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Minimaximax approach for finding optimal decisions’ subset
regarding changes of the loss function

V. V. Romanuke
Khmelnitskiy National University, Ukraine

A generalization of the decision (loss or utility) function is suggested. An ordinary
decision function is defined on a Cartesian product of a decisions’ set and a set of
states, but the generalized decision function has the third variable called a metastate.
Metastates are generated due to uncertain evaluation of ordinary situations, or
influence of the time course. For minimizing losses under poor or unreliable statistics,
the rule of minimaximax is fully described. For correctly transferring from
minimaximax to Bayesian criterions, the rules of minimizing expected losses for the
generalized loss function are formalized. All the suggested criterions are re-formalized
for the case of the utility function.
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IIpononyerscs y3arampHeHHA (yHKIIl pimeHb (BTpaT a00 KOPHCHOCTi). 3BHUaifHa
(yHKIIS pilleHb BU3HAYA€THCS Ha JEKapTOBOMY MAOOYTKY MHOXHHH pIlICHb Ta
MHO)KAHH CTaHIB, TOII SIK y3araJbHeHa (PYHKILis pillIeHb Ma€ TPETIO 3MiHHY, KOTpa
Ha3MBAa€TbCSI METACTaHOM. MeTacTaHH TOpPOKYIOTHCS BHACITIZOK HEBU3HAYECHOTO
OLIIHIOBaHHS 3BMYalHUX CUTYallii ab0 BIUIMBY IUIMHY 4acy. [l MiHiMi3amii BTpat 3a
ciabkoi ab0 HeHaJIHHOT CTATUCTUKH IPYHTOBHO OITMCYETHCS IIPABIIIO MiHIMAKCUMAKCY.
JInst KOpeKTHOTO Tepexoay BiJl MiHIMakCHMakcy 110 OalleCOBHX KpHUTEpilB IpaBuiia
MiHiMi3amii O4iKyBaHUX BTpaT HOPMai3yIOThCs Ui y3arajabHeHol (yHKIii BTpar. Yci
3aMpOIIOHOBAHI KpUTEPii mepeopMatizoBYIOThCS IS BUMAAKY (QYHKIIIT KOPUCHOCTI.
Knrwouosi cnoga: pivienns, minimaxc, memacman, QyHKyia émpam, MiHiMAKCUMAKC.
IIpennaraercs 06o0menne GyHKIMN perieHui (MOoTeps WK moje3HocTu). OObraHas
(GyHKOMS peImeHuH ompenenseTcs Ha JEKapTOBOM IPOM3BEICHUH MHOXKECTBA
peLIeHH ¥ MHOXKECTBA COCTOSIHIH, TOT1a Kak 0000mEHHas QyHKINS pelIeHIH IMeeT
TPETHIO NIEPEMEHHYIO, Ha3bIBAEMYI0 METACOCTOSIHHEM. MeTacoCTOsIHUS TIOPOXKIAFOTCS
BCIIC/ICTBHC HEOIPEICIIEHHOTO OLCHUBAHUS OOBIYHBIX CHTYallMd WM BIWSHUSL
TeueHUs] BpeMeHHW. JIIsi MUHHUMH3AIMM TOTeph INpH ClIaboi Wi HeHaa&KHOU
CTaTHCTUKE OCHOBATENbHO  OIMCBHIBACTCS TPABMIO MUHHMMakcumakca.  Jlms
KOPPEKTHOTO Mepexoja OT MHUHHMAaKCHMakca K OaifleCOBBIM KPUTEpHSM IpaBHia
MUHAMH3AIAN OXHIAEMBIX TOTEPh (POPMANU3UPYIOTCS s 0000mMEHHOW (QyHKIUH
notepsb. Bee npeanoskeHHble KpUTepHH NepedopMaTH3HPYIOTCS UIs CiTydast QyHKINT
TIOJIE3HOCTH.

Knroueswie cnosa: peuwernue, MUHUMAKC, Memdacocmosinue, d)ymcuuﬂ nomepsb, MUHUMAKCUMAKC.

Inconstancy of the loss function

The loss function is an important mathematical object relating to a wide variety of
technical, economical, and social processes [1, 2]. An antipode to the loss function is
the utility function which is of much rarer application [1, 3]. However, this function
may severely change, especially if a process is studied for a longer period and requires
more reliable optimality of decisions. Another issue is poor statistics, not allowing to
evaluate each pair of a decision and a state with a point value [4, 5]. A simple example
is a risk matrix whose elements take on a few possible values due to expert
judgments/estimations. Therefore, finding an optimal decisions’ subset should regard
changes of the loss function.
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Approaches to minimizing losses under poor or unreliable statistics

A great number of approaches and heuristics exists for finding an optimal
decisions’ subset by a known loss/utility function [1, 6]. When statistics is poor or
unreliable, losses are minimaxed for ensuring minimal damage under worst possibly
conditions [7]. Then the criterion of Wald or the criterion of Savage is applied [1, 6,
7]. In the article [8], for ensuring industrial and manufacturing labor safety, a meta-
minimax approach has been represented regarding the change of the risk matrix. The
change has been explained due to the impossibility of the point evaluation of the risk
matrix and therefore this matrix has been represented as a finite set of matrices,
implying the risk matrix change through that set. Each version of the risk matrix has
been tied to a state which is called a metastate. Thus the finite change of the risk
matrix has been substituted with the three-dimensional risk matrix. The article [8]
suggests the finite minimaximax along with another three cases of minimizing the
risk. These cases admit availability of statistics:

1) probabilistic measures relating to ordinary states are available;

2) a probabilistic measure over metastates is available;

3) both are available.

Factually, the three-dimensional risk matrix is equivalent to a finite series of
decision making problems (or a multiple state decision making problem). In the article
[9], an algorithm of reducing a finite series of decision making problems to a single
problem has been suggested. But, without statistics, it works only if there is a
nonempty intersection of the optimal decisions’ subsets for the metastates.

Goal of the article and the tasks to be accomplished

In view of the fact that neither the article [8] nor the article [9] contain full
description of minimaximax, the goal is to fully describe the minimaximax criterion
for the loss function with metastates (changes). For transferring from minimaximax to
criterions of minimizing expected losses, application of probabilistic measures will be
described. For reaching the goal, the following tasks are to be accomplished:

1. To formalize changes of the loss function.

2. To formalize the rule of minimaximax for finding an optimal decisions’ subset
regarding the changes. For appropriate formalization, both finite and infinite cases will
be considered for the sets of decisions, states, metastates.

3. To formalize the rules of minimizing expected losses for the loss function with
metastates. Application of probabilistic measures will be described for the three cases:

3.1. Probabilistic measures over ordinary states are available, and a probabilistic
measure over metastates is unavailable.

3.2. Probabilistic measures over ordinary states are unavailable, and a probabilistic
measure over metastates is available.

3.3. Probabilistic measures of both types are available.

4. To re-formalize all the suggested criterions for the case of the utility function.

Formalization of the loss function’s changes
Let X be a set of decisions, and S be a set of states. If X is finite then

X={x}" by N=|X| and NeN\{1}. Similarly, Sz{sj}?:l by Q=[S| and
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QeN\{l} for a finite set S. Denote the set of metastates by M . Each element of
this set implies existence of its own loss function. When a metastate shifts to other

one, the loss function changes. If M is finite then M ={mk}kK=1 by K=[M| and
K eN\{1}.
Let a real value r(x, S, m) be a loss (risk) in the situation

{x,s,m} by xeX,seS, meM. (1)

Therefore, r(x, s, m) is a (generalized) loss function defined on the set X xSxM.
Definition 1. The loss function r(x, S, m) is called finite if the set X xSxM is

finite. The finite loss function r(x, S, m) is called the generalized loss matrix.
Factually, the generalized loss matrix is a stack of K ordinary N xQ matrices. Let

i =1 (X, s;, M) in the situation {x,s;, m}. Then R, =(r,) _is an ordinary

NxQ

loss matrix at the k -th metastate, and the generalized loss matrix is a set {Rk}szl.

Formally, finite changes of a decision matrix can be substituted with a loss N xQx K
matrix.

Definition 2. The loss function r(x, s, m) is called countable if the set X xSxM
is countable.

Definition 3. The loss function r(x, S, m) is called infinite if the set X xSxM is
infinite.

It is easy to see that if just one of the sets X, S, M is infinite then the loss
function is infinite. A countably infinite loss function cannot be represented as a stack
of matrices. Properties of infinite countability among sets X, S, M do not
necessarily coincide.

Definition 4. The loss function r(x, S, m) is called continuous if the set

X xSxM is continuous.
To be continuous, each of the sets X, S, M must be continuous. The loss
function becomes discontinuous if just one of the sets X, S, M has a discontinuity.

Rule of minimaximax

When any probabilistic measures are unavailable or uncertain, the classical
minimax approach [1, 6, 7] guarantees the optimal loss, although the most pessimistic.
The pessimism concerns all the noncontrollable states, i. e. metastates as well. Then,

the optimal decisions’ subset X~ < X for the loss function r(x, S, m) is found by the
minimaximax rule as

X*=argrlli{1{maxmaxr(x, s, m)}cx. 2

seS meM

Obviously, if X is infinite, X~ can have infinitely many optimal decisions. Whether
each set of decisions, states, metastates is finite or infinite, statement (2) for
minimaximax remains correct. For the generalized loss matrix, minimaximax by (2) is
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re-written simpler [8]:
” } cX. 3

Minimaximax by (2) or (3) is an effective rule when conditions, under which one
has to make a decision, occur rarely or just a few times [1, 4, 5, 8, 9]. Although losses
are maximized twice, severity of the minimaximax is not bigger than that of the
classical minimax approach. This is explained with that, for both rules, pessimism is
directed against noncontrollability.

Minimizing expected losses for the generalized loss function
Suppose that, for a finite loss function, probabilistic measures relating to ordinary
states are available. Availability here relates to reliability of point-valued probabilistic

estimations. Let P, =(pijk)N 0 be the stochastic matrix whose value p;, is the

probability of the j-th state at the k -th metastate when the i -th decision is selected.
It is obvious that

Q
Zpijkzl Vi=L N and Vk=1K. 4

=

Then the finite subset [8]

X" =ar xnl]=lnN{k1KZp”k 'Jk}cx )

contains decisions which minimize the maximally expected losses with respect to
ordinary states.

Generally, let p(x, S, m) be a probabilistic measure over ordinary states for each
decision xe X and each metastate me M . The non-negative function p(x, S, m) is
defined on the set S with a Lebesgue measure pi5(s), S0

J.p(x,s, m)dus(s)=1 VxeX and VmeM. (6)
Then the maximally expected losses with respect to ordinary states are minimized:

X _argmln{max p(x, s, m)r(x,s, m)dps(s)}c X. ©)

xeX meM
S
The integration over the finite set S in (7) is substituted with the summation:

Q
X —argmln{max p(x, sJ,m) (x, sj,m)}cx, (8)

xeX meM
j=1
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where p(x, S;» m) is the probability of the j-th state at metastate me M when the

decision x e X is selected, and
Q
Zp(x,sj,m):l VxeX and VmeM . (9)
j=1

The optimal decisions’ subset by (7), or its equivalents (5) and (8), is effective
when conditions under which one has to make a decision occur frequently [1, 8, 9].
Application of the formula (8) is more likely, because finite point estimation is far
more reliable than infinite one [4, 8].

An easier case is when probabilistic measures over ordinary states are unavailable,
but a probabilistic measure over metastates is available. Suppose that, for a finite loss

function, probabilities {Wk}kK:1 are known, where w, is the probability of the k -th
metastate and

Z‘Nk -1 (10)

Then the finite subset [8]
K
X" =arg min{maxZwkrijk}c X (11)

contains decisions which minimize the maximally expected losses with respect to
metastates. Minimax by (11) reminds the classic minimax applied to a decision matrix
(of losses, regrets, or risks).

Generally, let W(m) be a probabilistic measure over metastates. The nonnegative
function w(m) is defined on the set M with a Lebesgue measure p,, (m), so

jw(m)dpM (m)=1. (12)

M

Then the maximally expected losses with respect to metastates are minimized:

xeX seS

X" =arg min{max w(m)r(x, s, m)du,, (m)}c X. (13)

M

The integration over the finite set M in (13) is substituted with the summation:

xeX seS

K
X*:argmin{maxZWkr(x, S, mk)}cx. (14)
k=1

Abstracting from the values under maxima, (13) and (14) both coincide with the
classic minimax.
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The optimal decisions’ subset by (13), or its equivalents (11) and (14), is effective
when the loss function changes (over metastates) frequently [1, 2, 6, 8, 9]. Although

evaluation of probabilities {Wk} or the probabilistic measure w(m) is a non-trivial
separate problem, availability of them is much more likely than that of probabilistic
measures in matrices {Pk}::l or functions p(x, S, m) for each decision and each

metastate. That is why minimax by (11), (14), or (13) is much more practical than
minimax by (5), (8), (7), respectively (the formulas are listed in order of increasing
complexity).

The case when all the probabilistic measures are available is more theoretical rather
than practical one. In the simplest case, which is the finite one,

- xnl]=1 N {Zwkz Piji ik } cX. (15)

Another three cases of the finite/infinite probabilistic measures produce the following
formulas:

_argmln{jw x, S, m) ( ' Sjs m)dp,\,, } (16)

“=arg mm{Zwa. X, s, m)r(x,s, mk)dps(s)}c X, (17)

X" =arg rxnelxn {J.W(m)_‘. p(X, s, m)r(x, s, m)dps (s)du,, (m)}c X. (18)
S

For infinite measures, the optimal decisions’ subset by (18) is very impracticable. The

subset by either (16) or (17) keeps theory also, unless the measures are defined on

countable sets. The case (15) is plausible, though.

The utility function case

Decision making practices utility functions much less than loss or risk functions.
Nevertheless, a lot of branches of economic operate on profitability, benefit, gain,
revenue, etc.

For the case of the utility function u(x, S, m), the rule of minimaximax becomes
the rule of maximinimin. In this way, formulas (2) and (3) are:

X —argmax{mln minu(x, s, m)}cX, (19)

xeX seS meM

X" =arg max{_ in mi uijk}cx, (20)
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where U, =(uy, )NXQ is an ordinary utility matrix at the k -th metastate.

Maximization of the expected utility is fulfilled by formulas which are symmetrical
to formulas (5), (7), (8), (11), (13) — (18), respectively:

X"= xnl]:l N {kmllrrl Z P i } =X, (21)

X" =arg nxng{manJ. p(X, s, mu(x, s, m)dps (s)}c X, (22)
Q

X" =argmax r;lw]z X, sl,m x, sJ,m) X, (23)

K

X =arg Xirj?al?({jzl!r(]);wkuijk}c X, (24)

X" =arg Tealxx{rilsnj (m)u(x, s, m)dp,, (m)}c X, (25)
M

X _argnxweaxx{mmZWk X, s, m) }cx (26)

K Q
X" =arg max_ {Zwkz pijkuijk}c X, (27)
Kot k=1 j=1

Q
X —argrygx{jw Zp X, S,,m X, J,m)dHM } (28)
1

]:

X —argmax{ ijp (x, s, m )u(x, s, m )dug (s )}cx (29)

xeX
k=1 S

X" =arg r@x{jw(m)". p(X, s, mu(x, s, m)dpg (s)dpy, (m)}c X. (30)

Conditions of effectiveness for subsets (19) — (30) are similar to those for subsets (2),

@), (%), (7)., (8), (11), (13) —(18).
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Arrangement of the ordinary loss functions into the generalized loss function

Metastates are generated due to that situations {x, s} are usually evaluated with
intervals. When the intervals are sampled, a finite set of metastates is produced.
Another reason that causes metastates’ generation is the time course. Thus, in practice,
point estimation or evaluation of the loss function is impossible. Then, the generalized
loss function is represented as the set M of the ordinary loss functions. It implies the
loss function changes through this set [2, 9]. Arranging its elements is a pretty hard
problem, which is explicitly solved in [8] for the generalized loss matrix only.

If R, isinitially given, then the following K —2 matrices satisfy the condition [8]:

R, earg_min_py (Rey Ry) for k=2, K-1 (31)

by the distance p,.. (A, B) in the space of real-valued NxQ matrices A and B,

Matrix R, remains itself after matrices {Rk}:: are already arranged (by their
indices). The condition (31) ensures “resemblance” between neighboring indexed
matrices R, and R,,, by k=1, K-1. Such resemblance (by indexed metastates) can

be made by arranging matrices {Pk}:f=l in the same way, when P, is initially given [8].

Then, however, “resemblance” between neighboring indexed matrices P, and P, , is
not necessarily accompanied with “resemblance” between neighboring indexed
matrices R, and R,,;, k=1 K-1.

k+1?
Conclusion
The suggested and fully described minimaximax approach in (2), (3), or
maximinimin in (19), (20), allows to take into account changes of the decision (loss or
utility) functions. It is necessary because even the best-assurance minimax/maximin

criterion turns out to be inconsistent for uncertain evaluations of a situations {x, s} )
Meta-situation (1) expresses that uncertainty. Besides, it regards the course of time. If
a situations {x, s} are evaluated by different experts without consensus, this also

results in meta-situations.

It is important that the set of metastates (changes) is not just finite, but can be
countable, infinite, or continuous/discontinuous. Furthermore, the optimality by (5),
(M), (8), (11), (13) —(18), and (21) — (30) is presented for correctly transferring from
minimaximax to criterions of improving expectations (Bayesian criterions). But
arranging the ordinary decision functions for the set of metastates is an open question
concerning both minimaximax and criterions with expectations. Selection of an initial
loss function and an initial bunch of probabilistic measures on the set X xS, similar
to R, and P,, is discussible as well.
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