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We introduce the notion of the limit set IH−K(f) of the Henstock-Kurzweil
integral sums of a function f : [0, 1] → X, where X is a Banach space, and
study its properties. In particular, we construct an example of function f ,
which is not integrable, but its limit set consists exactly of one point. We
�nd su�cient conditions that guarantee the convexity of the limit set.
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Êîñòÿíêî À. Ã. Ìíîæèíà ãðàíè÷íèõ òî÷îê iíòåãðàëüíèõ
ñóì Õåíñòîêà-Êóðöâåéëÿ âåêòîðíîçíà÷íî¨ ôóíêöi¨. Ìè
ââîäèìî ïîíÿòòÿ ìíîæèíè ãðàíè÷íèõ òî÷îê IH−K(f) iíòåãðàëüíèõ
ñóì Õåíñòîêà-Êóðöâåéëÿ ôóíêöi¨ f : [0, 1] → X, äå X - áàíàõiâ
ïðîñòið, i âèâ÷à¹ìî éîãî âëàñòèâîñòi. Çîêðåìà, ìè áóäó¹ìî ïðèêëàä
íåiíòåãðîâàíî¨ ôóíêöi¨ f , ìíîæèíà ãðàíè÷íèõ òî÷îê êîòðî¨ ñêëàäà¹òüñÿ
ðiâíî ç îäíi¹¨ òî÷êè. Òàêîæ ìè çíàõîäèìî äîñòàòíi óìîâè, ùî
ãàðàíòóþòü îïóêëiñòü ìíîæèíè ãðàíè÷íèõ òî÷îê.
Êëþ÷îâi ñëîâà: iíòåãðàë Êóðöâåéëÿ-Õåíñòîêà, áàíàõiâ ïðîñòið,
ìíîæèíà ãðàíè÷íèõ òî÷îê iíòåãðàëüíèõ ñóì.

Êîñòÿíêî À. Ã. Ìíîæåñòâî ïðåäåëüíûõ òî÷åê èíòåãðàëüíûõ
ñóìì Õåíñòîêà-Êóðöâåéëÿ âåêòîðíîçíà÷íîé ôóíêöèè. Ìû
ââîäèì ïîíÿòèå ìíîæåñòâà ïðåäåëüíûõ òî÷åê IH−K(f) èíòåãðàëüíûõ
ñóìì Õåíñòîêà-Êóðöâåéëÿ ôóíêöèè f : [0, 1] → X, ãäå X - áàíàõîâî
ïðîñòðàíñòâî, è èçó÷àåì åãî ñâîéñòâà. Â ÷àñòíîñòè, ìû ñòðîèì ïðèìåð
íåèíòåãðèðóåìîé ôóíêöèè f , ìíîæåñòâî ïðåäåëüíûõ òî÷åê êîòîðîé
ñîñòîèò ðîâíî èç îäíîé òî÷êè. Òàêæå ìû íàõîäèì äîñòàòî÷íûå
óñëîâèÿ, êîòîðûå ãàðàíòèðóþò âûïóêëîñòü ìíîæåòñâà ïðåäåëüíûõ
òî÷åê.
Êëþ÷åâûå ñëîâà: èíòåãðàë Êóðöâåéëÿ-Õåíñòîêà, áàíàõîâî
ïðîñòðàíñòâî, ìíîæåñòâî ïðåäåëüíûõ òî÷åê èíòåãðàëüíûõ ñóìì.
2000 Mathematics Subject Classi�cation 46B20, 28B05.
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1. Introduction

The Henstock-Kurzweil integral was discovered in 1957. It generalizes Rie-
mann integral and is used for integration of highly oscillatory functions which
occur in quantum theory and nonlinear analysis (see [8, Chapter 4]). Moreover,
all Lebesgue integrable functions are Henstock-Kurzweil integrable, and one of
the advantages of the latter is that it does not rely on measure theory. Also one
may consider integral and di�erential equations using Henstock-Kurzweil integral
(see [2]). For functions which are not integrable we introduce the notion of the
limit set of the Henstock-Kurzweil integral sums IH−K(f) and study its proper-
ties. Similar notion of a limit set I(f) for Riemann integral and its properties is
studied in [4, Appendix].

Our main result is construction of a function for which limit set IH−K(f)
contains only 1 point but the function is not Henstock-Kurzweil integrable ( see
Theorem 3). Similar result for Riemann integral is established in [4, Appendix].
However in our case construction of such an example is more sophisticated. It
appears that properties of the limit set of Riemann integral sums (as well as
Henstock-Kurzweil integral sums) depend signi�cantly on the properties of the
space of values of a function under consideration. For example, if function takes
values in a separable space then its limit set I(f) associated with Riemann in-
tegral is not empty (see [1]). However the full description of such spaces is not
known. Also for bounded functions with values in separable spaces it is known
that I(f) is a star-shaped set (see [5] and [4]). Conditions for convexity for I(f)
in the case of Riemann integral are given in [6] (see also [4]). In particular there
are conditions which can be easily described when a considered function takes
values in so called B-convex space. We establish analogues of these results for the
limit set of Henstock-Kurzweil integral IH−K(f) (see Theorem 4, Theorem 5). In
general situation we can not expect convexity of the limit set (see [3]).

The work is organised as follows. In Section 2 we recall the notion of Henstock-
Kurzweil integral and introduce a notion of a limit set for Henstock-Kurzweil in-
tegral. In the beginning of Section 3 we reformulate basic de�nitions in terms
of net convergence and give basic properties of the limit set IH−K(f) (see Theo-
rem 1, Theorem 2). The main result is stated in Theorem 3. Results concerning
convexity of the limit set IH−K(f) that generalize results obtained in [6] are given
in Theorems 4 and 5.

2. Basic de�nitions

We consider functions f : [0, 1] → X, where X is a Banach space.
Let P be a tagged partition of [0, 1], i.e.

P = {(ξi, (ti−1, ti)),where 0 = t0 < t1 < · · · < tn = 1, ξi ∈ [ti−1, ti]};

and δ : [0, 1] ∈ (0,∞) be a positive function, which is called gauge. We say, that P
is δ-�ne if ξi ∈ [ti−1, ti] ⊂ (ξi−δ(ξi), ξi +δ(ξi)) for all i = 1, . . . , n. We denote this
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by writing P is a δ-�ne tagged partition of [0, 1]. We de�ne the Henstock-Kurzweil
integral sums of the function f as

S(f, P ) =
n∑

i=1

f(ξi)(ti − ti−1).

These integral sums are the same as for the Riemann integral, but they are
considered in context of a very di�erent convergence de�nition:

De�nition 1 A function f : [0, 1] → X is said to be Henstock-Kurzweil integrable
on [0, 1] if there is x ∈ X such that for every ε > 0 there is a gauge δ on [0, 1]
such that for every δ-�ne tagged partition P of [0, 1]

||S(f, P )− x|| < ε.

This x is called the Henstock-Kurzweil integral of f .

For functions that are not Henstock-Kurzweil integrable the role of an integral
may be played by the limit set of the Henstock-Kurzweil integral sums.

De�nition 2 We say, that for f : [0, 1] → X a vector x ∈ X is a Henstock-
Kurzweil point (H-K point) if for every ε > 0 and for every gauge δ on [0, 1] there
is a δ-�ne tagged partition P of [0, 1] such that

||S(f, P )− x|| < ε.

The set of all H-K points of a function f : [0, 1] → X, where X is a Banach space,
we denote by IH−K(f). For a nonintegrable function its limit set IH−K(f) may
be empty or contain many points.

3. Properties of the limit set IH−K(f)

We start with reformulation of De�nition 1 and De�nition 2 in terms of net
convergence.

Let (Γ,Â) be the directed set, where Γ ={(γ = δ, P ) : δ is a gauge on [0, 1]
and P is a δ-�ne tagged partition of [0, 1]}.

De�nition 3 We say, that pair (δ1, P1) follows pair (δ2, P2) (we denote it by
(δ1, P1) Â (δ2, P2)), if δ1 ≤ δ2 on [0, 1].

De�ne the net F = Ff : Γ → X by the rule F ((δ, P )) = S(P, f). Then the
following propositions are obvious

Proposition 1 Let X be a Banach space and a function f : [0, 1] → X. Then
the following conditions are equivalent:
i) x ∈ X is the integral of f on [0, 1],
ii) x = limΓ F .
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Proposition 2 The limit set of the Henstock-Kurzweil integral sums coincides
with the limit set of the net F = Ff .

Remark 1 Let X be a Banach space, then for a function f : [0, 1] → X, its limit
set IH−K(f) is closed. This is a general result for the limit set of nets (see [?,
Chapter 2]).

Now we proceed to prove other properties of IH−K(f)

Theorem 1 Let X be a Banach space, f : [0, 1] → X and g : [0, 1] → X be a
Henstock-Kurzweil integrable function. Then

IH−K(f + g) = IH−K(f) +
∫ 1

0
g(t)dt.

Proof. i) Let us prove �rst the inclusion IH−K(f + g) ⊂ IH−K(f) +
∫ 1
0 g(t)dt.

Take an arbitrary x ∈ IH−K(f + g) and denote x2 =
∫ 1
0 g(t)dt. We are going to

show that there exists x1 ∈ IH−K(f) such that x = x1 +x2, i. e. we have to show
that x− x2 ∈ IH−K(f).

To this end �x ε > 0. From integrability of g(t) and Proposition 1 we get that
for every γ ∈ Γ there is a γ̃ Â γ such that for every γ1 Â γ̃

||x2 − Fg(γ1)|| < ε

2
.

Using condition x ∈ IH−K(f + g) and Proposition 2, we obtain that for γ̃ as
above there is γ1 Â γ̃ such that

||x− Ff+g(γ1)|| < ε

2
.

So, for every γ ∈ Γ there is a γ1 Â γ such that

||x− x2 − Ff (γ1)|| ≤ ||x− Ff+g(γ1)||+ ||x2 − Fg(γ1)|| < ε

2
+

ε

2
= ε,

which means that x− x2 ∈ IH−K(f).
ii) Applying i) with f instead of f + g and −g instead of g we obtain

IH−K(f) ⊂ IH−K(f + g) +
∫ 1

0
−g(t)dt.

After adding
∫ 1
0 −g(t)dt to both sides of this expression we get

IH−K(f) +
∫ 1

0
g(t)dt ⊂ IH−K(f + g),

which was to be proved. 2
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Theorem 2 Let f : [0, 1] → X and g : [0, 1] → X, where X is a Banach space,
and the image of f or of g is relatively compact in X, then

IH−K(f + g) ⊂ IH−K(f) + IH−K(g).

Proof. Let us prove that IH−K(f + g) ⊂ IH−K(f) + IH−K(g). If IH−K(f + g)
is empty, the inclusion is satis�ed. Let us assume IH−K(f + g) is not empty �x
an x ∈ IH−K(f + g) and de�ne a new directed set

Γ̃ = {(ε, δ, P ) : ε > 0, ||x− Ff+g(δ, P )|| < ε}.

We say that (ε1, δ1, P1) follows (ε2, δ2, P2) if ε1 ≤ ε2 and δ1 ≤ δ2.
Let us introduce net F̃f+g((ε, δ, P )) = Ff+g((δ, P )) then x = limΓ̃ F̃f+g(γ̃),

i.e. for every ε > 0 there is γ̃ ∈ Γ̃ such that for every γ̃1 Â γ̃

||x− F̃f+g(γ̃1)|| < ε.

Let image f([0, 1]) be relatively compact, then F̃f (Γ̃) is also relatively compact,
i.e. for F̃f there exists a limit point x1. Let γ̃ be as in the above condition. Then
for every γ̃2 ∈ Γ there is a γ̃3 that follows both γ̃ and γ̃2. Since x1 is a limit point
for F̃f , there is a γ̃1 Â γ̃3 such that

||x1 − F̃f (γ̃1)|| < ε.

Using previous estimates we obtain: for every ε > 0 and for every γ̃2 there is
a γ̃1 Â γ̃2 such that

||x− x1 − F̃g(γ̃1)|| ≤ ||x1 − F̃f (γ̃1)||+ ||x− F̃f+g(γ̃1)|| < 2ε.

We have demonstrated that x2 = x− x1 ∈ IH−K(g). 2

However the inverse inclusion may not be true and our next example shows
that. By λ∗(C) we denote the outer measure of C ⊂ [0, 1].

Example 1 There exist functions f(t), g(t) : [0, 1] → R such that their images
are relatively compact in X, but

IH−K(f + g) 6= IH−K(f) + IH−K(g).

De�ne f and g : [0, 1] → R by the rules

f(t) =
{

1 if t ∈ A,
−1 if t ∈ B, g(t) =

{ −1 if t ∈ A,
1 if t ∈ B,

where A and B are non-measurable sets, λ∗(A) = λ∗(B) = 1, A ∪B = [0, 1] and
A ∩B = ∅. It is not di�cult to see that f + g = 0, and IH−K(f + g) = {0}, but
IH−K(f) + IH−K(g) = {−2, 0, 2}.

The next property of IH−K(f) is obvious, so we state it without proof.
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Proposition 3 Let f : [0, 1] → X, where X is a Banach space, T be a continuous
linear map and x ∈ IH−K(f), then Tx ∈ IH−K(Tf).

Our next theorem is the general result for limits of nets (see [?, Chapter 2]).

Proposition 4 Let X be a Banach space and for a function f : [0, 1] → X its
image f([0, 1]) is relatively compact in X. Then f is integrable if and only if
its limit set IH−K(f) consists exactly of one point and under this assumption its
integral is exactly this point.

It is easy to see that the assumption image f([0, 1]) is relatively compact in X
implies F (δ, P ) is relatively compact in X. Thus under this assumption the limit
set of net contains at least one point (see [?, Chapter 2]). Hence the limit set of
the Henstock-Kurzweil integral of f is not empty. Let us show that compactness
condition can not be replaced by boundedness condition.

Recall that `1[0, 1] is the space of real-valued functions de�ned on the segment
[0, 1], having at most countable support and such that

∑
α∈[0,1] |g(α)| < ∞. The

norm in `1[0, 1] is ||g|| = ∑
α∈[0,1] |g(α)|. The standard basic vectors of the space

`1[0, 1] have the following form

et(α) =
{

1 if α = t,
0 if α 6= t.

Then ||et|| = 1 for all t ∈ [0, 1]. Any element g ∈ `1[0, 1] can be represented in
the form g =

∑∞
i=1 aieti , and ||

∑∞
i=1 aieti || =

∑∞
i=1 |ai|.

Function f : [0, 1] → `1[0, 1], which acts by the rule f(t) = et, is an example
of a function that has an empty limit set IH−K(f).

Our next goal is to construct an example which shows that a one-point limit
set does not guarantee the existence of the integral. Further we need the following
technical result.

Proposition 5 Let δ be a gauge on [0, 1], C ⊂ [0, 1] and λ∗(C) = 1. Then, for
every ε > 0 there is a δ-�ne tagged partition P of [0, 1] such that the sum of lengths
of segments whose tag points lie in C (we denote them by (τ̃k, τk) for k = 1, . . . , n)
obeys the following inequality:

n∑

k=1

(τk − τ̃k) > 1− ε.

Proof. Step 1. For all t ∈ C denote ∆t = (t − δ(t), t + δ(t)). Let us consider
properties of the set ∆ = ∪t∈C∆t.
(1) ∆ is an open set, and consequently it may be represented in the following
form:

∆ =
∞⊔

k=1

(ak, bk);

(2) C is a subset of ∆.
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Using 1 and 2, we can conclude that
∑∞

k=1(bk − ak) ≥ 1.
Step 2. Pick εk > 0 such that

∑∞
k=1 εk < ε. Notice that we can represent (ak, bk)

in the form ∪t∈(ak,bk)∩C∆t for all k. After a small decrease of intervals, we obtain

[ak +
εk

2
, bk − εk

2
] ⊂

⋃

t∈(ak,bk)∩C

∆t.

By the Heine-Borel theorem there exist such points tk1 < tk2 < · · · < tkNk
that

[ak +
εk

2
, bk − εk

2
] ⊂

Nk⋃

j=1

∆tkj
.

Step 3. We are going to introduce smaller intervals ∆̃(tkj
) ⊂ ∆tkj

in such a way
that, if ∆̃(tkj ) 6= ∅, then tj ∈ ∆̃tkj

; intersection of interiors of ∆̃tkj
and ∆̃tki

is
empty for j 6= i and

[ak +
εk

2
, bk − εk

2
] ⊂

Nk⋃

j=1

∆̃tkj
.

To this end let us consider four cases:
(1) tk2 − δ(tk2) < ak + εk

2 , then we skip point tk1 and ∆̃(tk1) = ∅;
(2) tk1 > tk2−δ(tk2), then we may choose ∆̃(tk1) as follows ∆̃(tk1) = [ak + εk

2 , tk1 ];
(3) tk1 ≤ tk2 − δ(tk2) and tk1 + δ(tk1) ≤ tk2 , then ∆̃(tk1) may have the form
∆̃(tk1) = [ak + εk

2 , tk1 + tk1
+δ(tk1

)−tk2
+δ(tk2

)

2 ];
(4) tk1 ≤ tk2 − δ(tk2) and tk1 + δ(tk1) > tk2 , then ∆̃(tk1) = [ak + εk

2 , tk2 ]
Now we consider the segment [ak + εk

2 , bk − εk
2 ] \ ∆̃(tk1) and go over to the point

tk2 , for it we check the similar four cases. Then we do the same for all points tkj

for all k and j.
As result, we obtain

∞∑

k=1

Nk∑

j=1

∆̃(tkj ) > 1− ε,

which proves the statement. 2

Theorem 3 There exists a function f : [0, 1] → `1[0, 1] such that its limit set
IH−K(f) consists exactly of one point, but this function is not Henstock-Kurzweil
integrable.

Proof. De�ne f : [0, 1] → `1[0, 1] by the rule

f(t) =
{

et if t ∈ A,
e0 if t ∈ B,

where A and B are non-measurable sets, λ∗(A) = λ∗(B) = 1, A ∪B = [0, 1] and
A ∩B = ∅.
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Set B obeys conditions of Proposition 5, therefore for every ε > 0 and for
every gauge δ on [0, 1] there is a δ-�ne tagged partition P of [0, 1] such that

||S(f, P )− e0|| < ε.

On the other hand, set A also ful�ls conditions of Proposition 5, and so for
the same ε > 0 and gauge δ on [0, 1] there is a δ-�ne tagged partition P of [0, 1]
such that for corresponding ξi (almost all of which are in A) and ti

||S(f, P )− e0|| = ||
n∑

i=1

f(ξi)(ti − ti−1)− e0|| =

= ||
m∑

i=1

eξi(tki − tki−1) +
n∑

i=m+1

e0(tki − tki−1)− e0|| > 2|1− ε|,

as result, e0 is not the integral of f .
It is easy to show, that there is no other limit points of f , and we complete

the proof. 2

Let us recall the following de�nition. X has infratype p if there exists a
constant C > 0 such that an inequality

min
αi=±1

||
n∑

i=1

αixi|| ≤ C(
n∑

i=1

||xi||p)1/p

holds for any �nite collection {xi}n
i=1 of elements of X. The basic properties of

spaces with infratype p > 1 can be found in [4, Chapter 5] .
Theorem 4 Let f : [0, 1] → X, where X is a Banach space, and f([0, 1]) is
relatively compact in X, then IH−K(f) is convex.

Proof. Notice that f is bounded and denote M = sup{||f(t)||, t ∈ [0, 1]}. By
relative compactness of K = f([0, 1]) for every ε > 0 there is a �nite ε-net Aε

for K. Denote by Y the linear span of Aε. Since Y is �nite dimensional, it has
infratype p = 2.

Let x1 and x2 be two points in IH−K(f). Since IH−K(f) is closed (see Remark
(1)), it is su�cient to show that 1

2(x1 + x2) ∈ IH−K(f). To this end �x N . Since
x1, x2 ∈ IH−K(f) then for every ε > 0 and for every γ ∈ Γ there are γ1 Â γ and
γ2 Â γ such that ||x1−Ff (γ1)|| < ε and ||x2−Ff (γ2)|| < ε, also γ1 and γ1 may be
chosen in such a way that points k/N , where k = 0, 1, . . . , N , belong to the set of
endpoints of the correspondent partition. Denote by F k

i , i = 1, 2, k = 1, . . . , N ,
the part of the integral sum Ff (γi) corresponding to the segments of the partition
that lie in [k/N, (k + 1)/N ]. Now for each of the segments [k/N, (k + 1)/N ] we
choose in arbitrarily manner either the sum F k

1 or F k
2 . After this we can formally

write 2N di�erent integral sums of the function f in the following form:

F

(
N∑

k=1

αk

)
=

N∑

k=1

(
1 + αk

2
F k

1 +
1− αk

2
F k

2

)
,
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where αk = ±1 are arbitrarily. Let us show that one of these sums lies close
enough to 1

2(x1 + x2). Indeed,

||F
(

N∑

k=1

αk

)
− 1

2
(x1 + x2)|| ≤ ε + ||1

2
(F1 + F2)− F

(
N∑

k=1

αk

)
|| =

= ε + ||1
2
(F1 + F2)−

N∑

k=1

(
1 + αk

2
F k

1 +
1− αk

2
F k

2

)
|| =

= ε +
1
2
||

N∑

k=1

αk(F k
1 − F k

2 )||.

For every element f(ξi
kj

) from the sums F k
i =

∑nk
j=1 f(ξi

kj
)(tkj − tkj−1), i = 1, 2,

there is the nearest element from ε-net, let us denote it by g(ξi
kj

). Then

1
2
||

N∑

k=1

αk(F k
1 − F k

2 )|| ≤

≤ ε +
1
2
||

N∑

k=1

αk




nk∑

j=1

g(ξ1
kj

)(tkj − tkj−1) +
nk∑

j=1

g(ξ2
kj

)(tkj − tkj−1)


 ||.

Using this inequality and de�nition of infratype, we obtain the required result

min
αi=±1

||F
(

N∑

k=1

αk

)
− 1

2
(x1 + x2)|| ≤ 2ε + CN−1/2M.

Since ε > 0 can be made arbitrarily small and N arbitrarily large, we see that
point 1

2(x1 + x2) lies in the limit set of the Henstock-Kurzweil integral, which
completes the proof of the lemma. 2

Theorem 5 Let f : [0, 1] → X, where X is a B-convex normed space, and f is
dominated by some integrable function g, then IH−K(f) is convex.

Proof. Recall that B-convexity of X is equivalent to existence of some infratype
p > 1.

Let x1 and x2 be two points in IH−K(f). Let us prove that 1
2(x1 + x2) ∈

IH−K(f). To this end �x N . Since g is integrable function (
∫ 1
0 g(t)dt = M),

the interval [0, 1] can be divided into N parts such that
∫ ti
ti−1

g(t)dt = M
N , where

0 = t0 < t1 < · · · < tN = 1. From condition x1, x2 ∈ IH−K(f) we obtain:
for every ε > 0 and for every γ ∈ Γ there are γ1 Â γ and γ2 Â γ such that
||x1 − Ff (γ1)|| < ε and ||x2 − Ff (γ2)|| < ε, also γ1 and γ2 may be chosen in such
a way that points ti, where i = 0, . . . , N , belong to the set of endpoints of the
correspondent partition.
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Further applying similar arguments as in Theorem (4), we come to the in-
equality

||F
(

N∑

k=1

αk

)
− 1

2
(x1 + x2)|| ≤ ε +

1
2
||

N∑

k=1

αk(F k
1 − F k

2 )||.

Using de�nition of infratype and taking into account that g dominates f , we
obtain

min
αi=±1

||F
(

N∑

k=1

αk

)
− 1

2
(x1 + x2)|| ≤ ε + CN1/p−1M.

Since ε > 0 can be made arbitrarily small and N arbitrarily large, we see that
1
2(x1 + x2) ∈ IH−K(f), which was to be proved. 2

Remark, that a function with IH−K(f) 6= ∅ (and even a Henstock-Kurzweil-
integrable function) does not necessarily have an integrable majorant. Moreover
there is no any restrictions on the behaviour of the function ||f(t)|| for a Henstock-
Kurzweil-integrable f , as the following proposition shows

Proposition 6 Let f : [0, 1] → R+. Then there is Henstock-Kurzweil-integrable
function g : [0, 1] → `∞[0, 1] such that ||g(t)|| = f(t) for every t ∈ [0, 1].

Proof. De�ne g : [0, 1] → `∞[0, 1] by the rule g(t) = f(t)et. It is obvious that
||g(t)|| = f(t) for every t ∈ [0, 1].

Let us prove that
∫ 1
0 g(t)dt = 0. Fix ε > 0 and de�ne gauge by the rule

δ(t) = ε
2(f(t)+1) . Choose intervals [tk−1, tk], 0 = t0 < t1 < · · · < tn = 1, in such a

way that [tk−1, tk] ⊂ (ξk − δ(ξk), ξk + δ(ξk)), where ξk ∈ [tk−1, tk]. Then

||S(P, g)|| = ||
n∑

k=1

g(ξk)(tk − tk−1)|| =

= max
k
{f(ξk)(tk − tk−1)} ≤ max

k

εf(ξk)
f(ξk) + 1

< ε,

so g(t) is integrable and
∫ 1
0 g(t)dt = 0. 2
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