations in the region of main
resonance are close to natural vibrations of unperturbed conservative system. This
result can be transferred to finite-DOF systems. In the last case the resonance forced
vibrations are close to nonlinear normal vibration modes of corresponding finite-DOF
conservative systems. Thus, it is appropriate to use the nonlinear normal vibration
modes of conservative systems to construct forced resonance vibrations. It permits to
consider vibrations with essential amplitudes.

Origins of the nonlinear normal vibrations theory can be found in works by
Lyapunov [1] on systems with the first analytical integral. Concept of nonlinear
normal vibration modes (NNMs), which is based on construction of trajectories in the
system configuration space, is developed in works by Kauderer [2] and Rosenberg [3].
Approach of construction of curvilinear trajectories of NNMs is proposed in
publications [4,5]. Principal aspects of the NNMs theory by Kauderer-Rosenberg are
presented in books [5,6] and in review [7]. Approach which combines the concept of
nonlinear normal vibration and the Rauscher method is used to construct forced
resonance vibrations of systems having few degrees of freedom in [8,5,6]. (Initially
the Rauscher method was proposed for a nonlinear conservative single-DOF system
[9]) Note that the same approach can be used also in construction of parametric
vibrations.
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Here the approach based on combined use of the concept of NNMs, the Rauscher
method and numerical procedures, is used in problem of parametric vibrations of the
spring pendulum and in problem of forced resonance vibrations of the system
containing a pendulum absorber.

2. Parametric vibrations of a spring pendulum

The model of two-DOF spring pendulum is presented in Fig. 1. Vibrations of the
mass m on the linear spring of the length / in unstressed state are considered.
Dynamics of the system is described by two generalized coordinates p and ¢ .

k 4

¥
Fig. 1. Spring pendulum

Let the small periodic perturbation applied in vertical direction is considered.
Equations of parametric vibrations of the system can be wrote as the following:
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where uz=p-p,, p,=! +g— is an extension of the spring in the equilibrium
c

state; 4 is a formal small parameter.

Combination of the NNMs approach and the Rauscher method is used to construct
normal modes of parametric vibrations. One considers, first of all, the autonomous
system obtained from equations (1) in the zero approximation by the small parameter

(#=0). In regime of nonlinear normal mode one has z = z((o); and the system

under consideration is reduced to the single-DOF system with respect to the variable
¢. The nonlinear normal mode can be obtained by power series [4,5]:
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z=z(@Q) =z, + uz, +..., 2)
Z,=a, +a,Q+a,p  +a,p’ +a,p +...; )
z,=b, +bp+b,p> +bp +b,p* +...
One uses a representation of the generalized coordinate ¢ in the regime of the
NNM as Fourier series, namely, @ =4+ 4,cos(2Q¢)+ 4, COS(4Qt) +... We

introduce the Fourier series to the obtained previously single-DOF system, saving only
three first terms of the series and then using the harmonic balance. One obtains, as a
result, a system of three nonlinear algebraic equations with respect to four unknowns

(AO,AZ,A4,Q). During the next numerical calculations a value A4, is given with
some step. The system of nonlinear algebraic equations is solved with respect to
unknown quantities (AO,AZ,A4,Q) for each value of A4,. One has from here the

required parameters (AO, A4,Q) . As a result, the first coefficient of the Fourier series

will be determined.
One transforms now the Fourier series using known trigonometric formulae, as

@ = Ay + A, cos(2Q1)+ 4, cos (4Qt) +... =
= A, + 4, (2cos’ (Q) —1)+ 4, (8 cos* (Qr) ~8cos’ (Qr) +1)+...=  (4)
= (A0 -4, + A4)+(2A2 —8A4)cos2 (Qt)+8A4 cos® (Qt)+...

The following expansion can be obtained from the relation (4):
o=(A4,— A, +A,)+(24, -84, )cos’ (Q)+84, cos* (Q1) +... 5
Then, some algebraic transformations permit to invert the expansion (5) and to
obtain the following relation:

cosQt =a, +a,p+a,p +... (6)
On has the external periodic excitation is presented as a function of the generalized
coordinate ¢ in zero approximation by the small parameter. Introducing the

expansion (6) to the initial non-autonomous dynamical system (1), one obtains so-
called «pseudo-autonomous» dynamical system. Such adduction of the non-
autonomous system to the autonomous one corresponds to main idea of the Rauscher
method. In obtained autonomous dynamical system the nonlinear normal vibration
mode can be anew obtained. It permits to make more precise expansions (2) - (3), and
to realize again a transfer from the initial non-autonomous system to the «pseudo-
autonomousy» one. Thus, the iteration analytical-numerical procedure can be used for
a construction of forced resonance vibrations, which permits to obtain a solution with
good exactness.

Two nonlinear normal vibration modes can be selected in this system: a) localized
vibration mode close to longitudinal vibration mode of the pendulum system without
the external excitation; in the localized mode amplitudes of rotations are small;

b) coupled vibration mode, when amplitudes of longitudinal vibrations and rotations
are comparable.
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Trajectories of the localized vibration mode of parametric vibrations in the system
configuration space are shown in Fig. 4a; trajectories of the mode of coupled
vibrations are shown in Fig. 4b. Calculations are made for the next values of the

system parameters: g =9.8, [=0.5, m=1, ¢=3, u=0.1, =03, ¢,=0.01
(for the localized mode) and g=9.8, /=0.5, m=0.1, ¢c=2, u=0.1, f=3,
@, =0.1 (for the mode pf coupled vibrations). Here red lines correspond to the

analytical solution, and blue lines correspond to checking numerical simulation by the
Runge-Kutta method, which is made for initial solutions obtained from analytical
solution. Numerical calculations confirm good exactness of the analytical results.

—0.50099, T T T

= 0.506904)

— 0509998

-0.510002' L L L
—0.01 0 0.01

—0.01239 2 T T T
—0.012392)
—0.012394]
—1.012396]

—0.012398

— 0.0124

1 1 1
=01 -0.035 0 0.05 0.1

—0.012402

Fig.2.b
Fig. 2. Trajectories of the localized vibration mode of parametric vibrations (Flg.2a) and of
the mode of coupled vibrations (Fig.2b). Comparison of analytical and checking numerical
solutions.
3. Forced vibrations of the system, which contains a pendulum absorber
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The second model under consideration is presented in Fig. 3. Here mechanical
subsystem which vibrations must be extinguished is presented as oscillator of the mass

m, with anchor spring which rigidity coefficient is equal to k. The pendulum

absorber of the mass m, and of the length / is attached to the linear oscillator.

Fig. 3. System containing the pendulum absorber

Motions of the system are described by two generalized coordinates x
(displacement of the linear subsystem) and € (angle of the pendulum absorber).

Equations of motion of the model in the presence of the small external periodic
action are the following:

2 3
(m, +gm2)5é+gmzlé£1—%J—gmzléz [6’—%)+kx = ¢F cos(Q);

2 3
X(l—e—j+lé+g(9—0—]20.
2 6

Here ¢ is the formal small parameter.

Two nonlinear normal vibration modes can be selected in this system: a) localized
vibration mode when vibration amplitudes of the linear subsystem are essentially
smaller than amplitudes of the pendulum; b) coupled vibration mode, when amplitudes
of the linear oscillator and of the pendulum are comparable. The first vibration mode
is appropriate for absorption of vibrations of the linear subsystem.

Trajectories of the localized mode of forced vibrations (Fig.4a) and of the mode of
coupled vibrations (Fig. 4b) are constructed using approach described in the preceding
Section. This approach joints the nonlinear normal mode concept and the Rauscher

(7

method. Calculations are made for the following parameters of the system: m, =1,

m,=0.1,/=1, k=5, £=0.1, f=0.1. Here red lines correspond to the analytical
solution, and the blue lines correspond to checking numerical simulation by the
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Runge-Kutta method, which is made for initial solutions obtained from analytical
solution. Numerical calculations confirm good exactness of the analytical results.
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Fig. 4. Trajectories of the localized mode of forced vibrations (Fig.4a) and of the mode of
coupled vibrations (Fig.4b) for the system having the pendulum absorber.

Construction of frequency responses is made by the harmonic balance method. In
correspondence with this method the variables X and & are presented in the form of
the  following sum  of  harmonics: x=4, Cos(Qt) +4, Sin(Ql‘ );

0=B, COS(Qt) + B, sin(Qt). The frequency responses are shown in Fig. 5 for

the vibration mode of coupled vibrations, and in Fig. 6 for the localized vibration
mode. It can see that in regime of the localized vibration mode vibrations of the linear
subsystem are essentially smaller than ones of the pendulum absorber; the vibration
energy concentrates in the absorber. So, this regime is appropriate for a quenching of
vibrations of the linear subsystem.
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Fig. 5. Frequency responses of the mode of coupled vibrations for the linear subsystem
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(Fig. 5a) and for the pendulum absorber (Fig. 5b)
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Fig. 6. Frequency responses of the localized vibration mode for the linear subsystem (Fig.
6a) and for the pendulum absorber (Fig. 6b)

4. Conclusions

New analytical-numerical approach to analyze parametric and forced vibrations of
some pendulum systems is proposed. This approach is based on concept of nonlinear
normal vibration modes, the Rauscher method and some numerical procedure. The
proposed approach permits to construct trajectories of parametric and forced vibration
modes in the system configuration space. Frequency responses are constructed too.
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