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Íèêîëàåâ À. Ã., Òàí÷èê Å. À.,Î ðàñïðåäåëåíèè íàïðÿæåíèé â êðó-

ãîâîì áåñêîíå÷íîì öèëèíäðå ñ öèëèíäðè÷åñêèìè ïîëîñòÿìè.

Èññëåäîâàíà íåîñåñèììåòðè÷íàÿ êðàåâàÿ çàäà÷à òåîðèè óïðóãîñòè äëÿ
ìíîãîñâÿçíîãî òåëà ñ öèëèíäðè÷åñêèìè ãðàíèöàìè. Ðåøåíèå ñòðîèòñÿ â
âèäå ñóïåðïîçèöèè áàçèñíûõ ðåøåíèé óðàâíåíèÿ Ëàìå â ñèñòåìàõ êîîð-
äèíàò, îòíåñåííûõ ê öåíòðàì ãðàíè÷íûõ ïîâåðõíîñòåé òåëà. Ãðàíè÷íûå
óñëîâèÿ óäîâëåòâîðÿþòñÿ òî÷íî îáîáùåííûì ìåòîäîì Ôóðüå. Ïðîâåäåí
÷èñëåííûé àíàëèç íàïðÿæåíèé â çîíàõ èõ íàèáîëüøåé êîíöåíòðàöèè.
Êëþ÷åâûå ñëîâà: ìíîãîñâÿçíîå òåëî, öèëèíäðè÷åñêèå ãðàíèöû, îáîá-
ùåííûé ìåòîä Ôóðüå, êîíöåíòðàöèÿ íàïðÿæåíèé

Íiêîëà¹â Î. Ã., Òàí÷iê �. À., Ïðî ðîçïîäië íàïðóæåíü â êðóãî-

âîìó íåñêií÷åííîìó öèëiíäði ç öèëiíäðè÷íèìè ïîðîæíèíàìè.

Äîñëiäæåíî íåîñåñèìåòðè÷íó êðàéîâó çàäà÷ó òåîði¨ ïðóæíîñòi äëÿ áà-
ãàòîçâ'ÿçíîãî òiëà ç öèëiíäðè÷íèìè ãðàíèöÿìè. Ðîçâ'ÿçîê áóäó¹òüñÿ ó
âèãëÿäi ñóïåðïîçèöi¨ áàçèñíèõ ðîçâ'ÿçêiâ ðiâíÿííÿ Ëàìå â ñèñòåìàõ êî-
îðäèíàò, âiäíåñåíèõ äî öåíòðiâ ãðàíè÷íèõ ïîâåðõîíü òiëà. Ãðàíè÷íi óìî-
âè çàäîâîëüíÿþòüñÿ òî÷íî óçàãàëüíåíèì ìåòîäîì Ôóð'¹. Ïðîâåäåíî ÷è-
ñåëüíèé àíàëiç íàïðóæåíü â çîíàõ ¨õ íàéáiëüøî¨ êîíöåíòðàöi¨.
Êëþ÷îâi ñëîâà: áàãàòîçâ'ÿçíå òiëî, öèëiíäðè÷íi ãðàíèöi, óçàãàëüíåíèé
ìåòîä Ôóð'¹, êîíöåíòðàöiÿ íàïðóæåíü
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Introduction

Boundary value problems of the theory of elasticity for an in�nite cylinder
had been considered in classical works [1 � 4]. Their solutions had been obtained
by the authors using the Fourier method. Problem for semi-in�nite and �nite
cylinders had been investigated in articles [5 � 8] using various modi�cations of
the Fourier method.

A method for determining the stress state of a �nite cylinder, based on the
principle of superposition and the expansion of the stress tensor in the Fourier
and Bessel � Dini series was proposed in papers [9, 10]. The problem was reduced
to an in�nite system of linear algebraic equations.

The behavior of solutions for boundary value problems of elasticity theory for
a space with a thin cylindrical inclusion is analyzed by asymptotic methods in
article [11].

Several studies of the stress-strain state of elastic space in the neighborhood
of a cylindrical cavity or inclusion has been associated with the construction of
models of �brous porous or composite materials. Typically, these models have the
simple structure in the form of a cylindrical cavity or inclusions or two coaxial
cylinders. An example of such research is the work [12]. In the case of plane stress
analysis of stresses in multiply �ber composite was carried out using the theory
of functions of complex variable at work [13].

Solutions of thermoelasticity problems for an in�nite cylinder were considered
in the works [15, 14]. Solutions are constructed as power series expansions, Fourier
series, Fourier � Bessel series in these papers.

Transversely isotropic rod with a cylindrical inclusion with axisymmetric own
deformations was studied in paper [16]. An analytical solution for the elastic
displacements, stresses and elastic energy of the rod were obtained.

The distribution of stresses in a cylinder with two cylindrical cavities or
inclusions was investigated in works [17, 18]. In these papers stresses are
determined using the generalized Fourier method. Apparatus of generalized
Fourier method had been developed in [19]. Its application to the doubly connected
problems was given in the book [20].

It should be noted that in the scienti�c literature there are practically
no studies on the distribution of stresses in non-axisymmetric elastic multiply
connected bodies with non-compact boundary.

Analytical-numerical solution of the non-axisymmetric boundary value
problem of elasticity theory for multi-body in the form of a cylinder with a
cylindrical cavities is presented in this paper. The solution is constructed as a
superposition of the exact basis solutions of the Lame equation for the cylinder
in the coordinates systems related to the centers of the boundary surfaces of
the body. The boundary conditions of the problem are satis�ed exactly with
the help of the apparatus of the generalized Fourier method. As a result, the
original problem is reduced to an in�nite system of linear algebraic equations.
The theorem about Fredholm property of the system operator in Hilbert space l2
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is proved for this class of problems for the �rst time. Resolving system is solved
numerically by the reduction method. The practical speed of convergence of the
reduction method is investigated. The numerical analysis of stresses in the areas
of their greatest concentration is carried out.

1 Problem statement

Let's consider an in�nite elastic cylinder Ω0 containing N cylindrical cavities
Ωj (j = 1 ÷ N), whose axes are parallel to the cylinder axis. Denote by Oj

(j = 0 ÷ N) points belonging to the axes of the original cylinder and cavities
located in the plane perpendicular to the generatrix of cylinder. Without loss of
generality, assume that points Oj (j = 1 ÷ N) form a certain structure on the
plane, in particular, centered hexagonal, and the point O1 coincides with the point
O0 (Fig. 1).

We will use cylindrical coordinates systems (ρj , ϕj , zj) with the same
orientation, for which origins are related with the points Oj (j = 1 ÷ N). Radii
of cylinders Ωj are equal to Rj , boundaries of cylinders Γj are described by the
equations ρj = Rj . It is assumed that the cavities are located within original
cylinder and the boundaries do not intersect each other.

Let's consider the �rst boundary value problem of elasticity theory for a
speci�ed domain. It is assumed that outer boundary is under the load f(ϕ0, z0),
which has an absolutely and uniformly convergent series expansion and integral
representation

f(ϕ0, z0) =
∞∑

m=−∞

∞∫
−∞

[
fx,m(λ)ex + fy,m(λ)ey + fz,m(λ)ez

]
eiλz+imϕdλ. (1)

where {ex, ey, ez} � are unit vectors of the Cartesian coordinate system, which
are co-directional with inserting cylindrical coordinates systems.

It is considered that the vector function f satis�es static conditions on the
surface ρ1 = R0.

Elastic displacement vector satis�es the following boundary value problem for
the Lame equation:

∇2U +
1

1− 2σ
∇divU = 0, (2)

with boundary conditions: on the outer boundary

FU|Γ0
= f(ϕ0, z0), (3)

and on the cavities boundaries

FU|Γj
= 0, (4)

where U � displacement vector, FU � corresponding stress vector on the
boundary surface, σ � Poisson's ratio.
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Fig. 1: Schematic representation of the problem

2 Solution of the problem

General solution of the boundary value problem (2) � (4) in the domain

Ω0\
N⋃

j=1
Ωj constructed as a superposition of basic solutions of the Lame equation

for cylinder in the coordinate system related to the centers of cavities

U =
N∑

j=1

3∑
s=1

∞∑
m=−∞

∞∫
−∞

A(j)
s,m(λ)U+(3)

s,λ,m(ρj , ϕj , zj)dλ+

+
3∑

s=1

∞∑
m=−∞

∞∫
−∞

A(0)
s,m(λ)U−(3)

s,λ,m(ρ0, ϕ0, z0)dλ, (5)

where A
(j)
s,m(λ) � unknown functions to be determined; U±(3)

s,λ,m(ρ, ϕ, z) � basic
solutions of the Lame equation for the cylinder (sign + (−) matches the external
(internal) solution) were introduced in [19]. In the article [21] was introduced the
concept of a basis system of solutions of the Lame equation and proved basis

property of systems

{
U+(3)

s,λ,m

}3,∞,∞

s=1,m=−∞,λ=−∞
,

{
U−(3)

s,λ,m

}3,∞,∞

s=1,m=−∞,λ=−∞
.
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Let's consider the explicit form of these solutions

U±(3)
s,λ,m(ρ, ϕ, z) = λ−1Dsu

±(3)
λ,m (ρ, ϕ, z); s = 1, 3; (6)

U±(3)
2,λ,m(ρ, ϕ, z) = λ−1B2u

±(3)
λ,m (ρ, ϕ, z), (7)

where
D1 = ∇, D2 = z∇− χez, D3 = i[∇× ez],

B2 =
(

x
∂

∂x
+ y

∂

∂y

)
∇− χ

[
ez × [∇× ez]

]
;

u
+(3)
λ,m (ρ, ϕ, z) = eiλz+imϕK̃m(λρ), u

−(3)
λ,m (ρ, ϕ, z) = eiλz+imϕIm(λρ),

Im(x) � modi�ed Bessel function, K̃m(x) = (signx)mKm(|x|), Km(x) �

Macdonald function; χ = 3 − 4σ, u
±(3)
λ,m � complete set of particular solutions

of the Laplace equation in cylindrical coordinates, i � imaginary unit.
In the expanded coordinate form basic solutions (6), (7) are of the form:

U±(3)
1,λ,m(ρ, ϕ, z) = ∓u

±(3)
λ,m−1e−1 ∓ u

±(3)
λ,m+1e1 + iu

±(3)
λ,m e0, (8)

U±(3)
2,λ,m(ρ, ϕ, z) = ∓(D − χ)

[
u
±(3)
λ,m−1e−1 + u

±(3)
λ,m+1e1

]
+ iDu

±(3)
λ,m e0, (9)

U±(3)
3,λ,m(ρ, ϕ, z) = ±u

±(3)
λ,m−1e−1 ∓ u

±(3)
λ,m+1e1, (10)

ãäå D = ρ
∂

∂ρ
, e−1 =

1
2
(ex + iey), e1 =

1
2
(ex − iey), e0 = ez.

Stress vector at the site with the normal n has the form:

FU = 2G

[
σ

1− 2σ
ndivU +

∂U
∂n

+
1
2
(n× rotU)

]
, (11)

where G � shear modulus.
Applying the formulas (8) � (10) operator (11) at the site with the normal

n = eρ we obtain:

FU±(3)
1,λ,m =

2G

ρ

{
∓Du

±(3)
λ,m−1e−1 ∓Du

±(3)
λ,m+1e1 + iDu

±(3)
λ,m e0

}
; (12)

FU±(3)
2,λ,m =

2G

ρ

{
∓ [(m− 1)(m− 1 + 2σ) + λ2ρ2 + (2σ − 3)D]u±(3)

λ,m−1e−1∓

∓ [(m + 1)(m + 1− 2σ) + λ2ρ2 + (2σ − 3)D]u±(3)
λ,m+1e1+

i[m2 + λ2ρ2(2σ − 2)D]u±(3)
λ,m e0

}
, (13)

FU±(3)
3,λ,m =

G

ρ

{
±(D + m− 1)u±(3)

λ,m−1e−1 ∓ (D −m− 1)u±(3)
λ,m+1e1 − imu

±(3)
λ,m e0

}
,

(14)
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3 Addition theorems

Basic solutions of the Lame equation in coordinate systems, combined with the
centers pair of cylinders, are associated by the addition theorems. The following
addition theorems are the case [19]:

U+(3)
s,λ,m(ρj , ϕj , zj) =

3∑
t=1

∞∑
l=−∞

D̃
(jα)
s,t f

(33)l,j,α
1,λ,m U−(3)

t,λ,l (ρα, ϕα, zα); (15)

U+(3)
s,λ,m(ρj , ϕj , zj) =

3∑
t=1

∞∑
l=−∞

D̃
(jα)
s,t f

+(33)l,j,α
λ,m U+(3)

t,λ,l (ρα, ϕα, zα); (16)

U−(3)
s,λ,m(ρj , ϕj , zj) =

3∑
t=1

∞∑
l=−∞

D̃
(jα)
s,t f

−(33)l,j,α
λ,m U−(3)

t,λ,l (ρα, ϕα, zα), (17)

f
(33)l,j,α
1,λ,m = (−1)lu

+(3)
λ,m−l(ρjα, ϕjα, zjα), f

±(33)l,j,α
λ,m = u

−(3)
λ,m−l(ρjα, ϕjα, zjα),

D̃
(jα)
s,t =

[
δst + δt1δs2ρjα

∂

∂ρjα

]
, j 6= α,

where (ρjα, ϕjα, zjα) � cylindrical coordinates of the point Oα in the coordinate
system (ρj , ϕj , zj), δst � Kronecker delta.

4 Resolving system of equations

Using the addition theorems (15) � (17), we represent the displacement vector
U in the coordinate system with the origin at O1 near borders Γ0 è Γ1:

U =
3∑

s=1

∞∑
m=−∞

∞∫
−∞

A(1)
s,m(λ)U+(3)

s,λ,m(ρ1, ϕ1, z1)dλ+

+
3∑

s=1

∞∑
m=−∞

∞∫
−∞

A(0)
s,m(λ)U−(3)

s,λ,m(ρ1, ϕ1, z1)dλ +
N∑

j=2

3∑
s=1

∞∑
m=−∞

∞∫
−∞

A(j)
s,m(λ)×

×
3∑

t=1

∞∑
l=−∞

D̃
(j1)
s,t u

−(3)
λ,m−l(ρj1, ϕj1, zj1)U

+(3)
t,λ,l (ρ1, ϕ1, z1)dλ, (18)
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U =
3∑

s=1

∞∑
m=−∞

∞∫
−∞

A(1)
s,m(λ)U+(3)

s,λ,m(ρ1, ϕ1, z1)dλ+

+
3∑

s=1

∞∑
m=−∞

∞∫
−∞

A(0)
s,m(λ)U−(3)

s,λ,m(ρ1, ϕ1, z1)dλ +
N∑

j=2

3∑
s=1

∞∑
m=−∞

∞∫
−∞

A(j)
s,m(λ)×

×
3∑

t=1

∞∑
l=−∞

(−1)lD̃
(j1)
s,t u

+(3)
λ,m−l(ρj1, ϕj1, zj1)U

+(3)
t,λ,l (ρ1, ϕ1, z1)dλ, (19)

and with origin in the point Oj (j = 2÷N):

U =
3∑

s=1

∞∑
m=−∞

∞∫
−∞

A(j)
s,m(λ)U+(3)

s,λ,m(ρj , ϕj , zj)dλ+
N∑

α=1,α 6=j

3∑
s=1

∞∑
m=−∞

∞∫
−∞

A(α)
s,m(λ)×

×
3∑

t=1

∞∑
l=−∞

(−1)lD̃
(αj)
s,t u

+(3)
λ,m−l(ραj , ϕαj , zαj)U

−(3)
t,λ,l (ρj , ϕj , zj)dλ+

+
3∑

s=1

∞∑
m=−∞

∞∫
−∞

A(0)
s,m(λ)

3∑
t=1

∞∑
l=−∞

D̃
(1j)
s,t u

−(3)
λ,m−l(ρ1j , ϕ1j , z1j)U

−(3)
t,λ,l (ρj , ϕj , zj)dλ.

(20)

After satisfaction of the boundary conditions, the problem reduces to an

in�nite system of linear algebraic equations for the unknown coe�cients A
(j)
s,m(λ):

3∑
s=1

{
A(0)

s,m(λ)G−(3)
s,λ,m(R0) + A(1)

s,m(λ)G+(3)
s,λ,m(R0)+

+ G+(3)
s,λ,m(R0)

N∑
j=2

3∑
t=1

∞∑
l=−∞

A
(j)
t,l (λ)D̃(j1)

t,s u
−(3)
λ,l−m(ρj1, ϕj1, zj1)

}
=

=
(

fx,m−1(λ)− ify,m−1(λ), fx,m+1(λ) + ify,m+1(λ), fz,m(λ)
)

, (21)

3∑
s=1

{
A(0)

s,m(λ)G−(3)
s,λ,m(R1) + A(1)

s,m(λ)G+(3)
s,λ,m(R1)+

+ G−(3)
s,λ,m(R1)

N∑
j=2

3∑
t=1

∞∑
l=−∞

A
(j)
t,l (λ)(−1)mD̃

(j1)
t,s u

+(3)
λ,l−m(ρj1, ϕj1, zj1)

}
= 0, (22)
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3∑
s=1

{
A(j)

s,m(λ)G+(3)
s,λ,m(Rj)+

+ G−(3)
s,λ,m(Rj)

N∑
α=1,α 6=j

3∑
t=1

∞∑
−∞

A
(α)
t,l (λ)(−1)mD̃

(αj)
t,s u

+(3)
λ,l−m(ραj , ϕαj , zαj)+

+ G−(3)
s,λ,m(Rj)

3∑
t=1

∞∑
l=−∞

D̃
(1j)
t,s u

−(3)
λ,l−m(ρ1j , ϕ1j , z1j)

}
= 0, (23)

j = 2÷N ; m ∈ Z; λ ∈ R, λ 6= 0,

ãäå G±(3)
s,λ,m(R) =

(
G
±(−1)
s,λ,m , G

±(1)
s,λ,m, G

±(0)
s,λ,m

)
;

G
±(−1)
1,λ,m (R) = ∓2G

R
Dũ

±(3)
λ,m−1(R), G

±(1)
1,λ,m(R) = ±2G

R
Dũ

±(3)
λ,m+1(R),

G
±(0)
1,λ,m(R) =

2G

R
iDũ

±(3)
λ,m (R), G

±(0)
3,λ,m(R) = −G

R
imũ

±(3)
λ,m (R),

G
±(1)
3,λ,m(R) = ∓G

R
(D −m− 1)ũ±(3)

λ,m+1(R),

G
±(−1)
3,λ,m (R) = ±G

R
(D + m− 1)ũ±(3)

λ,m−1(R),

G
±(0)
2,λ,m(R) =

2G

R
i

[
m2 + λ2R2 + (2σ − 2)D

]
ũ
±(3)
λ,m (R),

G
±(−1)
2,λ,m (R) = ∓2G

R

[
(m− 1)(m− 1 + 2σ) + λ2R2 + (2σ − 3)D

]
ũ
±(3)
λ,m−1(R),

G
±(1)
2,λ,m(R) = ∓2G

R

[
(m + 1)(m + 1− 2σ) + λ2R2 + (2σ − 3)D

]
ũ
±(3)
λ,m+1(R),

ũ
+(3)
λ,m (R) = K̃m(λR), ũ

−(3)
λ,m (R) = Im(λR).

5 Analysis of the resolving system

Theorem 1 For each λ 6= 0 system operator (21) � (23) is Fredholm in the

Hilbert space l2 under the conditions Rj + Rα < ρjα (j 6= α; j, α = 1 ÷ N),

ρ1α + Rα < R0 (α = 2÷N).

By renaming the unknown functions

A(j)
s,m(λ) =

Ã
(j)
s,m(λ)

Km(|λ|Rj)
, (j = 1÷N), A(0)

s,m(λ) =
Ã

(0)
s,m(λ)

Im(λR0)
, (24)
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and solving system with respect to Ã
(j)
s,m(λ), system (21), (23) can be represented

in the form

Ã(α)
s,m(λ) +

∑
j 6=α

3∑
p=1

∞∑
l=−∞

T j,p,l
1,α,s,mÃ

(j)
p,l (λ) +

3∑
p=1

∞∑
l=−∞

T p,l
2,α,s,mÃ

(0)
p,l (λ) = 0, (25)

Ã(0)
s,m(λ) +

N∑
j=1

3∑
p=1

∞∑
l=−∞

T j,p,l
3,s,mÃ

(j)
p,l (λ) = Fs,m(λ). (26)

Omit the explicit entry of matrix coe�cients. Note that matrix coe�cients

modules
∣∣∣T j,p,l

1,α,s,m

∣∣∣, ∣∣∣T p,l
2,α,s,m

∣∣∣, ∣∣∣T j,p,l
3,s,m

∣∣∣ estimated from above by �nite linear

combinations of expressions like (27) � (29) respectively∣∣∣∣ Im(λRα)
Kl(|λ|Rj)

Km−l(|λ|ρjα)
∣∣∣∣, (27)

∣∣∣∣Im(λRα)
Il(λR0)

Im−l(|λ|ρ1α)
∣∣∣∣, (28)∣∣∣∣Km(|λ|R0)

Kl(|λ|Rj)
Im−l(λρj1)

∣∣∣∣. (29)

Here were used the estimates of resolving systems determinants of the �rst
boundary value problem of elasticity theory for interior and exterior of the
cylinder, which were derived in the work [21].

To prove the theorem it is su�cient to show the ful�llment of following
conditions for matrix coe�cients of the system (25), (26):

∞∑
m=−∞

∞∑
l=−∞

∣∣∣∣T j,p,l
1,α,s,m

∣∣∣∣2 < ∞, (30)

∞∑
m=−∞

∞∑
l=−∞

∣∣∣∣T p,l
2,α,s,m

∣∣∣∣2 < ∞, (31)

∞∑
m=−∞

∞∑
l=−∞

∣∣∣∣T j,p,l
3,s,m

∣∣∣∣2 < ∞. (32)

Let's consider the addition theorem for harmonic functions [20]:

u
+(3)
λ,m (ρj , ϕj , zj) =

∞∑
l=−∞

(−1)lu
+(3)
λ,m−l(ρjα, ϕjα, zjα)u−(3)

λ,l (ρα, ϕα, zα). (33)

This expansion can be interpreted as Fourier series representation of the harmonic

function u
+(3)
λ,m (ρj , ϕj , zj) the variable ϕα ∈ [0, 2π]. Then for this expansion

Parseval equality has a place by
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∞∑
l=−∞

∣∣∣∣Km−l(|λ|ρjα)
∣∣∣∣2∣∣∣∣Il(λρα)

∣∣∣∣2 =
1
2π

2π∫
0

∣∣∣∣Km(|λ|ρj)
∣∣∣∣2dϕα. (34)

By the estimates (27) � (29) to prove the theorem it is su�cient to show
convergence of the series

∞∑
m=−∞

∞∑
l=−∞

∣∣∣∣ Im(λRα)
Kl(|λ|Rj)

Km−l(|λ|ρjα)
∣∣∣∣2, (35)

∞∑
m=−∞

∞∑
l=−∞

∣∣∣∣Im(λRα)
Il(λR0)

Im−l(|λ|ρ1α)
∣∣∣∣2, (36)

∞∑
m=−∞

∞∑
l=−∞

∣∣∣∣Km(|λ|R0)
Kl(|λ|Rj)

Im−l(λρj1)
∣∣∣∣2. (37)

In the work [21] was proved the estimate

Im(z)Km(z) >
c

m2 + 1
(1 + 2z)−1, m ≥ 0, z > 0, (38)

where c > 0 � some constant. Then the series (35) can be majorized by the series

∞∑
m=−∞

∞∑
l=−∞

∣∣∣∣Il(λRα)Im(λRj)Km−l(|λ|ρjα)
∣∣∣∣2.

Let the value ρα = Rα be substituted in the identity (34), then multiply its both
sides by |Im(λRj)|2 and sum up by m from −∞ to ∞. As a result, we obtain

∞∑
m=−∞

∞∑
l=−∞

∣∣∣∣Il(λRα)Im(λRj)Km−l(|λ|ρjα)
∣∣∣∣2 =

=
1
2π

2π∫
0

∞∑
m=0

∣∣∣∣Im(λRj)
∣∣∣∣2∣∣∣∣Km(|λ|ρj)

∣∣∣∣2
|ρα=Rα

dϕα. (39)

From the asymptotic formulas as m →∞ [22]

Im(z) =
(

z

2

)m 1
m!

[
1 + O(m−1)

]
, (40)

Km(z) =
2m−1(m− 1)!

zm

[
1 + O(m−1)

]
(41)

follows that the series in the left side of (39) is convergent under condition ρj > Rj .
Let's de�ne minimal value ρmin

j for arbitrary values of the angle ϕα. From the
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dependence between cylindrical coordinates with the origins Oj and Oα it follows
that for ρα = Rα

ρj =
√

ρ2
jα + R2

α + 2ρjαRα cos (ϕα − ϕjα)

and minimal value ρj is reached under condition ϕα − ϕjα = π and is equal to
ρmin

j = ρjα − Rα (ρjα > Rα � natural geometrical condition in the problem
statement).

Thus the condition of series convergence will be satis�ed if ρmin
j > Rj . It

means that Rj + Rα < ρjα.
Similarly, we can write this equality

∞∑
m=−∞

∞∑
l=−∞

∣∣∣∣Km(|λ|R0)Il(λRα)Im−l(λρ1α)
∣∣∣∣2 =

=
1
2π

2π∫
0

∞∑
m=0

∣∣∣∣Km(|λ|R0)
∣∣∣∣2∣∣∣∣Im(λρ1)

∣∣∣∣2
|ρα=Rα

dϕα. (42)

On the basis of asymptotics (40), (41) the series in formula (42) is convergent
under condition ρ1 < R0. On the surface ρα = Rα it is true ρmax

1 = ρ1α+Rα. Thus
condition of convergence of the series (42) is truthfulness of inequality ρmax

1 < R0

or ρ1α + Rα < R0.
By the estimate (38) convergence of the series (37) under condition ρ1j +Rj <

R0 follows from convergence of the series (42).

6 Analysis of numerical results

For numerical implementation we assume that the boundary of cylinder is
under piecewise constant normal load.

FU|Γ0
= Teρ =

{
T, |z| ≤ h,

0, |z| > h.
(43)

Following values of parameters were selected: Rj = R, R0 = 10R, σ = 0.38.
Centered hexagonal packing of cylindrical cavities symmetrically located with
respect to the axis of cylinder is considered (�g. 1).

The system (21) � (23) is numerically solved by reduction method relatively
to the parameter m (−mmax ≤ m ≤ mmax) with �xed values of λ, which are
nodes of Gauss-Laguerre quadrature formula.

On the �gures 2 � 4 graphs of stresses σy/T , σx/T , σz/T on the line, which
connects centers of cavities 6-th and 7-th (�g. 1), depending on relative distance
between cavities a/R in planes z = 0 and z = h are shown. Relative distance
between boundaries of neighbor cavities is plotted along horizontal axis. Maximal
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Fig. 2: Stresses σy/T on the line,
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depending on relative distance
between them
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Fig. 3: Stresses σx/T on the line,
which connects centers of cavities
depending on relative distance
between them

stress concentration σy/T is observed on the cavities boundaries, while for stresses
σx/T is in the center of the line. It is characteristically that the signs of stresses
σz/T are di�erent on planes z = 0 and z = h.

On the �gure 5 comparison of stresses σy/T on the line, which connects centers
of cavities 6-th and 7-th (�g. 1), for centered hexagonal structure and on the
corresponding line for centered tetragonal structure is given.

On the �gures 6, 7 stresses σx/T and σy/T between 1-st and 5-th, 6-th and
7-th cavities are compared. Slight asymmetry of graphs of stresses relative to the
point located in the middle between 1-st and 5-th cavities is observed.

The e�ciency of proposed method can be seen by the rate of convergence of
reduction method (table 1). The values of normal components of stress tensor in
the middle point of the line, which connects centers of neighbor cavities, depending
on size of reduced system if a/R = 2.0, h/R0 = 1.0 are given in this table.

mmax 5 10 15

σx/T 0.506252 0.506847 0.506847
σy/T 1.16719 1.16695 1.16695
σz/T −0.156974 −0.156848 −0.156848

Table 1: Convergence of reduction method
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Conclusion

Development of analytical-numerical method of solution of boundary value
problems of elasticity theory in the non-axisymmetrical multiconnected domains,
which boundary is the system of unidirectional in�nite circular cylinders is
proposed. Solution is constructed in the form of superposition of exact basic
solutions of Lame equation for cylinder in coordinate systems related to centers
of boundary surfaces of the body. Boundary conditions are satis�ed exactly by
the generalized Fourier method apparatus. As a result initial problem is reduced
to in�nite linear algebraic system of equations with exponentially decreasing
coe�cients, which has Fredholm operator in the Hilbert space l2. The last
circumstance allows to apply reduction method for numerical solution of the
system. It is well known [23] that solution of reduced system converges to exact
solution of resolving system when mmax → ∞. Practical rate of convergence
of reduction method is investigated, which shows e�ciency of method even for
a large number of cavities. Numerical analysis of stresses in domains of their
concentration is carried out. Reliability of results is proved by the comparison
them for two cases: cylinder with seven and �ve cylindrical cavities.

Advantage of this approach is that this method allows to satisfy boundary
conditions exactly reducing procedure of construction of numerical solution to
inversion of linear algebraic system in contrast to well known methods, such
as �nite element analysis, boundary integral equations, �nite di�erences and
so on, which work poorly in domains with non-compact boundaries. Herewith
approximate solution quickly converges to exact solution. This allows signi�cantly
increase accuracy of results using the same resources as in other methods.
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