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Acceleration of computation of the discrete currents method
by modification, which takes into account the architectural
features of a modern PCs
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The authors have modified the popular techniques of modeling the diffraction
phenomena in the resonance wavelength range in order to accelerate calculations using
the possibilities hidden in the architecture of modern PCs. This modification takes
advantage of the CPU vector registers. In particular, the authors have employed the
said vector registers in combination with cache memory performance optimization for
modification of the discrete currents method (DCM). Their results are clearly
illustrated by the following example: solving the diffraction problem (for the
wavenumber of 14m) on 80 screens using 4-core CPU was 30 to 40 times as fast as
with the single-core processor without vector registers involvement and processor
cache optimization.
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3nificHeHO MOU(]IKaLi0 MOMYJIIPHOTO METO/y MOJICTIOBAHHS TU(PPAKLIHUX SBHIL y
PE30HAHCHOMY [iiana3oHi XBWJIb 3 METOI0 IPHCKOPEHHS OOYHCICHb 3a PaxyHOK
BUKOPUCTAHHS MOJKJIMBOCTEH, IIPUXOBAaHMX B apxiTekrypi cywacuumx IIK. Ils
Mozaudikaiisis BHKOPHCTOBYE BEKTOpHI perictpu mpomuecopa. B pesynbrati
Moaudikauii merony auckperHux crpymiB (MT), crpsiMoBaHOi Ha BHKOPHUCTaHHS
BEKTOPHUX PETiCTPIiB B MOEIHAHHI 3 ONTHMI3alLi€0 pOOOTH 3 Kell NaM'aTTIO, BAJI0Cs
OTpPHUMATH Pe3yJIbTarT, KUl T00pe LIICTPY€EThCsl TaKUM HpHKIagoM. [1pu po3s'sa3Ky 3a
MAT mudpakuiiinoi 3amadi Ha 80 ekpaHaxX (XBHIbOBE 4ymcio 14m), Ha 4-snepHOMY
MpoIIecopi crocTepiranocs MPUCKOpeHHS po3paxyHKy B 30-40 pasiB MOpIBHSAHO 3
BUKOHAHHSM Ha OJHOMY s1pi 0e3 BUKOPUCTAHHS BEKTOPHHX PETICTPiB 1 omTumizamii
pob6oTH 3 KemeM mporecopa.

Knwouosi cnosa: ougpaxyis, nposionuii expam, Memoo OUCKPeMHUX CMpPYMIS, GeKMOpHi
pezicmpu, maiinine, napanenizm, MO, CJIAP, excnepumenm, weuokicms oouuciets.

We develop a modification of the popular modeling techniques diffraction phenomena
in the resonance wavelength range in order to accelerate the calculations at the
expense of the opportunities hidden in the architecture of modern PCs. This
modification uses the vector registers of the processor. As a result of the modification
of the method of discrete currents (DCM), which aims to use the vector registers,
combined with the optimization of the work with the cache memory, we got the result,
which is well illustrated by the following example. In case of deciding the diffraction
problem on 80 screens (wave number 14m) on a 4-core CPU, following the DCM, we
got acceleration 30-40 times in comparison with the performance on a single processor
core without the use of vector registers and cache processor optimization.

Knrwoueevte cnosa: ougpaxyus, npogooswull Kpan, mMemoo OUCKPEMHbIX MOKO8, 8eKMOpHble
peaucmpul, maiinune, napaneausm, MJJO, CJIAY, skcnepumenm, cKopocmb 6bl4UCIeHU.

1 Introduction

There are various methods for solving the problems of the mathematical theory of
diffraction. Those of them, which use the boundary integral equations, are the most
effective. In the case when one can assume that the scatter (e.g., an antenna) is a set of
perfectly conductive and infinitely long cylindrical screens (whose generatrices are
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parallel), he obtains the equations over the contours of cross-sections of these screens.
The method of discrete currents (DCM) (whose several variations are available
depending on the field polarization and selected fundamental solution of the
Helmbholtz equation) is based on a particular system of equations of the first kind (for
the current density functions over the contours) with kernels having singularities such
as the Cauchy kernels, the logarithmic type kernels, or hypersingular kernels [1, 2]. A
discrete model of such system depends on the corresponding quadrature formulas for
integrals (which are treated, if necessary, as generalized functions) [3], and their
approximate solution can be reduced to solving a system of linear algebraic equations
(further — "linear system"). On this way, the computational difficulties occur in the
case of resonant wavelengths, especially if there is a large number of scattering
contours. As an example, see the configuration (cross section) shown in Fig. 1.

Y

Fig. 1 Example of a grid consisting of 20 metal strips
If an electrodynamic system includes dozens of elements (for example strips) and the
wavenumbers are chosen in the range from 10 to 20, then, to achieve the needed
accuracy, the discretization parameter value should be very large, as well as the
dimension of linear system (for problems of such kind, up to several thousands). The
memory of modern PCs usually has enough room to accommodate matrices of such
systems, but the solution process can last for hours.

For a period of time, parallel computing in approximate numerical methods
(discrete current methods among them), had been available only by using improvised
clusters made of several PCs (e.g. [4-6]); this could give acceleration somewhat
smaller than the number of machines or processor cores involved. Another way, based
on sophisticated operating with the cache and luckily used granularity of calculations
[7-9], could result in acceleration equal or even somewhat larger than the number of
processor cores.

This work is aimed at such further acceleration of computations implementing
DCM, which will significantly exceed the number of processor cores due to the fact
that the PC architecture provides the possibility to use vector operations.

This approach presumes the maximum possible for this application type
parallelization of calculations with the help of some additional specialized device with
a large number of processor cores, whose the most common example is the CUDA-
card [10]. However, putting aside the economic aspect, one has to keep in mind that
"In course of optimization or modification of a program fragment, aimed at taking
advantage of specific hardware architecture, one faces a problem of the algorithm
performance limitation due to specific architectural features of an open heterogeneous
system. This issue is particularly relevant in the case of specific computing devices
used, such as graphics processors, signal processors, programmable logic integrated
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circuits, application-oriented processors" [11, P.2] (quotation translated into English
by Yu. Kolomiets).

Some issues closely related to said above and appearing in practical
implementation of CUDA technology in complicated algorithms are the following:

e this requires additional equipment;
e more knowledge is needed:

- understanding of the CUDA device principles;

- familiarity with the special programming language for the CUDA device;

e for practically useful classes, the parallel calculation algorithm complexity often
exceeds their own one.

Specifically, the following features are known [11] to complicate the block
algorithms implementation in an open heterogeneous computing system based on the
GPU architecture (cited by [11 P.4]).

1. The high data-level concurrency, not the code-level.

2. Structured GPU memory, whose different types have specific operation
features.

3. Small volume of "fast" memory available to one computing thread at a time.

4. The specificity of logic expression processing.

5. The specificity of conditional branching and loops processing.

In this connection, it becomes relevant to check whether some possibilities for the
MDO algorithms acceleration can be found directly in the architecture of modern PC
main processors. Our attention was drawn to the vector registers [12]. The first vector
registers appeared in the early 90s, but at that time their size was only 64 bits and they
could process nothing but integers. Later, with the introduction of SSE instructions
and register expansion to 128 bits, they became capable of operating with a float-point
double-precision numbers. Next after SSE instructions, the so-called AVX ones
appeared, and the size of vector registers had raised up to 256 bits. The latest set of
instructions version for vector registers is AVX512; its name implies that their size is
512 bits. The future expansion is planned up to 1024 bits, which indicates that the
technology is relevant and developing.

The real objective of integration of vector registers in the PC processor (same as in
the case of CUDA) was to accelerate graphic information processing. However (again
as in the case of CUDA), the programmers, upon necessity, began to use the vector
registers to accelerate computation, including operating with complex numbers, which
is the feature required in the DCM. The examples of complex multiplication
implemented with the help of 128-bit SSE instructions and resulting gain in
calculation speed were published in the WEB in 2010-11 mailing [13]. Employment
of the vector registers to speed up the inversion of sparse matrices built of "small"
blocks have been implemented and studied in [14]. At this point, it is necessary to note
that the DCM matrices are entirely filled, and their division into blocks makes sense
only in connection with development of parallel processing algorithms [5].

2 Formulation of the problem
Let, in the problem of E-polarized electromagnetic waves diffraction against a
perfectly conductive contours, the time dependence is given by the amplitude factor

iot

e Let the total field amplitudes are represented in this way:
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Be=E+E.  Av=H+H, . M)

where (EO,I:I , ) - 1s an incident field, (E, H) —is a scattered field, and where

1 oU, 1 oU,
E =(0,0,U,), H,=|——0 —""09 2
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Then both the scattered and the total fields will be also E-polarized [e.g. 1],
E* =(0,0,U"), U” (X)=U(X)+U,(X), X R’ 3)

Under the above assumptions, the scattered field U satisfies the Helmholtz equation

N-1
everywhere outside the set C= UC,, , where C, — n™ contour, and N is the total

n=0
contours number:

AU (X)+kU(X)=0,

xeR[C,X =(x,) @
For any contour C, the Dirichlet condition is valid
U(X), ==U, (X)), (5)
The condition at infinity is the Sommerfeld radiation condition
and for all contour ends the so-called "on the edge" condition is fulfilled
j(|U( ) +[vu(x )dQ<oo (7)
o

where Q — is any bounded neighborhood of a contour end.

Let a computer solution of this problem uses the method of discrete singularities
(DSM). In this paper, the version of DSM is applied, which uses the boundary integral
equations with the logarithmic type kernels [1,2]. The advantages of DSM in
numerical modeling of physical processes are well known [15]:

e The matrix of the process discrete model is very easy to form;
e [t is possible to solve a linear system using the Gauss scheme without
permutations.

However, the data exchange between running in parallel processes, needed in the
course of solving the linear system obtained by problem (1)-(6) discretization (with
the help of DCM or other method that uses the boundary equations), requires their
systematic interaction via shared memory. This explains the non-triviality of parallel
algorithms of the Gauss method. For example, the classical approach to parallelization
in linear algebra problems, such as solving the linear system with an entirely filled
matrix, is to divide the matrix into blocks with concurrent processing these blocks. As
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it was explained above, in this case, the potential benefits of the large number of
processor cores used in CUDA device cannot be implemented to the full extent.

We had in mind the task to accelerate the DCM-calculations by employment of the
vector registers. For result comparability, calculations were carried out until the
minimal standard numerical solution (MSNS) of diffraction problem was obtained. It
means that "discrete currents" (that approximates the current density functions) were
evaluated based on the discrete model of the system of boundary equations and
mapping of the field was built for the far-field region (field strength directivity
diagram with the pitch of 1° in accordance with given polarization).

The research methods and materials

The todays compilers, it seems, "know” to use the vector registers. But adequacy of
their results is clearly seen comparing the source code in C++ with the corresponding
code in assembler created by the compiler GCC-4.9.
Table 1 A C++ function translated into assembler code

C++ code The code generated by the compiler
double VecMul(double* a, double* b, int | VecMul(double*, double*, int):
size) vxorpd %oxmm0, %xmm0, Y%xmmO
{ testl %edx, %edx
double sum = 0; jle .L4
for (int i=0; i < size ; i++) xorl %eax, Yeax
{ .L3:
sum += a[i] * b[i]; Vmovsd (%rdi,%rax,8), %oxmml
} vimadd231sd (%orsi,%rax,), %xmml,
return sum; %xmmO
} addq$1, Y%rax
cmpl %eax, %edx
jg.L3
ret
L4:
ret

An attentive study of the text representing multiplying of two vectors reveals (see
Table 1) that only one value was sent to a vector register. As it was a double float
number, only 64 bits of 256 available were used.

Note that the function vfmadd231sd() in the right column of the table is the special
assembler instruction, which corresponds to the expression "sum += a[i] * b[i];".

As one can see from this example, today the compiler uses the vector registers just
to increase the number of available registers, which yields only a few percent
acceleration of an algorithm execution. To achieve more significant acceleration using
such instructions, one can include in his code patches written manually in assembler.
However, preferred are the so-called intrinsic-functions (i.e. the special system-
dependent functions that implement some commonly used operations), which are
much more efficient than the standard ones because they use known features of
computer architecture at the level of assembler code [16].
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In problems being solved by DCM, the most time-consuming steps on the way to
MSNS are filling the linear system matrix and solving the linear system itself. Since
calculation of various matrix elements follows some common algorithm, the vector
registers being employed allow substituting the arithmetic operations by the vector
ones. However, there are certain difficulties with the use of vector registers, if for
some reasons we chose Gaussian compact scheme, as in [5-9]. This has sense, for
example, when we want to use some other reserves to accelerate solution of linear
system having a complex matrix. The difficulties mentioned above are the following:

- buckets allocated for triangular matrix strings are not consistent with the
natural requirement of their length being proportional to the size of vector
registers;

- there are no ready-made built-in operations whose operands are complex
numbers stored in the vector registers, so, if necessary, they are to be coded by
a developer himself.

Representation of a matrix as a set of square blocks, whose size (optimal in the
sense of [2]) is a multiple of vector register size, helps to cope with the first of these
complications, except the case of diagonal blocks.

Calculations implementing the compact scheme of Gauss method require
operations of multiplication and subtraction of numbers (in our case, of complex
numbers). Let's start with the first of them, which is more time-consuming. It consists
of known steps involving the pairs of real numbers. One of these steps is swapping the
numbers contained in a register. This is the known problem among software
developers [13,14], however, we could not find any published results of its
constructive solution for AVX registers . Here we offer our own solution.

The standard for C++ compiler representation of a complex number in the memory
of PC is consecutive allocation of two double precision numbers (which takes 16
bytes). The same 16 bytes representing our complex number we write into a vector
register. Calling to mind multiplication and subtraction operations, it is appropriate to
define uniting them operation mulAndSub(), which will process three given complex
numbers in the same sequence as in the expression A=A - B * C.

The requirement to optimize execution time of this operation makes its
implementation nontrivial. We have taken into account times of each assembler
instruction of those described in [16], which potentially could be involved,
understanding that the instruction sequence is not unique.

To make the right decision, we needed to pick them in such a way that the total
execution time (which can be estimated with the help of the table [16]) was the
shortest. Eventually, the following code, which uses the vector registers, was
developed:

void mulAndSub(cmpx* to, cmpx* from1, cmpx* from2)
void mulAndSub(cmpx* to, cmpx* from1, cmpx* from2)

_ m128d* v1 = (__m128d*)from1;
double* v2 = (double*)from2;
double* v3 = (double*)to;
__m256d ymmOQ_v1;

_ m256d ymm1_v2;



BicHuk XapkiBcbkoro HavjioHansHoro yHisepcutety Ne1156, 2015 135

__m256d ymm2_axa;
__m256d ymm3_perm_v2;
__m256d ymm4_axb;
__m256d ymm5_bb_xch_ab;
__m256d ymm6_aa_xch_ab;
__m256d ymm?7_res;
ymm0_v1 = _mm256_broadcast_pd(v1);
ymm1_v2 =_mm256_loadu_pd(v2);
/imul
ymm2_axa = _mm256_mul_pd(ymmO_v1, ynm1_v2);
ymm3_perm_v2 =_mm256_permute_pd (ynm1_v2, 0b0101);
ymmé4_axb = _mm256_mul_pd(ymm0_v1, ymm3_perm_v2);
ymmb5_bb_xch_ab = _mm256_unpackhi_pd(ymm2_axa, ymmé4_axb);
ymm6_aa_xch_ab = _mm256_unpacklo_pd(ymm2_axa, ymmé4_axb);
ymm7_res=_mm256_addsub_pd(ymm6_aa_xch_ab, ymm5_bb_xch_ab);
IIsub
__m256d ymm9_v3 = _mm256_loadu_pd(v3);
ymm9_v3 = _mm256_sub_pd(ymm9_v3, ymm7_res);
_mm256_storeu_pd((double*)to, ymm9_v3);

}

4 Computational experiments

In numerical experiments conducted to estimate the count rate, the processor Intel
core 15-4430 was used. The size of its vector registers is 256-bit that allows fitting in
two complex numbers of the type double. Three C++ implementations of obtaining
MSNS using DCM with the core of the logarithm type were compared: serial
processing (basic), optimized relatively grain size [17, 18] and other parameters in
accordance with [7-9], and its modification intended to use vector registers.

Consider the case of the E-polarized wave falling against the electrodynamic
structure shown in Fig. 1 in direction of the axis Y at the angle of & to it with the wave
number k =4m, 14n. To obtain MSNS, we calculated (see example in fig. 2-3) the

T T T L f
-1,5 -1 -0,5 0,5 1 1.5

A
AR,

Fig. 2 The real part of the current density function of the first horizontal contour,
the wavelength is 1/7 of strip width, totally 20 contours (fig. 1)
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Fig. 3 Imaginary part of the current density function of the first horizontal contour,
the wavelength is 1/7 of strip width, totally 20 contours (fig. 1)

DCM-approximation of current density for all strips and built the radiation pattern.
The example in Fig. 4 illustrates a diagram of the amplitude absolute value of current
obtained for the same electrodynamic structure (fig. 1), but for the shorter wavelength
(2 the width of the strip) to provide smaller overlapping of minor lobes in a small
figure.

Fig. 4 Field strength directivity diagram (is rotated by n/2),
the wavelength of 2, 20 contours

At k = 14m, the dimension of the discrete model was 10° (there were about seven
discrete singularities for the wavelength); to verify achieved accuracy, the

discretization parameter each time was multiplied approximately by V3. Table 1
contains timing of DCM calculations. Similar calculations, at k = 4m, 14n, were
performed also for 80 contours, which in addition were arcuate. Note that in numerical
experiments with electrodynamic structures, whose screen cross section contours had
different forms, but matrices were equidimensional, duration of MSNS computing by
DCM varied not more than for 1%. Therefore, two first digits in the index of achieved
acceleration, by Table 1, may, in any case, serve as a guide.
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Table 1 Three implementations of MSNS calculation compared by their execution time
N: t: t: t;: tl/t3 .
the problem the base tiling and + vector index of total
dimension | implementation | multithreading registers acceleration
1000 5.17 0.88 0.33 15.7
1731 28.7 3.97 1.25 23.0
2996 182 20.1 5.70 32.0
5186 1180 101 28.3 41.5
8978 6500 526 143 453

5 Conclusions

We have created a modifications of DCM, which uses the vector registers of
modern PC processors in combination with tiling effect. It is experimentally proved
that this modification accelerates in dozens of times computing MSNS for problems of
electromagnetic waves diffraction against a perfectly conducting screen (for 2D case).
Note that an important role in this result plays more fast execution of the algorithm for
solving the linear algebraic system (using the Gaussian compact scheme). Our
subroutine can be used in other application areas apart from computational problems
of electrodynamics, particularly, when linear system having a complex matrix is the
most time-consuming part of computational work and it is necessary to accelerate by
an order the solution process, but all obvious reserves, such as algorithm improvement
or simple parallelization of the processes, have been exhausted.
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