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Stability investigation of the two-dimensional nine-vectors model
of the lattice Boltzmann method for fluid flows in a square cavity

G. Bulanchuk, O. Bulanchuk, A. Ostapenko
Pryazovsky State Technical University, Ukraine

In this paper we consider the stability of the two-dimensional nine-vectors model of
the lattice Boltzmann method which used to model fluid flows in a square lid-driven
cavity. Obtained numerical solutions were compared with the results of the numerical
experiments by the finite element method. We investigate the influence of Reynolds
and Mach numbers on method’s stability. Shown the dependence between the
kinematic viscosity of the modeling liquid and cell’s size. Have been shown the
advantages and disadvantages of this computational method.
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B poboti posrmsmaeTbcs 3aCTOCYBaHHS JABOBHMIPHOI [€B’STHIIBHAKICHOI MOZeNi
METOy TpaTKOBUX pIBHSAHb BonbiMana 1o MozemoBaHHS Tedil B’SI3KOI PIgUHU Y
KBaJIpaTHiil KaBepHI 3 pYXOMOIO BEPXHBOIO CTiHKO0. OTpHMaHi pe3yJabTaTu
l'IOpiBHIOBa.]'II/ICI) 3 pe3yjibTaTaMu YUCEIIbHUX eKCl‘IepI/IMeHTiB METOOOM CKIHYEHMX
eneMeHTiB. JlocmiKyeThesl BIUTMB 4mcina PeifHonbaca Ta yncna Maxa Ha CTIHKICTh
Mmerony. [lokazaHa 3aJeXHICTh B’S3KOCTI PIIUHM, IO MOJICIIOETHCS, 3 HEOOXiTHUM
PO3MIpOM KOMIPKH PO3pPaxyHKOBOI CITKH. PO3TisiHYTI mepeBaru Ta HEOOJIKH TAaHOTO
MAXOMY.

Kniouosi cnosa: pienanns Hasve-Cmokca, KinemuuHas meopis uacmka, uucio Peiinonvoca,
yucno Maxa.

B pabGore wncciemyercs YCTOWYHMBOCTD JABYMEPHOH JAEBITHCKOPOCTHOW MOJEIH
METO/la PEeLICTOUHBIX YpaBHEHUH bBosbpliMaHa Ha mpuMepe MOJAEIUPOBaHUS TEUCHUS
BA3KOM JKUJKOCTH B KBAJIpaTHOM KaBepHE C JBIDKYILIECHCS BEpXHEH CTEHKOM.
IlomydeHHble 4YMCIIEHHBIE pEIIEHHMsS COIOCTABIIAIOTCS C PE3yJbTaTaMH YUCIICHHBIX
SKCIIEpUMEHTOB METOJOM KOHEUHBIX »JIeMEeHTOB. Mcciemyercs BiMsSHHE dYHCTA
Peitnonbaca u yncna Maxa Ha ycToH4MBOCTh MeToAa. [lokazaHa 3aBUCHUMOCTb MEXAY
BSI3KOCTBIO MOJCIHPYEMOH KUAKOCTH H HEOOXOAUMBIM Pa3MEPOM SUCHKH pacueTHOM
ceTKH. PaccMOTpeHsI MpenMyInecTBa ¥ HeJOCTaTKH JAHHOTO MOJX0A.

Knwouesvie cnosa: ypasnenue Haeve-Cmokca, KuHemuueckas meopus, HACHUYA, HUCILO
Peiinonvoca, uucio Maxa.

1. Introduction

There are two classes of methods to simulate fluid flows: mesh-based and mash-
free ones. Among mesh-based methods widely used the finite difference method
(FDM) [1], the finite element method (FEM) [2] and the finite volume method (FVM)
[3]. The discrete vortex method [4], the diffusion velocity method [5] and the
smoothed-particle hydrodynamics method (SPH) [6] are the examples of mesh-free
computational methods. Even so these methods have been proven their efficiency in
many problems of hydrodynamics there are still many difficulties related with the
numerical solution of the Navier — Stokes equations with high-Reynolds number [7,8].

Recently new computational method that combines the advantages of Euler (mesh-
based methods) and Lagrangian (mesh-free methods) representation of fluid have been
proposed [9]. In this work we shall discuss hybrid method based on the kinetic theory
of gases — the lattice Boltzmann method (LBM) [10], which uses the discrete
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Boltzmann equation to simulate flows of viscous liquid [11]. The lattice Boltzmann
method appeared in 1990 and it is keep rapidly growing up. Have been made some
commercial (PowerFlow, XFlow) and free-available (Palabos) software for
computational fluid dynamics with the LBM models.

The aim of this work is to investigate the stability of numerical solutions for the
laminar flows in a square lid-driven cavity, that were get using the two-dimensional
nine-vectors model of the lattice Boltzmann method [11]. It should be noted, that
some solutions for lid-driven cavity by LBM were obtained in [12, 13, 14]. But the
stability problem in these works wasn’t investigate. Received by the LBM results were
compared with the numerical solutions that were get by the finite element method. The
photo of the flow in a cavity, which has got during the experiment shown in fig. 1.

Figure 1 —The creeping flow in a squal:é Ea;ify. Re=0.01[15]

2. The Lattice Boltzmann Method: D2Q9 BGK model

According to the LBM, the computational domain divides into rectangular cells to
create the lattice. The fluid flows dynamics are treated as pseudo particles dynamics,
which are in the cells of the lattice [16]. Such pseudo particles can move between cells
only by determined directions defined by the lattice model [17] (fig. 2). We used the
model specification like DpQn, where p ={1,2,3}denotes the dimension of the lattice

and n e N denotes the number of vectors in the lattice.
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Figure 2 — Lattice models
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The dynamics of pseudo particles describes by the kinetic theory of gasses using
the discrete single particle densities distribution function f, (F,t) [18]. The densities

distribution function f, determines density p and velocity vector u of the liquid for
each cell according to equations [19]:

- n - - 138~ , /-
p(r,t) kZ:l: fk(r,t), u(r,t) ka:l:ek fk(r,t) (3.1)
where p — liquid density;
r=(x,y) — coordinates;
t—time;
u — velocity vector;
ex— possible directions vector for pseudo particles movement;

We shall use the Bhatnagar — Gross — Krook (BGK) collision operator [18] to
approximate particles collision (perfectly elastic collision). It is a linear relaxation to
local Maxwell equilibrium function:

i (1) fi(rt)

T
where f — equilibrium Maxwell-Boltzmann distribution function [19];

r — dimensionless relaxation parameter (z>0.5)[17], connected with the
kinematic viscosity of the liquid [19].

(3.2)

I, =

v= (27—6_1)ch (3.3)
¢ — the base speed of the cell [19], calculated according to the equation:
d
C=— 3.4
N (3.4)

where d — space step
At — time step.

The most common 2D lattice model is D2Q9. Fig. 3 shows the possible directions
for particles movement ex . The direction eois the state of the rest.
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Figure 3 — The possible particles movement directions for the D2Q9 lattice model
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The system of the discrete kinetic equations describing the dynamics of the
particles has the form [17]:

fd?+&Axt+AQ=fdﬁﬂ—%[h(ﬁﬁ—fﬁ(gﬁﬂ (3.5)

To model the isothermal flows with LBM we shall use the expansion of the
equilibrium Maxwell distribution function by the powers of the velocity vector [17]:

3z =y 9 (= =2 3 -2
eq __ _ - —_
f, —Wkp(1+ = (ek,u)+ 2t (ek ,u) el j (3.6)
where w, —weights;
. . . 4. 1 1
For the D2Q09 lattice model the weights are: w, =5,w174 =§,w578 =% [19].

In the LBM there is a constant depending on the lattice — speed of sound [19]. In
the D2Q9 model it can be calculated using the following equation:

c
=3 (3.7)
The liquid pressure connects with the speed of sound by the next equation:
p=cip (3.8)
According to [13,14,18] we shall set c=1. So ¢, = %

Software implementation of the statistical approach that uses the kinetic theory of
gases to describe fluid dynamics is quite simple and intuitive. But the disadvantage of
such approach is instability. It can appear because of:

1. 1t — relaxation time. To avoid negative influence of a relaxation time
parameter in this work we shall set z =1 [17]. So according to eq. (3.3) the
kinematic viscosity will uniquely determines the size of the cells of the
computational grid.

2. Cc,—speed of sound. Based on [18] the LBM is stable whenc, < «/1—Ufm :
In this work this condition makes the velocity boundU,, <0.81.

3. M =-——Mach number. According to [19] there is a limitation: M <<1.
c

S

3. The flows in a cavity
Let us consider a square cavity with L = 1 m which has three stationary sides and
one moving side (fig. 4).
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Figure 4 — Cavity configuration

We used various values of the moving wall U =0.1,0.3,0.7s0 we got various
Reynolds numbers Re=120,360,840 and various Mach numbersM =0.1,0.3,0.7 .
This problem was solved not only with the LBM, but with the finite element method
(FEM) in the Comsol Multiphysics 4.2 package too. The solutions of the same tasks
were compared. The calculations were made using the uniform 200x200 grid with the
LBM and using “normal” grid with the Comsol package (1504 cells).

The velocity u, component contours and velocity magnitude contours u for steady
flow in a cavity shown in fig. 5. The parameters of the flow are
U =0.1,Re=120,M =0.1

a b

Figure 5 - Velocity contours that were get with the LBM
u, velocity component (a), velocity magnitude u (b). Re=120.

Received numerical results were compared with the same ones got in the Comsol
package. Fig. 6 illustrates wvelocity graphics in different sections of the
cavity x=0.25,0.75,0.75. Here and then solid lines correspond to the solutions got
with the lattice Boltzmann method (LBM) and points correspond to the solutions got
with the finite element method (FEM). The vertical axis contains velocity values and
the horizontal axis contains y coordinates of the cavity.
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Figure 6 — The velocity magnitude graphs in the x=0.25,0.5,0.75 sections of the cavity. Re =
120

The similar results had got for the u, velocity component (fig. 7).
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Figure 7 — The uy velocity graphs in the x=0.25,0.5,0.75 sections of the cavity. Re = 120
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The steady flow in a cavity with U =0.3,Re =360, M =0.3 illustrated in fig. 8.

a b
Figure 8 — Velocity contours that were get with the LBM
uy velocity component (a), velocity magnitude u (b). Re=360.

The wvelocity magnitude graphics in  different sections of the
cavity x=0.25,0.75,0.75shown in fig. 9. The similar u, component velocity graphs
shown in fig. 10.
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Figure 9 — The velocity magnitude graphs in the x=0.25,0.5,0.75 sections of the cavity.
Re = 360
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Figure 10 — The u, velocity graphs in the x=0.25,0.5,0.75 sections of the cavity. Re = 360

You can see the steady flow (velocity contours) in a cavity with
U =0.7,Re=840,M =0.7 in fig. 11.

a b
Figure 11 — Velocity contours that were get with the LBM
uy velocity component (a), velocity magnitude (b). Re =840

Fig. 12, 13 shows the velocity magnitude u and the u, velocity component graphs
in different cavity sections.
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Figure 12 — The velocity magnitude graphs in the x=0.25,0.5,0.75 sections of the cavity.
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Figure 13 — The uy velocity graphs in the x=0.25,0.5,0.75 sections of the cavity. Re = 840
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As shown in fig. 6, 7, 9, 10, 12, 13 the graphs of numerical solutions gradually
diverge with the Mach number increasing (from 0.1 to 0.7). It is because to get a
stable solution with the LBM the Mach number should be much less than one. In
practice, the recommended value of the Mach number is less than 0.15 (M <0.15)
[19].

Another problem is the limitation of the maximum possible speed of fluid (see the
previous section). The numerical solutions that were get with the LBM using 200x200
grid are completely at odds when U >0.72 (fig. 14).

B 78

a b
Figure 14 — Velocity contours that were get with the LBM
uy velocity component (a), velocity magnitude (b). Re =864

The maximum Reynolds number at which the solution remains stable at the
200x200 grid isRe=840.

Let’s consider the numerical results got with the LBM with 600x600 grid. The
velocity magnitude u contours and u, velocity component contours for steady flow

in a cavity shown in fig. 15 for U =0.6,Re =2160,M =0.6.

=

a b
Figure 15 — Velocity contours which had got with LBM
uy velocity component (a), velocity magnitude (b). Re = 2160

Fig. 16 and 17 shows the velocity magnitude u graphs and u, velocity component
graphs in different sections of the cavity.
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Figure 16 — The velocity magnitude graphs in the x=0.25,0.5,0.75 sections of the cavity.
Re = 2160
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Figure 17 — The u, velocity graphs in the x=0.25,0.5,0.75 sections of the cavity. Re = 2160
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So the maximum Reynolds number at which the solution remains stable depends
on the size of the computational grid (fig. 18).
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Figure 18 — The graph of the dependence between the critical Reynolds number and the
computational grid size

Unfortunately, using 600x600 grid we can't model flows with Reynolds number
Re > 2160, but it is not the LBM limit. To model flows with bigger Reynolds
number we should do mesh finer. So according to the introduced assumptions the
viscosity will change (eq. 3.7). Obviously, that such approach would lead to increasing
the calculation time. But this disadvantage can be neutralized by the parallel
computing on powerful multicore processors or by using the cloud computing
services.

4. Conclusion

Based on the numerical results, that were get with the lattice Boltzmann method
and the finite element method we can tell that the LBM provides high accuracy
solutions when M <0.3. The results with 0.3<M <0.7 showed some deviations that
increases with Mach number increasing, but no more than 10%.

Was defined the critical Reynolds number at which the numerical solutions
remains stable. This number depends on the size of the computational grid. Therefore,
flows modeling with high Reynolds numbers take more time.

Although the lattice Boltzmann method can become instable the method has great
potential and has a lot of significant advantages. The next step in our research is to
modify the algorithm to avoid instability in solutions with high Reynolds number and
model fluid flows with more complex geometry.
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