Attractor for a composite system of nonlinear wave and thermoelastic plate equations

T. B. Fastovska
V.N. Karazin Kharkiv National University, Svobody Sq. 4, 61022, Kharkiv, Ukraine
fastovskaya@karazin.ua

We prove the existence of a compact finite dimensional global attractor for a coupled PDE system comprising a nonlinearly damped semilinear wave equation and a thermoelastic Mindlin-Timoshenko plate system with nonlinear viscous damping. We show the upper semi-continuity of the attractor with respect to the parameters related to the coupling terms and the shear modulus of the plate.
Keywords: acoustic model, attractor, upper semi-continuity.
Фастовская Т. Б., Глобальный аттрактор нелинейной системы для волнового уравнения и термоупругой системы колебания пластин. Доказывается существование конечномерного компактного глобального аттрактора системы, состоящей из нелинейного волнового уравнения с нелинейным демпингом и системы Миндлина-Тимошенко, описывающей акустическую камеру с упругой стенкой. Доказана верхняя полунепрерывность аттрактора по параметрам задачи.
Ключевые слова: модель акустики, аттрактор, верхняя полунепрерывность.

Фастовська Т. Б., Глобальний атрактор нелінійної системи для хвильового рівняння та термопружної системи коливання пластин. Доведено існування скінченномірного компактного глобального атрактора системи, що складається з нелінійного хвильового рівняння з нелінійним демпінгом та системи Міндліна-Тимошенка, що описує акустичну камеру з пружною стінкою. Доведено верхню напівнеперервність атрактора за параметрами задачі.
Ключові слова: модель акустики, атрактор, верхня напівнеперервність.

2000 Mathematics Subject Classification 35B25, 35B40.
(C) T. B. Fastovska, 2014

Introduction

The mathematical model considered consists of a semilinear wave equation defined on a bounded domain, which is strongly coupled with thermoelastic Mindlin-Timoshenko plate equation on a part of the boundary. The model includes a weak structural damping and a thermal damping. This kind of models referred to as structural acoustic interactions, arise in the context of modelling gas pressure in an acoustic chamber which is surrounded by a combination of rigid and flexible walls (see, e.g. [13, 22]). The pressure in the chamber is described by the solution to a wave equation, while vibrations of the flexible wall are described by the solution to a plate equation. The Mindlin-Timoshenko model describes dynamics of a plate in view of transverse shear effects (see, e.g., $[15,24]$ and references therein).

More precisely, let $\Omega \in \mathbb{R}^{3}$ be a smooth bounded open domain with the boundary $\partial \Omega=: \Gamma=\overline{\Gamma_{0} \cup \Gamma_{1}}$ consisting of two open (in the induced topology) connected disjoint parts Γ_{0} and Γ_{1} of positive measure. Γ_{0} is flat and is referred to as the elastic wall. The dynamics of the acoustic medium in the chamber Ω is described by a interactive system of a semilinear wave equation and a MindlinTimoshenko system of thermoelasticity:

$$
\begin{gather*}
z_{t t}+g\left(z_{t}\right)-\Delta z+f(z)=0, x \in \Omega, t>0 \tag{1}\\
\frac{\partial z}{\partial n}=0, x \in \Gamma_{1}, \frac{\partial z}{\partial n}=\kappa w_{t}, x \in \Gamma_{0} \tag{2}\\
v_{t t}-\mathcal{A} v+\mu(v+\nabla w)+\beta \nabla \theta+b\left(v_{t}\right)+v\left[h\left(|v|^{2}\right)+\gamma w\right]=0 x \in \Gamma_{0}, t>0 \tag{3}\\
w_{t t}-\mu \operatorname{div}(v+\nabla w)+b_{0}\left(w_{t}\right)+h_{0}(w)+\kappa z_{t}=0 \tag{4}\\
\theta_{t}-\Delta \theta+\beta \operatorname{div} v_{t}=0 \tag{5}\\
v=w=\theta=0 \quad \partial \Gamma_{0} \tag{6}
\end{gather*}
$$

supplemented with initial conditions:

$$
\begin{gather*}
z(0, \cdot)=z_{0}, \quad z_{t}(0, \cdot)=z_{1} \\
v(0, \cdot)=v_{0}, \quad v_{t}(0, \cdot)=v_{1} \tag{7}\\
w(0, \cdot)=w_{0}, \quad w_{t}(0, \cdot)=w_{1}, \quad \theta(0, \cdot)=\theta_{0}
\end{gather*}
$$

The variable z describes the dynamics in the acoustic medium, while v denotes the angles of deflection of the filaments, w - the transverse displacement of the middle surface, and θ - the temperature variation averaged with respect to the thickness of the plate. The operator \mathcal{A} is defined as follows

$$
\mathcal{A}=\left(\begin{array}{cc}
\partial_{x_{1}}^{2}+\frac{1-\nu}{2} \partial_{x_{2}}^{2} & \frac{1+\nu}{2} \partial_{x_{1} x_{2}} \\
\frac{1+\nu}{2} \partial_{x_{1} x_{2}} & \frac{1-\nu}{2} \partial_{x_{1}}^{2}+\partial_{x_{2}}^{2}
\end{array}\right)=\nabla \operatorname{div}-\frac{1-\nu}{2} \text { rotrot }
$$

where $0<\nu<1$ is the Poisson ratio.

The non-decreasing functions $b(s), b_{0}(s)$, and $g(s)$ describe the dissipation effects in the model, the terms $f(z), h(v), h_{0}(w), v w \cdot v$ represent nonlinear forces acting on the wave and on the plate components respectively. The boundary term $\left.\kappa z_{t}\right|_{0}$ represents the pressure exercised by the acoustic medium on the wall.

The parameter $0 \leq \kappa \leq 1$ has been introduced to cover the case of noninteracting wave and plate equations ($\kappa=0$), while the parameter $0 \leq \beta \leq 1$ the case of decoupled plate and heat conduction equations. The parameter $\mu>0$ describes the shear modulus of the plate.

Due to broad engineering applications in aerospace industry, structural acoustic models have recently attracted an ample attention. A very large literature devoted to this model in the context of the control theory, (see e.g. the monograph [16] and references therein). The investigation of the uniform stability of structural acoustic models with thermoelastic wall in the case of a single equilibrium can be found in [17, 18, 19, 21]. The nonlinear structural acoustic model with thermal effects and without mechanical dissipation in the plate component comprising wave and thermoelastic Berger's equations has been studied in [2] in that the existence of a compact global attractor and it's properties were investigated. The same results were obtained for the wave/ Berger's system with mechanical damping without thermal effects [3]. Long-time behavior of a nonlinear structural acoustic model comprising wave and thermoelastic von Karman plate equations has been studied in [9]. We also refer to the paper [23] devoted to the problem of dynamics of a clamped von Karman plate in a gas flow in the presence of thermal effects. The existence and upper semicontinuity of attractors of the elastic and thermoelastic Mindlin-Timoshenko plate system were studied in [5, 10].

We consider the nonlinear acoustic model comprising wave and MindlinTimoshenko equations with thermal effects with and without non-conservative nonlinearity in the plate part.
The paper is organized as follows. Section 1 is devoted to the conservative system with monotone energy. We begin with the abstract formulation of the problem and its well-posedness. Our first main result, Theorem 3 states the existence of global attractors for problem (1)-(7) under rather general conditions on the nonlinearities. Since the dynamical system generated by the system without non-conservative nonlinearity is gradient, the main issue to be explored is the asymptotic compactness of the semi-flow. To show this property we use the idea due to Khanmamedov [14] in the form suggested in [8]. In comparison to the acoustic interaction with the Berger's and von Karman plate [3, 9] the existence of the compact global attractor requires the additional condition on the nonlinear damping referred to the elastic component (see Statement 3).

The next main results, Theorem 5 concerns the finite dimensionality of the attractors.

The main result of Section 2, Theorem 9, concerning problem (1)-(7) is the upper semicontinuity of the attractors with respect to the shear modulus and the coupling parameters. In contrast to the system considered in [2] the attractor is upper-semicontinuous not only with respect to the parameter decoupling wave
and plate components but also with respect to the parameter decoupling plate and thermal components.

In Section 3 we establish the same results for the system with non-conservative nonlinearity. Due to the lost of monotonicity of the energy the existence of an absorbing ball is proved supplementary.

System with conservative forces ($\gamma=0$).

In this section we consider the conservative model (the case $\gamma=0$), which implies the monotonicity of the energy.

Basic assumptions. We impose the following basic assumptions on the nonlinearities of the problem. Note that the listed assumptions on the nonlinearities f, g and $b_{i}, \mathrm{i}=0,1,2$ were first formulated in [9, Section 6.3, 12.3].

Statement $1 \quad-g \in C(\mathbb{R})$ is a non-decreasing function, $g(0)=0$, and there exists a constant $C>0$ such that

$$
\begin{equation*}
|g(s)| \leq C\left(1+|s|^{p}\right), s \in \mathbb{R}, \tag{8}
\end{equation*}
$$

where $1 \leq p \leq 5$.

- $f \in \operatorname{Lip}_{\text {loc }}(\mathbb{R})$ and there exists a positive constant M such that

$$
\begin{equation*}
\left|f\left(s_{1}\right)-f\left(s_{2}\right)\right| \leq M\left(1+\left|s_{1}\right|^{q}+\left|s_{2}\right|^{q}\right)\left|s_{1}-s_{2}\right|, \quad s_{1}, s_{2} \in \mathbb{R}, \tag{9}
\end{equation*}
$$

where $q \leq 2$. Moreover,

$$
\begin{equation*}
\lambda=\frac{1}{2} \lim _{|s| \rightarrow \infty} \inf \frac{f(s)}{s}>0 \tag{10}
\end{equation*}
$$

- $h \in \operatorname{Lip}_{\text {loc }}\left(\mathbb{R}_{+}\right), h_{0} \in \operatorname{Lip}_{\text {loc }}(\mathbb{R})$ and there exists a positive constant M_{1} such that

$$
\begin{equation*}
\left|h\left(s_{1}\right)-h\left(s_{2}\right)\right| \leq M_{1}\left(1+s_{1}^{q_{1}}+s_{2}^{q_{1}}\right)\left|s_{1}-s_{2}\right|, \quad s_{1}, s_{2} \in \mathbb{R}_{+}, \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|h_{0}\left(s_{1}\right)-h_{0}\left(s_{2}\right)\right| \leq M\left(1+\left|s_{1}\right|^{q_{2}}+\left|s_{2}\right|^{q_{2}}\right)\left|s_{1}-s_{2}\right|, \quad s_{1}, s_{2} \in \mathbb{R}, \tag{12}
\end{equation*}
$$

where $q_{1}, q_{2} \geq 0$. and

$$
\begin{equation*}
h^{*}=\lim _{s \rightarrow \infty} \inf \frac{h(s)}{s}>0, \quad h_{0}^{*}=\lim _{|s| \rightarrow \infty} \inf \frac{h_{0}(s)}{s}>0 . \tag{13}
\end{equation*}
$$

- $b \in C\left(\mathbb{R}^{2}\right), b_{0} \in C(\mathbb{R})$ are non-decreasing functions such that $b(0)=0$, $b_{0}(0)=0$.

Statement 2 For any $\varepsilon>0$ there exists c_{ε} such that $s \in \mathbb{R}$

$$
\begin{equation*}
s^{2} \leq \varepsilon+c_{\varepsilon} s g(s), \quad s \in \mathbb{R} \tag{14}
\end{equation*}
$$

-

$$
\begin{equation*}
s^{2} \leq \varepsilon+c_{\varepsilon} s b_{0}(s), \quad s \in \mathbb{R}, \quad|s|^{2} \leq \varepsilon+c_{\varepsilon} s b(s), \quad s \in \mathbb{R}^{2} \tag{15}
\end{equation*}
$$

Statement 3 - There exist $C>0$ and $1 \leq p, p_{0}<\infty$ such that

$$
\begin{equation*}
|b(s)| \leq C\left(1+|s|^{p}\right), s \in \mathbb{R}^{2}, \quad\left|b_{0}(s)\right| \leq C\left(1+|s|^{p_{0}}\right), s \in \mathbb{R} \tag{16}
\end{equation*}
$$

Statement 4 - There exist positive constants $m>0, M>0$ such that

$$
\begin{equation*}
m \leq \frac{g\left(s_{1}\right)-g\left(s_{2}\right)}{s_{1}-s_{2}} \leq M\left(1+s_{1} g\left(s_{1}\right)+s_{2} g\left(s_{2}\right)\right)^{2 / 3}, \quad s_{1}, s_{2} \in \mathbb{R}, s_{1} \neq s_{2} \tag{17}
\end{equation*}
$$

- There exist $m_{i}>0, M_{i}>0, i=1,2$ such that

$$
\begin{gather*}
m_{1}\left|s_{1}-s_{2}\right|^{2} \leq\left(b\left(s_{1}\right)-b\left(s_{2}\right)\right)\left(s_{1}-s_{2}\right) \tag{18}\\
\frac{b_{j}\left(s_{1}\right)-b_{j}\left(s_{2}\right)}{s_{1}-s_{2}} \leq M_{1}\left(1+s_{1} b_{j}\left(s_{1}\right)+s_{2} b_{j}\left(s_{2}\right)\right), \quad s_{1}, s_{2} \in \mathbb{R}, s_{1} \neq s_{2} \tag{19}
\end{gather*}
$$

where $j=1,2, b=\left(b_{1}, b_{2}\right)$.
$m_{2} \leq \frac{b_{0}\left(s_{1}\right)-b_{0}\left(s_{2}\right)}{s_{1}-s_{2}} \leq M_{2}\left(1+s_{1} b_{0}\left(s_{1}\right)+s_{2} b_{0}\left(s_{2}\right)\right), \quad s_{1}, s_{2} \in \mathbb{R}, s_{1} \neq s_{2}$.

- $f \in C^{2}(\mathbb{R})$,

$$
\begin{equation*}
\left|f^{\prime \prime}(s)\right| \leq C(1+|s|), \quad s \in \mathbb{R} \tag{21}
\end{equation*}
$$

- $h_{0} \in C^{2}(\mathbb{R}), h \in C^{2}\left(\mathbb{R}_{+}\right)$and there exists a constant $c>0$ and $1 \leq p_{2}<\infty$, $1 \leq p_{3}<\infty$ such that

$$
\begin{equation*}
\left|h^{\prime \prime}(s)\right| \leq c\left(1+s^{p_{2}}\right), s \in \mathbb{R}_{+} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|h_{0}^{\prime \prime}(s)\right| \leq c\left(1+|s|^{p_{3}}\right), s \in \mathbb{R} \tag{23}
\end{equation*}
$$

Abstract formulation. We represent the system (1)-(7) as an abstract evolution equation in an appropriate Hilbert space. For this purpose we introduce the following spaces and operators.Denote $u=(v, w)=\left(v_{1}, v_{2}, w\right)$.

Let $A: \mathcal{D}(A) \subset\left[L_{2}\left(\Gamma_{0}\right)\right]^{3} \rightarrow\left[L_{2}\left(\Gamma_{0}\right)\right]^{3}$ be the positive self-adjoint operator on $\mathcal{D}(A)=\left[H^{2} \cap H_{0}^{1}\left(\Gamma_{0}\right)\right]^{3}$ defined by

$$
A=\left(\begin{array}{cc}
-\mathcal{A}+\mu I & \mu \nabla \\
-\mu \operatorname{div} & -\mu \Delta
\end{array}\right)
$$

Define also a positive self-adjoint operator $L: \mathcal{D}(L) \in L_{2}(\Omega) \rightarrow L_{2}(\Omega)$ by the formula

$$
L=-\Delta+\lambda I
$$

with

$$
\mathcal{D}(L)=\left\{H^{2}(\Omega):\left.\frac{\partial}{\partial n}\right|_{\Gamma}=0\right\}
$$

and λ is given by (9). Next, let N_{0} be the Neumann map from $L_{2}\left(\Gamma_{0}\right)$ to $L_{2}(\Omega)$ defined by

$$
\psi=N_{0} \phi \Leftrightarrow\left\{\begin{array}{c}
(-\Delta+\lambda) \psi=0 \\
\left.\frac{\partial \psi}{\partial n}\right|_{\Gamma_{0}}=\phi,\left.\frac{\partial \psi}{\partial n}\right|_{\Gamma_{1}}=0
\end{array}\right.
$$

It is well-known [20] that N_{0} is continuous from $L_{2}\left(\Gamma_{0}\right)$ to $H^{3 / 2}(\Omega) \subset \mathcal{D}\left(A^{3 / 4-\epsilon}\right)$, for any $\epsilon>0$, and the following trace result takes place

$$
\begin{equation*}
N_{0}^{*} L h=\left.h\right|_{\Gamma_{0}}, \quad h \in \mathcal{D}\left(A^{1 / 2}\right) . \tag{24}
\end{equation*}
$$

We also introduce the operators $R_{1}: H_{0}^{1}\left(\Gamma_{0}\right) \rightarrow\left[L_{2}\right]^{3}\left(\Gamma_{0}\right)$ and $R_{2}:\left[H_{0}^{1}\right]^{2}\left(\Gamma_{0}\right) \rightarrow$ $L_{2}\left(\Gamma_{0}\right)$ defined by the formulas

$$
R_{1} \theta=\beta\left(\partial_{1} \theta, \partial_{2} \theta, 0\right)
$$

and

$$
R_{2}=\beta \partial_{1} v_{1}+\beta \partial_{2} v_{2}=\beta d i v v
$$

Now we are at the point to give the abstract formulation of problem (1)-(7). With the above dynamic operators initial-value problem (1)-(7) can be rewritten as follows

$$
\begin{gather*}
z_{t t}+G\left(z_{t}\right)+L z+F_{1}(z)-\kappa L N_{0} u_{t}=0, x \in \Omega, t>0 \tag{25}\\
D u_{t t}+A u+R_{1} \theta+B\left(u_{t}\right)+F_{2}(u)+\kappa N_{0}^{*} L z_{t}=0 \tag{26}\\
 \tag{27}\\
\gamma_{1} \theta_{t}-\Delta \theta+R_{2} u_{t}=0 \tag{28}\\
z(0)=z_{0}, \quad z_{t}(0)=z_{1}, \quad u(0)=u_{0}, \quad u_{t}(0)=u_{1}, \quad \theta(0)=\theta_{0} .
\end{gather*}
$$

where the nonlinear terms are given by the following operators

$$
\begin{gathered}
G(h)=g(h), \\
B(u)=\left(b(v), b_{0}(w)\right),
\end{gathered}
$$

here $u=(v, w)$. Denote

$$
\begin{equation*}
\Pi(z)=\int_{\Omega} \int_{0}^{z}(f(\xi)-\lambda \xi) d \xi d x \tag{29}
\end{equation*}
$$

Then

$$
\begin{equation*}
F_{1}(z)=\Pi^{\prime}(z) \tag{30}
\end{equation*}
$$

The term $F_{2}(u)$ is represented as follows

$$
\begin{equation*}
F_{2}(u)=\left(v_{1} h\left(|v|^{2}\right), v_{2} h\left(|v|^{2}\right), h_{0}(w)\right) . \tag{31}
\end{equation*}
$$

Denote

$$
\begin{equation*}
\Pi_{0}(u)=\frac{1}{2} \int_{\Omega}^{|v|^{2}} \int_{0}^{2} h(s) d s d x+\int_{\Omega}^{w} \int_{0}^{w} h_{0}(s) d s \tag{32}
\end{equation*}
$$

It follows from (10) and (13) that

$$
\begin{align*}
\Pi(z) & \geq-M_{f} \tag{33}\\
\Pi_{0}(u) & \geq-M_{h} \tag{34}
\end{align*}
$$

for some nonnegative constants M_{f} and M_{h}. The natural energy functions associated with the solutions to the uncoupled wave and plate models are given respectively by

$$
\begin{equation*}
\varepsilon_{z}\left(z(t), z_{t}(t)\right)=E_{z}^{0}\left(z, z_{t}\right)+\Pi(z) \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon_{u, \theta}\left(u(t), u_{t}(t)\right)=E_{u}^{0}\left(u, u_{t}\right)+E_{\theta}^{0}(\theta)+\Pi_{0}(u) . \tag{36}
\end{equation*}
$$

Here we have set

$$
\begin{align*}
& E_{z}^{0}\left(z, z_{t}\right)=\frac{1}{2}\left(\left\|L^{1 / 2} z\right\|_{\Omega}^{2}+\left\|z_{t}\right\|_{\Omega}^{2}\right), \tag{37}\\
& E_{u}^{0}\left(u, u_{t}\right)=\frac{1}{2}\left(\|A u\|_{\Gamma_{0}}^{2}+\left\|u_{t}\right\|_{\Gamma_{0}}^{2}\right), \tag{38}
\end{align*}
$$

and

$$
\begin{equation*}
E_{\theta}^{0}(\theta)=\frac{1}{2}\|\theta\|_{\Gamma_{0}}^{2} . \tag{39}
\end{equation*}
$$

Denote also

$$
\begin{gather*}
E_{z}\left(z, z_{t}\right)=E_{z}^{0}\left(z, z_{t}\right)+\Pi(z)+M_{f} \tag{40}\\
E_{u, \theta}\left(u, u_{t}, \theta\right)=E_{u}^{0}\left(u, u_{t}\right)+E_{\theta}^{0}(\theta)+\Pi_{0}(u)+M_{h} \tag{41}
\end{gather*}
$$

Finally we introduce the total energy $\mathcal{E}(t)=\mathcal{E}\left(z(t), z_{t}(t), u(t), u_{t}(t), \theta(t)\right)$ of the system

$$
\begin{equation*}
\mathcal{E}(t)=\mathcal{E}_{z}\left(z, z_{t}\right)+\mathcal{E}_{u, \theta}\left(u, u_{t}, \theta\right), \tag{42}
\end{equation*}
$$

where $\mathcal{E}_{z}\left(z, z_{t}\right)$ and $\varepsilon_{u, \theta}\left(u, u_{t}, \theta\right)$ are given by (35) and (36) respectively. Denote also

$$
\begin{equation*}
E^{0}(t)=E\left(z, z_{t}, u, u_{t}, \theta\right)=E_{z}^{0}\left(z, z_{t}\right)+E_{u}^{0}\left(u, u_{t}\right)+E_{\theta}^{0}(\theta) \tag{43}
\end{equation*}
$$

The positive part of the total energy is given by

$$
\begin{equation*}
E(t)=E\left(z, z_{t}, u, u_{t}, \theta\right)=E_{z}\left(z, z_{t}\right)+E_{u, \theta}\left(u, u_{t}, \theta\right), \tag{44}
\end{equation*}
$$

where $E_{z}\left(z, z_{t}\right)$ and $E_{u, \theta}\left(u, u_{t}, \theta\right)$ are given by (40) and (41) respectively.

It follows from (33) and (34) that there exist positive constants c, C, M_{0} such that

$$
\begin{equation*}
c E(t)-M_{0} \leq \mathcal{E}(t) \leq C E(t)+M_{0} \tag{45}
\end{equation*}
$$

The phase spaces Y_{1} for the acoustic component $\left[z, z_{t}\right]$ and Y_{2} for the plate component $\left[u, u_{t}, \theta\right]$ of system are given by

$$
Y_{1}=\mathcal{D}\left(L^{1 / 2}\right) \times L_{2}(\Omega)=H_{1}(\Omega) \times L_{2}(\Omega)
$$

and

$$
Y_{2}=\mathcal{D}\left(A^{1 / 2}\right) \times\left[L_{2}\left(\Gamma_{0}\right)\right]^{3} \times L_{2}\left(\Gamma_{0}\right)=\left[H_{0}^{1}\left(\Gamma_{0}\right)\right]^{3} \times\left[L_{2}\left(\Gamma_{0}\right)\right]^{3} \times L_{2}\left(\Gamma_{0}\right)
$$

with the norms

$$
\left\|\left(z_{1}, z_{2}\right)\right\|_{Y_{1}}^{2}=\left\|L^{1 / 2} z_{1}\right\|_{\Omega}^{2}+\left\|z_{2}\right\|_{\Omega}^{2}
$$

and

$$
\left\|\left(u_{1}, u_{2}, \theta\right)\right\|_{Y_{2}}^{2}=\left\|A^{1 / 2} u_{1}\right\|_{\Gamma_{0}}^{2}+\left\|D^{1 / 2} u_{2}\right\|_{\Gamma_{0}}^{2}+\|\theta\|_{\Gamma_{0}}^{2}
$$

respectively. The phase space for the problem (25)-(28) is defined as

$$
\begin{equation*}
H=Y_{1} \times Y_{2} \tag{46}
\end{equation*}
$$

with the norm

$$
\|y\|_{H}^{2}=\left\|\left(z_{1}, z_{2}\right)\right\|_{Y_{1}}^{2}+\left\|\left(u_{1}, u_{2}, \theta\right)\right\|_{Y_{2}}^{2}
$$

for $y=\left(z_{1}, z_{2}, u_{1}, u_{2}, \theta\right)$ and the corresponding inner product.

Well-posedness.

Definition 1 A triplet of functions $(z(t), u(t), \theta(t))$ which satisfy initial conditions (28) and such that

$$
(z(t), u(t)) \in C\left([0, T] ; \mathcal{D}\left(L^{1 / 2}\right) \times \mathcal{D}\left(A^{1 / 2}\right)\right) \cap C^{1}\left([0, T] ; L_{2}(\Omega) \times\left[L_{2}\left(\Gamma_{0}\right)\right]^{3}\right)
$$

and

$$
\theta(t) \in C\left([0, T] ; L_{2}\left(\Gamma_{0}\right)\right)
$$

is said to be
(S) a strong solution to problem (25)-(28) on the interval $[0, T]$, iff

- for any $0<a<b<T$

$$
\left(z_{t}, u_{t}\right) \in L_{1}\left([a, b], \mathcal{D}\left(L^{1 / 2}\right) \times \mathcal{D}\left(A^{1 / 2}\right)\right), \quad \theta_{t} \in L_{1}\left([a, b], L_{2}\left(\Gamma_{0}\right)\right)
$$

and

$$
\left(z_{t t}, u_{t t}\right) \in L_{1}\left([a, b], L_{2}(\Omega) \times\left[L_{2}\left(\Gamma_{0}\right)\right]^{3}\right)
$$

- $L\left[z(t)-\alpha \kappa N_{0} u_{t}\right]+G\left(z_{t}(t)\right) \in L^{2}(\Omega), u(t) \in D(A), \theta \in H^{2} \cap H_{0}^{1}\left(\Gamma_{0}\right)$ for almost all $t \in[0, T]$
- equations (25)-(27) are satisfied in $L_{2}(\Omega) \times L_{2}\left(\Gamma_{0}\right) \times L_{2}\left(\Gamma_{0}\right)$ for almost all $t \in[0, T]$
(G) a generalized solution to problem (25)-(28) on the interval $[0, T]$, iff there exists a sequence $\left\{\left(z_{n}(t), u_{n}(t), \theta_{n}(t)\right)\right\}$ of strong solutions to (25)-(28) with initial data $\left(z_{n}^{0}, z_{n}^{1}, u_{n}^{0}, u_{n}^{1}, \theta_{n}^{0}\right)$ such that

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \max _{t \in[0, T]}\left\{\left\|\partial_{t} z(t)-\partial_{t} z_{n}(t)\right\|_{\Omega}+\left\|L^{1 / 2}\left(z(t)-z_{n}(t)\right)\right\|_{\Omega}\right\}=0 \\
\lim _{n \rightarrow \infty} \max _{t \in[0, T]}\left\{\left\|D^{1 / 2}\left(\partial_{t} u(t)-\partial_{t} u_{n}(t)\right)\right\|_{\Gamma_{0}}+\left\|A^{1 / 2}\left(u(t)-u_{n}(t)\right)\right\|_{\Gamma_{0}}\right\}=0
\end{gathered}
$$

and

$$
\lim _{n \rightarrow \infty} \max _{t \in[0, T]}\left\{\left\|\theta(t)-\theta_{n}(t)\right\|_{\Gamma_{0}}\right\}=0
$$

Theorem 1 Under Assumptions 1, 3 for any initial conditions

$$
y_{0}=\left(z^{0}, z^{1}, u^{0}, u^{1}, \theta^{0}\right) \in H
$$

there exists a unique generalized solution $y(t)=\left(z(t), z_{t}(t), u(t), u_{t}(t), \theta(t)\right)$ to the PDE system (25)-(28), which depends continuously on initial data. This solution satisfies the energy inequality

$$
\begin{align*}
& \mathcal{E}(t)+\int_{s}^{t}\left(G\left(z_{t}\right), z_{t}\right)_{\Omega} d \tau+\int_{s}^{t}\left(B\left(u_{t}\right), u_{t}\right)_{\Gamma_{0}} d \tau \\
&+\int_{s}^{t}\|\nabla \theta\|_{\Gamma_{0}}^{2} d \tau \leq \mathcal{E}(s), \quad 0 \leq s \leq t \tag{47}
\end{align*}
$$

with the total energy $\mathcal{E}(t)$ given by (42). Moreover, the generalized solution to problem (25)-(28) is also weak, i.e. it satisfies the following system of variational equations:

$$
\begin{gather*}
\frac{d}{d t}\left(z_{t}, \phi\right)_{\Omega}+\left(L^{1 / 2} z, L^{1 / 2} \phi\right)_{\Omega}+\left(g\left(z_{t}\right), \phi\right)_{\Omega}-\kappa\left(u_{t}, N_{0}^{*} \phi\right)_{\Gamma_{0}}+(f(z), \phi)_{\Omega}=0 \tag{48}\\
\frac{d}{d t}\left(u_{t}+\kappa z, \psi\right)_{\Gamma_{0}}+\left(A^{1 / 2} u, A^{1 / 2} \psi\right)_{\Gamma_{0}}+\left(B\left(u_{t}\right), \psi\right)_{\Gamma_{0}} \\
+\left(F_{2}(u), \psi\right)_{\Gamma_{0}}+\left(R_{1} \theta, \psi\right)_{\Gamma_{0}}=0 \tag{49}\\
\frac{d}{d t}(\theta, \chi)_{\gamma_{0}}+(\nabla \theta, \nabla \chi)_{\Gamma_{0}}+\left(R_{2} u_{t}, \chi\right)_{\Gamma_{0}}=0 \tag{50}
\end{gather*}
$$

for any $\phi \in H^{1}(\Omega), \psi \in\left[H_{0}^{1}\right]^{3}\left(\Gamma_{0}\right)$, and $\chi \in H_{0}^{1}\left(\Gamma_{0}\right)$ in the sense of distributions. If initial data are such that

$$
z^{0}, z^{1} \in \mathcal{D}\left(L^{1 / 2}\right), \quad u^{0} \in \mathcal{D}(A), \quad u^{1} \in \mathcal{D}\left(A^{1 / 2}\right), \quad \theta^{0} \in\left(H^{2} \cap H_{0}^{1}\right)\left(\Gamma_{0}\right)
$$

and

$$
L\left[z^{0}-\kappa N_{0} u^{1}\right]+G\left(z^{1}\right) \in L_{2}(\Omega)
$$

then there exists a unique strong solution $y(t)$ satisfying the energy identity:

$$
\begin{aligned}
& \mathcal{E}(t)+\int_{s}^{t}\left(G\left(z_{t}\right), z_{t}\right)_{\Omega} d \tau+\int_{s}^{t}\left(B\left(u_{t}\right), u_{t}\right)_{\Gamma_{0}} d \tau \\
&+\int_{s}^{t}\|\nabla \theta\|_{\Gamma_{0}}^{2} d \tau=\mathcal{E}(s), \quad 0 \leq s \leq t
\end{aligned}
$$

Both strong and generalized solutions satisfy the inequalities

$$
\begin{equation*}
\mathcal{E}(t) \leq \mathcal{E}(s), \quad t \geq s \tag{51}
\end{equation*}
$$

and

$$
\begin{equation*}
E\left(z(t), z_{t}(t), u(t), u_{t}(t), \theta(t)\right) \leq C\left(1+E\left(z^{0}, z^{1}, u^{0}, u^{1}, \theta^{0}\right)\right) \tag{52}
\end{equation*}
$$

where E is given by (44) and C does not depend on κ, μ, and β.
Proposition 1 Theorem 1 enables us to define the dynamical system $\left(H, S_{t}\right)$ with the phase space H given by (46) and with the evolution operator $S_{t}: H \rightarrow H$ defined by the formula

$$
S_{t} y_{0}=\left(z(t), z_{t}(t), u(t), u_{t}(t), \theta(t)\right), \quad y_{0}=\left(z^{0}, z^{1}, u^{0}, u^{1}, \theta^{0}\right)
$$

where $(z(t), u(t), \theta(t))$ is a generalized solutions to problem (25)-(28). Moreover, the monotonicity of the damping operators G and B, the Lipschitz conditions on F_{1} and F_{2} and the energy bound in (52) implies that the semigroup S_{t} is locally Lipschitz on H. Namely, there exist $a>0$ and $b(\rho)>0$ such that

$$
\begin{equation*}
\left\|S_{t} y_{1}-S_{t} y_{2}\right\|_{H} \leq a e^{b(\rho) t}\left\|y_{1}-y_{2}\right\|_{H}, \quad\left\|y_{i}\right\|_{H} \leq \rho, t \geq 0 \tag{53}
\end{equation*}
$$

Stationary points. It follows from (45) that the energy $\mathcal{E}\left(z_{0}, z_{1}, u_{0}, u_{1}, \theta_{0}\right)$ is bounded from below on H and $\mathcal{E}\left(z_{0}, z_{1}, u_{0}, u_{1}, \theta_{0}\right) \rightarrow+\infty$ when $\left\|\left(z_{0}, z_{1}, u_{0}, u_{1}, \theta_{0}\right)\right\|_{H} \rightarrow+\infty$. This implies that there exists $R_{*}>0$ such that the set

$$
W_{R}=\left\{y=\left(z_{0}, z_{1}, u_{0}, u_{1}, \theta_{0}\right) \in H: \mathcal{E}\left(z_{0}, z_{1}, u_{0}, u_{1}, \theta_{0}\right) \leq R\right\}
$$

is a non-empty bounded set in H for all $R \geq R_{*}$. Moreover, any bounded set $B \in H$ is contained in W_{R} for some R and it follows from (51) that the set is forward invariant with respect to the semi-flow S_{t}, i.e. $S_{t} W_{R} \subset W_{R}$ for all $t>0$. Thus, we can consider the restriction $\left(W_{R}, S_{t}\right)$ of the dynamical system $\left(H, S_{t}\right)$ on $W_{R}, R \geq R_{*}$.

We introduce the set of stationary points of S_{t} denoted by \mathcal{N},

$$
\mathcal{N}=\left\{V \in H: S_{t} V=V, t \geq 0\right\}
$$

Every stationary point has the form $V=(z, 0, u, 0,0)$, where $z \in H^{1}(\Omega)$ and $u \in H_{0}^{1}(\Omega)$ are weak solutions to the problems

$$
-\Delta z+f(z)=0 \text { in } \Omega, \quad \frac{\partial z}{\partial n}=0 \text { on } \Gamma
$$

and

$$
\begin{gathered}
-\mathcal{A} v+\mu(v+\nabla w)+h\left(|v|^{2}\right) v=0 x \in \Gamma_{0}, t>0 \\
-\mu \operatorname{div}(v+\nabla w)+h_{0}(w)=0 \\
v=w=\theta=0 \quad \partial \Gamma_{0}
\end{gathered}
$$

It is clear that the set of stationary points does not depend on κ and μ. Therefore, one can easily prove the following assertion.

Lemma 1 Under Assumption 1 the set \mathcal{N} of stationary points for the semi-group S_{t} generated by problem (25)-(28) is a closed bounded set in H, and hence there exists $R_{* *} \geq R_{*}$ (independent of κ, β, and μ) such that $\mathcal{N} \subset W_{R}$ for every $R \geq R_{* *}$.

Later we will also need the notion of unstable manifold $M^{u}(\mathcal{N})$ emanating from the set of stationary points.

Definition 2 The unstable manifold $M^{u}(\mathcal{N})$ emanating from the set of stationary points \mathcal{N} is a set of all $V \in H$ such that there exists a full trajectory $\bar{\gamma}=\{V(t)$: $t \in \mathbb{R}\}$ with the properties

$$
V(0)=V \text { and } \lim _{t \rightarrow-\infty} \operatorname{dist}_{H}(V(t), \mathcal{N})=0
$$

Existence of attractors. The main aim of the paper is to show the existence of a global attractor for the dynamical system generated by problem (25)-(28), and to study its properties.

By definition (see, e.g. $[1,6,26]$) a global attractor is a bounded closed set $\mathfrak{A} \subset H$ such that $S_{t} \mathfrak{A}=\mathfrak{A}$ for all $t \geq 0$ and

$$
\lim _{t \rightarrow+\infty} \sup _{y \in \mathcal{B}} \operatorname{dist}\left(S_{t} y, \mathfrak{A}\right)=0
$$

for any bounded set $\mathcal{B} \in H$.
The fractal dimension

$$
\operatorname{dim}_{f} M=\limsup _{\varepsilon \rightarrow 0} \frac{\ln N(M, \varepsilon)}{\ln (1 / \varepsilon)}
$$

where $N(M, \varepsilon)$ is the minimal number of closed sets of diameter 2ε which cover the set M.

To prove the existence of the compact global attractor of the dynamical system $\left(H, S_{t}\right)$ we need to show some preliminary results.

Lemma 2 Let Assumptions 1 and 3 hold. Assume that $y_{1}, y_{2} \in H$, such that $\left\|y_{i}\right\|_{H} \leq R, \quad i=1,2$ and denote

$$
S_{t} y_{1}=\left(d(t), d_{t}(t), \nu(t), \nu_{t}(t), \psi(t)\right)
$$

and

$$
S_{t} y_{2}=\left(\zeta(t), \zeta_{t}(t), \omega(t), \omega_{t}(t), \xi(t)\right)
$$

Let

$$
\begin{equation*}
z(t)=d(t)-\zeta(t), \quad u(t)=\nu(t)-\omega(t), \quad \theta(t)=\psi(t)-\xi(t) \tag{54}
\end{equation*}
$$

There exist $T_{0}>0$ and positive constants $C_{i}, i=\overline{1,4}$ and $C_{5}(R)$ independent of T, κ, μ, and β such that for every $T \geq T_{0}$ the following inequality holds:

$$
\begin{align*}
T E^{0}(T)+ & \int_{0}^{T} E^{0}(t) d t \leq C_{1}\left[\left(\int_{0}^{T}\left\|z_{t}\right\|^{2}+\|\nabla \theta\|^{2}+\left\|u_{t}\right\|^{2} d t\right)\right. \\
& \left.+G_{0}^{T}(z)+R_{0}^{T}(u)\right]+C_{2} H_{0}^{T}(z)+C_{3} Q_{0}^{T}(u)+C_{4} \Psi_{T}(z, u) \\
& +C_{5}(R) \int_{0}^{T}\left(\|z\|^{2}+\|u\|^{2}\right) d t \tag{55}
\end{align*}
$$

where $E^{0}(t)$ is given by (43). We also introduce the notations

$$
\begin{align*}
G_{s}^{t}(z) & =\int_{s}^{t}\left(G\left(\zeta_{t}+z_{t}\right)-G\left(\zeta_{t}\right), \zeta_{t}\right)_{\Omega} d \tau \tag{56}\\
H_{s}^{t}(z) & =\int_{s}^{t} \mid\left(G\left(\zeta_{t}+z_{t}\right)-G\left(\zeta_{t}\right), \zeta\right)_{\Omega} d \tau \tag{57}\\
R_{s}^{t}(u) & =\int_{s}^{t}\left(B\left(\nu_{t}+u_{t}\right)-B\left(\nu_{t}\right), \nu_{t}\right)_{\Gamma_{0}} d \tau \tag{58}\\
Q_{s}^{t}(u) & =\int_{s}^{t} \mid\left(B\left(\nu_{t}+u_{t}\right)-B\left(\nu_{t}\right), \nu\right)_{\Gamma_{0}} d \tau \tag{59}
\end{align*}
$$

and

$$
\begin{array}{r}
\Psi_{T}(z, u)=\left|\int_{0}^{T}\left(\mathcal{F}_{1}(z), z_{t}\right) d t\right|+\left|\int_{0}^{T} \int_{t}^{T}\left(\mathcal{F}_{1}(u), u_{t}\right) d \tau d t\right|+\left|\int_{0}^{T}\left(\mathcal{F}_{2}(z), z_{t}\right) d t\right| \\
+\left|\int_{0}^{T} \int_{t}^{T}\left(\mathcal{F}_{2}(u), u_{t}\right) d \tau d t\right| \tag{60}
\end{array}
$$

with

$$
\begin{equation*}
\mathcal{F}_{1}(z)=F_{1}(\zeta+z)-F_{1}(\zeta), \quad \text { and } \quad \mathcal{F}_{2}(u)=F_{2}(\omega+u)-F_{2}(\omega), \tag{61}
\end{equation*}
$$

where F_{1} and F_{2} are the same as in (30), (31).
Proof. Step 1 (Energy identity) Without loss of generality, we can assume that $(d(t), \omega(t), \psi(t))$ and $(\zeta(t), \nu(t), \xi(t))$ are strong solutions. By (45) there exists a constant $C_{R}>0$, independent of κ, μ, and β, such that

$$
\begin{align*}
E_{d}^{0}\left(d(t), d_{t}(t)\right)+E_{\zeta}^{0}\left(\zeta(t), \zeta_{t}(t)\right)+E_{\nu}^{0}(\nu(t), & \left.\nu_{t}(t)\right)+E_{\omega}^{0}\left(\omega(t), \omega_{t}(t)\right) \\
& +E_{\psi}^{0}(\psi(t))+E_{\xi}^{0}(\xi(t)) \leq C_{R} \tag{62}
\end{align*}
$$

for all $t \geq 0$. We establish first an energy type equality.
Lemma 3 For any $T>0$ and all $0 \leq t \leq T E^{0}(t)$ satisfies

$$
\begin{align*}
E^{0}(T)+G_{t}^{T}(z)+R_{t}^{T}(u)+ & \int_{t}^{T}\|\nabla \theta\|^{2} d \tau \\
& =E^{0}(t)-\int_{t}^{T}\left(\mathcal{F}_{1}(z), z_{t}\right) d \tau-\int_{t}^{T}\left(\mathcal{F}_{2}(u), u_{t}\right) d \tau \tag{63}
\end{align*}
$$

where $G_{t}^{T}(z)$ and $R_{t}^{T}(u)$ are given by (56), (58) while $\mathcal{F}_{1}(z)$ and $\mathcal{F}_{2}(u)$ are defined by (61).

Proof. It is easy to see that the differences (54) satisfy the following system of coupled equations

$$
\begin{align*}
& z_{t t}+G\left(z_{t}+\zeta_{t}\right)-G\left(\zeta_{t}\right)+L z+\mathcal{F}_{1}(z)-\kappa L N_{0} u_{t}=0, x \in \Omega, t>0, \tag{64}\\
& D u_{t t}+A u+R_{1} \theta+B\left(u_{t}+\omega_{t}\right)-B\left(\omega_{t}\right)+\mathcal{F}_{2}(u)+\kappa N_{0}^{*} L z_{t}=0 \tag{65}\\
& \theta_{t}-\Delta \theta+R_{2} u_{t}=0 . \tag{66}
\end{align*}
$$

By standard energy methods, taking the inner products in (64)-(66) with z_{t}, u_{t} and θ respectively, we obtain

$$
\begin{equation*}
E_{z}^{0}(T)+G_{t}^{T}(z)=E_{z}^{0}(t)-\int_{t}^{T}\left(\mathcal{F}_{1}(z), z_{t}\right)_{\Omega} d \tau+\kappa \int_{t}^{T}\left(L N_{0} u_{t}, z_{t}\right)_{\Omega} d \tau, x \in \Omega, t>0 \tag{67}
\end{equation*}
$$

$$
\begin{align*}
E_{u}^{0}(T)+R_{t}^{T}(z)=E_{u}^{0}(t)+ & \int_{t}^{T}\left(R_{1} \theta, u_{t}\right)_{\Gamma_{0}} d \tau \\
& -\int_{t}^{T}\left(\mathcal{F}_{2}(u), u_{t}\right)_{\Gamma_{0}} d \tau+\kappa \int_{t}^{T}\left(N_{0}^{*} L z_{t}, u_{t}\right)_{\Gamma_{0}} d \tau=0 \tag{68}
\end{align*}
$$

$$
\begin{equation*}
E_{\theta}^{0}(T)+\int_{t}^{T}\|\nabla \theta\|_{\Gamma_{0}}^{2} d \tau=E_{\theta}^{0}(t)-\int_{t}^{T}\left(R_{2} u_{t}, \theta\right)_{\Gamma_{0}} d \tau=0 \tag{69}
\end{equation*}
$$

Then, collecting (67)-(69) we readily obtain the statement of the lemma.
Step 2. Reconstruction of the energy integral Multiplying equation (25) by z and integrating between 0 and T we obtain

$$
\begin{align*}
\int_{0}^{T}\left\|L^{1 / 2} z\right\|^{2} & \leq C\left(E_{z}^{0}(T)+E_{z}^{0}(0)\right) \\
& +\int_{0}^{T}\left\|z_{t}\right\|^{2} d t+H_{0}^{T}(z)+\kappa \int_{0}^{T}\left|\left(u_{t}, N_{0}^{*} L z\right)\right| d t+\int_{0}^{T}\left|\left(\mathcal{F}_{1}(z), z\right)\right| d t . \tag{70}
\end{align*}
$$

It follows from (9) that

$$
\begin{equation*}
\left|\left(\mathcal{F}_{1}(z), z\right)\right| \leq C_{R}\left\|L^{1 / 2} z\right\|_{\Omega}\|z\|_{\Omega} . \tag{71}
\end{equation*}
$$

Besides, using well-known interpolation results we get for $0<\delta<1 / 4$

$$
\begin{aligned}
\left|\left(u_{t}, N_{0}^{*} L z\right)\right| \leq\left\|u_{t}\right\|_{\Gamma_{0}}\left\|N_{0}^{*} L^{1 / 2+\delta}\right\| \| L^{1 / 2-\delta} & z \|_{\Omega} \\
& \leq \varepsilon\left\|u_{t}\right\|_{\Gamma_{0}}^{2}+\varepsilon_{1}\left\|L^{1 / 2} z\right\|_{\Omega}^{2}+C_{\varepsilon, \varepsilon_{1}}\|z\|^{2}
\end{aligned}
$$

for any $\varepsilon, \varepsilon_{1}>0$. Then, by appropriately choosing ε and ε_{1} we obtain from (70) and (71) that

$$
\begin{align*}
\int_{0}^{T}\left\|L^{1 / 2} z\right\|^{2} d t \leq C\left(E_{z}^{0}(T)\right. & \left.+E_{z}^{0}(0)\right)+\varepsilon \int_{0}^{T}\left\|u_{t}\right\|^{2} \\
& +2 \int_{0}^{T}\left\|z_{t}\right\|^{2} d t+C_{1} H_{0}^{T}(z)+C_{2}(R, \varepsilon) \int_{0}^{T}\|z\|^{2} d t \tag{72}
\end{align*}
$$

for any $\varepsilon>0$.
After multiplication (26) by u and integration between 0 and T

$$
\begin{align*}
\int_{0}^{T}\left\|A^{1 / 2} u\right\|^{2} \leq C\left(E_{u}^{0}(T)+E_{u}^{0}(0)\right)+ & \int_{0}^{T}\left\|B^{1 / 2} u_{t}\right\|^{2} d t+Q_{0}^{T}(u) \\
& +\int_{0}^{T}\left(\mathcal{F}_{2}(u), u\right) d+\int_{0}^{T}\left(R_{1} \theta, u\right) d t+\kappa \int_{0}^{T}\left(N_{0}^{*} L z_{t}, u\right) d t \tag{73}
\end{align*}
$$

Multiplying equation (27) by $(-\Delta)^{-1} \theta$ and integrating between 0 and T we obtain

$$
\begin{equation*}
\int_{0}^{T}\|\theta\|^{2} \leq C\left(E_{\theta}^{0}(T)+E_{\theta}^{0}(0)\right)+C_{3} \int_{0}^{T}\left\|u_{t}\right\|^{2} d t \tag{74}
\end{equation*}
$$

Combining (73) and (74) we arrive at

$$
\begin{align*}
& \int_{0}^{T}\left\|A^{1 / 2} u\right\|^{2} d t+\int_{0}^{T}\|\theta\|^{2} d t \leq C\left(E_{u}^{0}(T)+E_{u}^{0}(0)+E_{\theta}^{0}(T)+E_{\theta}^{0}(0)\right) \\
& +C_{1}\left(\int_{0}^{T}\|\nabla \theta\|^{2} d t+\int_{0}^{T}\left\|u_{t}\right\|^{2} d t\right)+Q_{0}^{T}(u)+C(R) \int_{0}^{T}\|z\|^{2} d t \\
& +C(R) \int_{0}^{T}\|u\|^{2} d t . \tag{75}
\end{align*}
$$

Collecting (72) and (75) we get

$$
\begin{align*}
\int_{0}^{T} E^{0}(t) d t \leq C\left(E^{0}(T)+E^{0}(0)\right) & +C_{1} \int_{0}^{T}\left(\left\|z_{t}\right\|^{2}+\left\|u_{t}\right\|^{2}+\|\nabla \theta\|^{2}\right) d t+C_{2} H_{0}^{T}(z) \\
& +C_{3} Q_{0}^{T}(u)+C_{4}(R) \int_{0}^{T}\left(\|z\|^{2}+\|v\|^{2}\right) d t, \tag{76}
\end{align*}
$$

where $H_{0}^{T}(z)$ and $Q_{0}^{T}(u)$ are defined in (57) and (59). It follows from energy relation (63) that

$$
\begin{align*}
E^{0}(0)=E^{0}(T)+G_{0}^{T}(z)+R_{0}^{T}(u)+ & \int_{0}^{T}\|\nabla \theta\|^{2} d t \\
& +\int_{0}^{T}\left(\mathcal{F}_{1}(z), z_{t}\right) d t+\int_{0}^{T}\left(\mathcal{F}_{2}(u), u_{t}\right) d t \tag{77}
\end{align*}
$$

and

$$
\begin{equation*}
T E^{0}(T) \leq \int_{0}^{T} E^{0}(t) d t-\int_{0}^{T} \int_{t}^{T}\left(\mathcal{F}_{1}(z), z_{t}\right) d \tau-\int_{0}^{T} \int_{t}^{T}\left(\mathcal{F}_{2}(u), u_{t}\right) d \tau \tag{78}
\end{equation*}
$$

therefore, combining (77) and (78) with (76) we arrive at (55).
To prove the existence of a compact global attractor of the dynamical system (H, S_{t}) we need to show that it is asymptotically smooth. We recall [11] that a
dynamical system $\left(H, S_{t}\right)$ is called asymptotically smooth iff for any bounded set \mathcal{B} in H such that $S_{t} \mathcal{B} \subset \mathcal{B}$ for $t>0$ there exists a compact set \mathcal{K} in the closure $\overline{\mathcal{B}}$ of \mathcal{B}, such that

$$
\lim _{t \rightarrow+\infty} \sup _{y \in \mathcal{B}} \operatorname{dist}_{X}\left\{S_{t} y, \mathcal{K}\right\}=0
$$

In order to establish this property we apply the compactness criterion due to [14]. This result is recorded below in the abstract formulation given and used in [8].

Proposition 2 Let $\left(H, S_{t}\right)$ be a dynamical system on a complete metric space H endowed with a metric d. Assume that for any bounded positively invariant set \mathcal{B} in H and for any $\epsilon>0$ there exists $T=T(\epsilon, \mathcal{B})$ such that

$$
d\left(S_{T} y_{1}, S_{T} y_{2}\right) \leq \epsilon+\Psi_{\epsilon, \mathcal{B}, T}\left(y_{1}, y_{2}\right), \quad y_{i} \in \mathcal{B},
$$

where $\Psi_{\epsilon, \mathcal{B}, T}\left(y_{1}, y_{2}\right)$ is a nonnegative function defined on $\mathcal{B} \times \mathcal{B}$ such that

$$
\begin{equation*}
\liminf _{m \rightarrow \infty} \liminf _{n \rightarrow \infty} \Psi_{\epsilon, \mathcal{B}, T}\left(y_{n}, y_{m}\right)=0 \tag{79}
\end{equation*}
$$

for every sequence $\left\{y_{n}\right\}$ in \mathcal{B}. Then the dynamical system $\left(H, S_{t}\right)$ is asymptotically smooth.

Lemma 4 Let Assumptions 1-3 hold. Then, for any $\epsilon>0$ and $T>1$ there exist constants $C_{\epsilon}(R)$ and $C(R, T)$ such that

$$
\begin{equation*}
E(T) \leq \epsilon+\frac{1}{T}\left[C_{\epsilon}(R)+\Psi_{T}(z, u)\right]+C(R, T) \operatorname{lot}(z, u) \tag{80}
\end{equation*}
$$

where

$$
\operatorname{lot}(z, u)=\sup _{[0, T]}\left[\|z(t)\|_{\Omega}+\|u(t)\|_{\Gamma_{0}}\right]
$$

Proof. To establish (80) we return to inequality (55) and proceed with the estimate of its right hand side. Preliminary we recall inequalities which hold under Assumptions 1 and 3 only (see, e.g. [3]). There exists a constant $C_{0}>0$ and such that

$$
\begin{equation*}
|(G(\zeta+z)-G(\zeta), h)| \leq C_{0}[(G(\zeta), \zeta)+(G(\zeta+z), \zeta+z)]\left\|L^{1 / 2} h\right\|+C_{0}\|h\| \tag{81}
\end{equation*}
$$

for any $\zeta, z, h \in \mathcal{D}\left(L^{1 / 2}\right)$ and

$$
\begin{equation*}
|(B(\omega+u)-B(\omega), l)| \leq C_{0}[(B(\omega), \omega)+(B(\omega+u), \omega+u)]\left\|A^{1 / 2} l\right\|+C_{0}\|l\| \tag{82}
\end{equation*}
$$

for any $\omega, u, l \in \mathcal{D}\left(A^{1 / 2}\right)$.
It follows readily from (81), (82) that

$$
\begin{equation*}
H_{0}^{T}(z) \leq C_{R}+C T l o t(z, u) \tag{83}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{0}^{T}(z) \leq C_{R}+\operatorname{CTlot}(z, u) . \tag{84}
\end{equation*}
$$

Next, using Assumption 2 we get

$$
\begin{equation*}
\int_{0}^{T}\left(\left\|z_{t}\right\|_{\Omega}^{2}+\left\|u_{t}\right\|_{\Gamma_{0}}^{2}+\|\nabla \theta\|_{\Gamma_{0}}^{2}\right) \leq \varepsilon T+C_{\varepsilon}(R) \tag{85}
\end{equation*}
$$

for every $\varepsilon>0$. On the other hand, taking $t=0$ in (63) and using the fact that $E(0) \leq C_{R}$, we get

$$
\begin{align*}
& G_{0}^{T}(z)+R_{0}^{T}(u)+\int_{0}^{T}\|\nabla \theta\|^{2} d t \leq \\
& C_{R}+\left|\int_{0}^{T}\left(\mathcal{F}_{1}(z), z_{t}\right) d \tau\right|+\left|\int_{0}^{T}\left(\mathcal{F}_{1}(u), u_{t}\right) d \tau\right| \tag{86}
\end{align*}
$$

therefore, (80) follows from Lemma 2 and estimates (83)-(86).
Theorem 2 Let Assumptions 1-3 hold. Then the dynamical system $\left(H, S_{t}\right)$ generated by problem (25)-(28) is asymptotically smooth.

Proof. It follows from Lemma 4 that given $\epsilon>0$ there exists $T=T(\epsilon)>1$ such that for initial data $y_{1}, y_{2} \in \mathcal{B}$ we have

$$
\begin{align*}
\left\|S_{T} y_{1}-S_{T} y_{2}\right\|_{H}=\|\left(z(T), z_{t}(T), u(T),\right. & \left.u_{t}(T), \theta(T)\right) \|_{H} \leq \\
& C|E(T)|^{1 / 2} \leq \epsilon+\Psi_{\epsilon, \mathcal{B}, T}\left(y_{1}, y_{2}\right), \tag{87}
\end{align*}
$$

where

$$
\Psi_{\epsilon, \mathcal{B}, T}\left(y_{1}, y_{2}\right)=C_{\epsilon, \mathcal{B}, T}\left\{\Psi_{T}(z, u)+\operatorname{lot}(z, u)\right\}^{1 / 2}
$$

where $\Psi_{T}(z, u)$ is given by (60) and satisfies (79) (see e.g. [3]). Then, by Proposition 1 (87) implies the statement of the theorem.

Our first main result provides the existence of a global attractor for problem.
Theorem 3 Under Assumptions 1-3 the dynamical system $\left(H, S_{t}\right)$ generated by problem (25)-(28) possesses a compact global attractor \mathfrak{A} which coincides with the unstable manifold $M^{u}(\mathcal{N})$ emanating from the set \mathcal{N} of stationary points for S_{t}.

The proof is similar to that given in [3].
Stabilizability estimate. In this section we derive a stabilizability estimate which will play a crucial role in the proofs of both finite-dimensionality and regularity of attractors.

The following lemma can be found in [3].

Lemma 5 Under Assumption 4 the following estimate holds true for some $\delta>0$

$$
\begin{aligned}
& \left|\int_{t}^{T}\left(\mathcal{F}_{1}(z), z_{t}\right) d \tau\right| \leq C_{R, T} \max _{[0, T]}\|z\|_{1-\delta}^{2} \\
& \\
& +\varepsilon \int_{0}^{T}\left\|L^{1 / 2} z\right\|^{2} d \tau+C_{\varepsilon}(R) \int_{0}^{T}\left(\left\|d_{t}(t)\right\|^{2}+\left\|\zeta_{t}(t)\right\|^{2}\right)\left\|L^{1 / 2} z\right\|^{2} d \tau
\end{aligned}
$$

for all $t \in[0, T]$, where $\epsilon>0$ can be taken arbitrarily small. Here, \mathcal{F}_{1} is given by (61).

Now we state the analogue of Lemma 4 for the plate component which follows immediately from Assumption 1.

Lemma 6 Under Assumptions 1 and 4 the following estimate holds true for all $t \in[0, T]$

$$
\begin{equation*}
\left|\int_{t}^{T}\left(\mathcal{F}_{2}(u), u_{t}\right) d \tau\right| \leq C_{R} \max _{[0, T]}\|u\|^{2}+\varepsilon \int_{0}^{T}\left(\left\|\mathcal{A}^{1 / 2} u\right\|^{2}+\left\|u_{t}\right\|^{2}\right) d \tau \tag{88}
\end{equation*}
$$

where $\varepsilon>0$ can be taken arbitrarily small. Here, \mathcal{F}_{2} is given by (61).
Now we are in position to estimate $\Psi_{T}(z, u)$ defined in (60).
Lemma 7 For any $\varepsilon>0$ the following estimate holds true

$$
\Psi_{T}(z, u) \leq \epsilon \int_{0}^{T} E^{0}(t) d t+C(T, R) \Sigma_{T}(z, u)
$$

with $\Sigma_{T}(z, u)$ given by

$$
\begin{align*}
\Sigma_{T}(z, u)=C \max _{[0, T]}\left(\|u\|_{1-\delta}^{2}+\|z\|_{1-\delta}^{2}\right)+ & \int_{0}^{T} G_{d, \zeta}(\tau)\left\|L^{1 / 2} z\right\|^{2} d \tau \\
& +\int_{0}^{T} B_{\omega, \nu}(\tau)\left\|A^{1 / 2} u\right\|^{2} d \tau \tag{89}
\end{align*}
$$

here $G_{d, \zeta}$ is given by

$$
\begin{equation*}
G_{d, \zeta}=m^{-1}\left[(G(d(t)), d(t))_{\Omega}+(G(\zeta(t)), \zeta(t))_{\Omega}\right] \tag{90}
\end{equation*}
$$

Proof. It follows by the lower bound in (17) that $m s^{2} \leq s g(s)$, where $i=1,2$ and thus

$$
\left\|d_{t}(t)\right\|_{\Omega}^{2}+\left\|\zeta_{t}(t)\right\|_{\Omega}^{2} \leq G_{d, \zeta}, \quad\left\|\omega_{t}(t)\right\|_{\Gamma_{0}}^{2}+\left\|\nu_{t}(t)\right\|_{\Gamma_{0}}^{2} \leq B_{\omega, \nu}
$$

Therefore, using Lemma 5 and Lemma 6 and the elementary inequality $\|\xi\| \leq$ $\epsilon+(4 \epsilon)^{-1}\|\xi\|^{2}$, valid for arbitrary small $\epsilon>0$, we obtain the statement of the lemma.

To proceed we need the following assertion
Lemma 8 For any $T \geq T_{0}>0$ the following estimate holds true:

$$
\begin{align*}
T E^{0}(T)+\int_{0}^{T} E^{0}(t) d t \leq C\left[G_{0}^{T}(z)+\right. & R_{0}^{T}(u) \\
& \left.+\int_{0}^{T}\|\nabla \theta\|^{2} d \tau\right]+C_{2}(T, R) \Sigma_{T}(z, u) \tag{91}
\end{align*}
$$

where $\Sigma_{T}(z, u)$ is the same as in (89).
Proof. It follows from Assumption 4 [7] that for every $\epsilon>0$ there exists $C_{\epsilon}>0$ such that

$$
\begin{align*}
|G(\zeta+z)-G(\zeta), l| \leq C_{\epsilon}(& G(\zeta+z)-G(\zeta), z) \\
& +\epsilon(1+(G(\zeta), \zeta)+(G(\zeta+z), \zeta+z))\left\|L^{1 / 2} l\right\|^{2} \tag{92}
\end{align*}
$$

for any $\zeta, z, l \in \mathcal{D}\left(L^{1 / 2}\right)$ and

$$
\begin{align*}
|B(\omega+u)-B(\omega), l| \leq & C_{\epsilon}(B(\omega+u)-B(\omega), u) \\
& +\epsilon(1+(B(\omega), \omega)+(B(\omega+u), \omega+u))\left\|A^{1 / 2} l\right\|^{2} \tag{93}
\end{align*}
$$

for any $\zeta, z, l \in \mathcal{D}\left(A^{1 / 2}\right)$.
Owing to estimates (92) and (93) it is immediately seen that

$$
H_{0}^{T}(z) \leq C_{\epsilon} G_{0}^{T}(z)+\epsilon \int_{0}^{T} E^{0}(t) d t+\epsilon m \int_{0}^{T} G_{d, \zeta}(\tau)\left\|L^{1 / 2} z\right\|^{2} d \tau
$$

and

$$
Q_{0}^{T}(z) \leq C_{\epsilon} R_{0}^{T}(z)+\epsilon \int_{0}^{T} E^{0}(t) d t+\epsilon m \int_{0}^{T} B_{\omega, \nu}(\tau)\left\|A^{1 / 2} u\right\|^{2} d \tau
$$

where

$$
\begin{equation*}
B_{\omega, \nu}=\min \left\{m_{1}, m_{2}\right\}^{-1}\left[(B(\omega(t)), \omega(t))_{\Gamma_{0}}+(B(\nu(t)), \nu(t))_{\Gamma_{0}}\right] . \tag{94}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
H_{0}^{T}(z)+Q_{0}^{T}(z) \leq \epsilon \int_{0}^{T} E^{0}(t) d t+C_{\epsilon}\left[R_{0}^{T}(z)+G_{0}^{T}(z)+\Sigma_{T}(z, u)\right] \tag{95}
\end{equation*}
$$

Notice that by the lower bounds in (17), (18), (20) we have

$$
\begin{equation*}
\int_{0}^{T}\left\|z_{t}\right\|^{2} d t \leq \frac{1}{m} G_{0}^{T}(z), \quad \int_{0}^{T}\left\|u_{t}\right\|^{2} d t \leq \frac{1}{\min \left\{m_{1}, m_{2}\right\}} R_{0}^{T}(u) \tag{96}
\end{equation*}
$$

Now we apply estimates (95), (96) and Lemma 7 to the basic inequality in Lemma 2. Choosing ε sufficiently small we obtain the statement of the lemma.

Now we are in position to prove the stabilizability inequality for the dynamical system $\left(H, S_{t}\right)$.

Theorem 4 Let Assumptions 1-4 hold. Then there exist positive constants C_{1}, C_{2} and ω depending on R such that for any $y_{1}, y_{2} \in W_{R}$ the following estimate holds true for any $\delta<1$ and independent of κ, β, μ :

$$
\begin{equation*}
\left\|S_{t} y_{1}-S_{t} y_{2}\right\|_{H}^{2} \leq C_{1} e^{-\omega t}\left\|y_{1}-y_{2}\right\|_{H}^{2}+C_{2} \max _{[0, t]}\left(\|z(\tau)\|_{1-\delta}^{2}+\|u(\tau)\|_{1-\delta}^{2}\right) \tag{97}
\end{equation*}
$$

Above we have used the notation

$$
S_{t} y_{1}=\left(d(t), d_{t}(t), \omega(t), \omega_{t}(t), \psi(t)\right), \quad S_{t} y_{1}=\left(\zeta(t), \zeta_{t}(t), \nu(t), \nu_{t}(t), \phi(t)\right)
$$

Proof. Using inequality (63) and Lemma 8 we obtain that

$$
G_{0}^{T}(z)+R_{0}^{T}(z)+\int_{0}^{T}\|\nabla \theta\|^{2} d \tau \leq E^{0}(0)-E^{0}(T)+\epsilon \int_{0}^{T} E^{0}(\tau) d \tau+C(T, R) \Sigma_{T}(z, u)
$$

for any $\epsilon>0$. Combining this estimate with (91) we get that there exists $T>1$ such that

$$
\begin{equation*}
E^{0}(T) \leq q E^{0}(0)+C_{R, T} \Sigma_{T}(z, u), \quad 0<q \equiv q(T, R)<1 . \tag{98}
\end{equation*}
$$

Applying the procedure described in [4] we get from (98) that there exists $\omega>0$ such that

$$
\begin{aligned}
& E^{0}(t) \leq C_{1} e^{-\omega t} E^{0}(0) \\
& \\
& \quad+C_{2}\left[\int_{0}^{t} e^{-\omega(t-\tau)}\left[D_{h, \zeta}(\tau)+B_{\omega, \nu}(\tau)+\|\nabla \theta\|^{2}\right] E^{0}(\tau) d \tau+\operatorname{lot}_{t}(z, u)\right]
\end{aligned}
$$

for all $t \geq 0$. Therefore, by the Gronwall's lemma we get

$$
\begin{aligned}
& E^{0}(t) \leq\left[C_{1} e^{-\omega t} E^{0}(0)+C_{2} l o t_{t}(z, u)\right] e^{\int_{0}^{t} e^{-\omega(t-\tau)}\left[D_{h, \zeta}(\tau)+B_{\omega, \nu}(\tau)+\|\nabla \theta\|^{2}\right] d \tau} \\
& \leq C_{1} e^{-\omega t} E^{0}(0)+C_{2} l o t_{t}(z, u)
\end{aligned}
$$

The above estimate and (62) yield estimate (97).
Properties of attractor. In this Subsection we establish the properties of the attractor to problem (25)-(28), namely, the finite dimensionality, boundedness in the higher-order spaces and upper-semicontinuity with respect to the parameters μ, β, κ.

Theorem 5 Let Assumptions 1-4 hold. Then the attractor \mathfrak{A} has a finite fractal dimension.

The proof is similar to that given in [3].
Theorem 6 The attractor \mathfrak{A} is a bounded set in the space

$$
H_{*}=W_{6 / p}^{2}(\Omega) \times \mathcal{D}\left(L^{1 / 2}\right) \times \mathcal{D}(A) \times \mathcal{D}\left(A^{1 / 2}\right) \times \mathcal{D}(-\Delta)
$$

for $3<p \leq 5$ and in the space

$$
H_{* *}=H^{2}(\Omega) \times \mathcal{D}\left(L^{1 / 2}\right) \times \mathcal{D}(A) \times \mathcal{D}\left(A^{1 / 2}\right) \times \mathcal{D}(-\Delta)
$$

in the other cases. Moreover,

$$
\begin{gather*}
\sup _{t \in \mathbb{R}}\left\{\|z\|_{W_{6 / p}^{2}(\Omega)}^{2}+\left\|z_{t}\right\|_{H^{1}(\Omega)}^{2}+\left\|z_{t t}\right\|^{2}\right\} \leq C \tag{99}\\
\sup _{t \in \mathbb{R}}\left\{\left\|v_{t t}\right\|^{2}+\left\|w_{t t}\right\|^{2}+\left\|v_{t}\right\|_{\left[H_{0}^{1}(\Omega)\right]^{2}}^{2}+\left\|\theta_{t}\right\|^{2}\right\} \leq C, \tag{100}\\
\sup _{t \in \mathbb{R}}\left\|w_{t}\right\|_{H_{0}^{1}(\Omega)}^{2} \leq C, \tag{101}\\
\sup _{t \in \mathbb{R}}\|\theta\|_{H^{2} \cap H_{0}^{1}(\Omega)} \leq C, \tag{102}\\
\sup _{t \in \mathbb{R}}\|w\|_{H^{2} \cap H_{0}^{1}(\Omega)} \leq C, \tag{103}\\
\sup _{t \in \mathbb{R}}\|v+\nabla w\| \leq \frac{1}{\sqrt{\mu}} C \tag{104}\\
\sup _{t \in \mathbb{R}}\left\|v_{t}+\nabla w_{t}\right\| \leq \frac{1}{\sqrt{\mu}} C, \tag{105}
\end{gather*}
$$

where C does not depend on κ, μ, and β.
Proof. Estimate (104) follows readily from the uniform, with respect to κ and μ, boundedness of the attractor in H. Let $\left\{y(t)=\left(z(t), z_{t}(t), u(t), u_{t}(t), \theta(t)\right)\right\} \in H$
be a full trajectory from the attractor \mathfrak{A}. Let $|\sigma| \leq 1$. Applying Theorem 4 with $y_{1}=y(s+\sigma), y_{2}=y(s)$ for the interval $[s, t]$ in place of $[0, t]$ we obtain

$$
\begin{aligned}
\|y(t+\sigma)-y(t)\|_{H}^{2} & \leq C_{1} e^{-\omega(t-s)}\|y(s+\sigma)-y(s)\|_{H}^{2} \\
& +C_{2} \max _{\tau \in[s, t]}\left(\|z(\tau+\sigma)-z(\tau)\|_{1-\delta}^{2}+\|u(\tau+\sigma)-u(\tau)\|_{1-\delta}^{2}\right)
\end{aligned}
$$

for any $t, s \in \mathbb{R}$ such that $s \leq t$ and $|\sigma| \leq 1$. Letting $s \rightarrow-\infty$ gives

$$
\begin{align*}
\|y(t+\sigma)-y(t)\|_{H}^{2} \leq C_{2} \max _{\tau \in[-\infty, t]}\left(\|z(\tau+\sigma)-z(\tau)\|_{1-\delta}^{2}\right. & \\
& \left.+\|u(\tau+\sigma)-u(\tau)\|_{1-\delta}^{2}\right) \tag{106}
\end{align*}
$$

By interpolation we get

$$
\begin{align*}
\|z(\tau+\sigma)-z(\tau)\|_{1-\delta}^{2}+ & \|u(\tau+\sigma)-u(\tau)\|_{1-\delta}^{2} \leq \varepsilon\|y(t+\sigma)-y(t)\|_{H}^{2} \\
& +C_{\varepsilon}\left(\|z(\tau+\sigma)-z(\tau)\|^{2}+\|u(\tau+\sigma)-u(\tau)\|^{2}\right) \tag{107}
\end{align*}
$$

for every $\varepsilon>0$. Therefore we obtain from (106) and (107)

$$
\left.\left.\begin{array}{rl}
\max _{\tau \in[-\infty, t]}\|y(t+\sigma)-y(t)\|_{H}^{2} \leq C & \max _{\tau \in[-\infty, t]}(\| z(\tau+\sigma)
\end{array}\right)-z(\tau) \|^{2}\right)
$$

for any $t \in \mathbb{R}$ and $|\sigma|<1$. On the attractor we have

$$
\frac{1}{\sigma}\|z(\tau+\sigma)-z(t)\| \leq \frac{1}{\sigma} \int_{0}^{\sigma}\left\|z_{t}(\tau+t)\right\| d \tau \leq C, \quad t \in \mathbb{R}
$$

and

$$
\frac{1}{\sigma}\|u(\tau+\sigma)-u(t)\| \leq \frac{1}{\sigma} \int_{0}^{\sigma}\left\|u_{t}(\tau+t)\right\| d \tau \leq C, \quad t \in \mathbb{R}
$$

which gives with (108)

$$
\max _{\tau \in \mathbb{R}}\left\|\frac{y(\tau+\sigma)-y(\tau)}{\sigma}\right\|_{H}^{2} \leq C \text { for }|\sigma|<1
$$

This implies

$$
\begin{equation*}
\left\|z_{t t}\right\|^{2}+\left\|L^{1 / 2} z_{t}\right\|^{2}+\left\|u_{t t}\right\|^{2}+\left\|A^{1 / 2} u_{t}\right\|^{2}+\left\|\theta_{t}\right\|^{2} \leq C \tag{109}
\end{equation*}
$$

and (105).
It follows readily from (5) that

$$
\|\Delta \theta(t)\| \leq C\left(\left\|u_{t}\right\|_{H^{1}\left(\Gamma_{0}\right)}+\left\|\theta_{t}\right\|\right) \leq C
$$

and from (4) that

$$
\|\Delta w\| \leq C\left(\frac{1}{\mu}+\|v\|_{H^{1}\left(\Gamma_{0}\right)}\right) \leq C
$$

which implies (102) and (103). From (3) and (4) we conclude

$$
\begin{equation*}
\|\mathcal{A} u\| \leq C(\mu) \tag{110}
\end{equation*}
$$

In case $1 \leq p \leq 3$ we have for the wave component

$$
\left\|g\left(z_{t}\right)\right\| \leq C\left(1+\left\|z_{t}\right\|_{L_{2 p}(\Omega)}^{2}\right) \leq C\left(1+\left\|z_{t}\right\|_{1}^{2}\right)
$$

Therefore $z(t)$ solves the problem

$$
\begin{equation*}
(-\Delta+\lambda) z=h_{1}(t) \text { in } \Omega, \frac{\partial z}{\partial n}=h_{2}(t) \text { on } \Gamma \tag{111}
\end{equation*}
$$

where $h_{1}(t) \in L_{\infty}\left(\mathbb{R}, L_{2}(\Omega)\right)$ and $h_{2}(t) \in L_{\infty}\left(\mathbb{R}, H^{s}(\Omega)\right)$ for any $s<3 / 2$. By the elliptic regularity theory we conclude that $z(t)$ is a bounded function with values in $H^{2}(\Omega)$.

In case $3<p \leq 5$ we have that $g\left(z_{t}\right)$ is bounded in $L_{6 / p}(\Omega)$ and therefore, z solves (111) with $h_{1}(t) \in L_{\infty}\left(\mathbb{R}, L_{6 / p}(\Omega)\right)$. The elliptic regularity theory gives that $z(t)$ is a bounded function with values in $W_{6 / p}^{2}(\Omega)$, which implies together with (109) estimate (99).

Estimate (110) gives the boundedness of the component v in $H^{1} \cap H_{0}^{1}\left(\Gamma_{0}\right)$ on the attractor for every $\mu>1$, but not uniformly.

The following result is a corollary of Theorems 3, 5, 6 .
Theorem 7 Let f and g satisfy the conditions in Assumptions 1 and 2. Then the dynamical system $\left(H_{1}, S_{t}^{1}\right)$ generated by the problem

$$
\begin{gather*}
z_{t t}+g\left(z_{t}\right)-\Delta z+f(z)=0 \text { in } \Omega \times(0, T) \\
\frac{\partial z}{\partial n}=0 \text { on } \Gamma \times(0, T) \tag{112}
\end{gather*}
$$

possesses a compact global attractor $\mathfrak{A}_{1} \equiv M^{u}\left(\mathcal{N}_{1}\right)$, where \mathcal{N}_{1} is the set of equilibria for (112). If f and g satisfy Assumption 4, then the attractor \mathfrak{A}_{1} has a finite fractal dimension and \mathfrak{A}_{1} is a bounded set in the space $W_{6 / p}^{2}(\Omega) \times \mathcal{D}\left(L^{1 / 2}\right)$ in case $3<p \leq 5$, and in the space $\mathcal{D}(L) \times \mathcal{D}\left(L^{1 / 2}\right)$ in other cases.

Arguing as in [10] one can obtain the following result on the existence of attractor.
Theorem 8 Let $b_{i}, i=1,2, h$, and h_{0} satisfy the conditions in Assumptions 1 3 and $H_{2}=H_{0}^{2}\left(\Gamma_{0}\right) \times H_{0}^{1}\left(\Gamma_{0}\right)$. Then the dynamical system $\left(H_{2}, S_{t}^{2}\right)$ generated by the problem

$$
\begin{gather*}
(1-\Delta) w_{t t}+\operatorname{divb}\left(-\nabla w_{t}\right)+b_{0}\left(w_{t}\right)+\Delta^{2} w-\operatorname{div}\left[h\left(|\nabla w|^{2}\right) \nabla w\right]+h_{0}(w)=0 \\
w(x, t)=0, \quad \nabla w(x, t)=0 \quad x \in \partial \Gamma_{0}, \quad t>0 \tag{113}
\end{gather*}
$$

possesses a compact global attractor $\mathfrak{A}_{2} \equiv M^{u}\left(\mathcal{N}_{2}\right)$, where \mathcal{N}_{2} is the set of equilibria for (113). If $f, h, h_{0}, b_{i}, i=1,2$ satisfy additionally Assumption 4, then the attractor \mathfrak{A}_{2} has a finite fractal dimension.

Our last main result consists in the upper-semicontinuity of the family of attractors of problem (25)-(28) with respect to the parameters μ, κ, β.

Theorem 9 Let Assumptions 1-4 hold. Denote by $S_{t}^{\mu, \kappa, \beta}$ the evolution operator of problem (25)-(28) in the space

$$
H_{\mu}=H=\left(L^{1 / 2}\right) \times L^{2}(\Omega) \times \mathcal{D}\left(A^{1 / 2}\right) \times L^{2}\left(\Gamma_{0}\right) \times H^{1}\left(\Gamma_{0}\right) .
$$

Let $\mathfrak{A}^{\mu, \kappa, \beta}$ be a global attractor for the system $\left(S_{t}^{\mu, \kappa, \beta}, H_{\mu}\right)$. Then the family of the attractors $\mathfrak{A}^{\mu, \kappa, \beta}$ is upper semi-continuous on $\Lambda=[1, \infty) \times[0,1] \times[0,1]$. Namely, we have that

$$
\begin{equation*}
\lim _{(\mu, \kappa, \beta) \rightarrow(\infty, 0,0)} \sup _{y \in \mathfrak{A} \mu, \kappa, \beta}\left\{\operatorname{dist}_{H^{\delta_{1}, \delta_{2}}}\left(y, \mathfrak{A}_{1} \times \mathfrak{A}_{2} \times 0\right)\right\}=0, \tag{114}
\end{equation*}
$$

where

$$
H^{\delta_{1}, \delta_{2}}=\left(L^{1 / 2-\delta_{1}}\right) \times L^{2}(\Omega) \times\left[\left[H^{1-\delta_{2}}\left(\Gamma_{0}\right)\right]^{2} \times H^{1}\left(\Gamma_{0}\right)\right] \times L^{2}\left(\Gamma_{0}\right) \times L^{2}\left(\Gamma_{0}\right)
$$

Here $\delta_{2}>0, \delta_{1} \geq 0$ in case $p<5$ and $\delta_{1}>0$ in case $p=1$.
Proof. We base the proof on the idea presented in [12]. Assume that the statement of the theorem is not true. Then there exists a sequence $\left\{\left(\mu^{n}, \kappa^{n}, \beta^{n}\right\} \rightarrow(\infty, 0)\right.$ such that $\mu^{n} \geq \mu_{\infty}, \kappa^{n} \leq \kappa_{0}, \beta^{n} \leq \beta_{0}$ and for any $n \in \mathbb{N}$ and a sequence $y^{n} \in \mathfrak{A}_{\mu^{n}, \kappa^{n}, \beta^{n}}$ such that

$$
\begin{equation*}
\operatorname{dist}_{H^{\delta_{1}, \delta_{2}}}\left(y, \mathfrak{A}_{1} \times \mathfrak{A}_{2} \times 0\right) \geq \varepsilon, \quad n=1,2, \ldots \tag{115}
\end{equation*}
$$

for some $\varepsilon>0$. Let $y^{n}(t)=\left\{z^{n}(t), z_{t}^{n}(t), u^{n}(t), u_{t}^{n}(t), \theta^{n}(t)\right\}$ be a full trajectory in $\mathfrak{A}_{\mu^{n}, \kappa^{n}, \beta^{n}}$ passing through $y^{n}\left(y^{n}(0)=y^{n}\right)$. The functions y^{n} satisfy equations (25)-(28). It follows from (100), (101), (103) that the sequence $\left\{z^{n}(t), w^{n}(t), \theta^{n}(t)\right\}$ is uniformly with respect to n bounded in the space

$$
\begin{aligned}
\mathfrak{C}_{1}= & \left(C_{\text {bnd }}\left(\mathbb{R} ; W_{6 / p}^{2}(\Omega)\right) \cap C_{b n d}^{1}\left(\mathbb{R} ; \mathcal{D}\left(L^{1} / 2\right)\right) \cap C_{\text {bnd }}^{2}\left(\mathbb{R} ; L^{2}(\Omega)\right)\right) \\
& \times\left(C_{\text {bnd }}\left(\mathbb{R} ;\left(H^{2} \cap H_{0}^{1}\right)\left(\Gamma_{0}\right)\right) \cap C_{\text {bnd }}^{1}\left(\mathbb{R} ; H_{0}^{1}\left(\Gamma_{0}\right)\right) \cap C_{b n d}^{2}\left(\mathbb{R} ; L^{2}\left(\Gamma_{0}\right)\right)\right) \times \\
& \left(C_{b n d}\left(\mathbb{R} ; H^{2} \cap H_{0}^{1}(\Omega)\right) \cap C_{\text {bnd }}^{1}\left(\mathbb{R} ; L^{2}(\Omega)\right)\right) .
\end{aligned}
$$

Hence, by Aubin's compactness theorem [25] $\left\{z^{n}(t), w^{n}(t), \theta^{n}(t)\right\}$ is a compact sequence in the space

$$
\begin{aligned}
\mathcal{W}_{1}=\left(C\left([-T, T] ;\left(L^{1 / 2-\delta_{1}}\right)\right) \cap C^{1}\left([-T, T] ; L^{2}(\Omega)\right)\right) & \\
\qquad & \times\left(C\left([-T, T] ; H_{0}^{1}\left(\Gamma_{0}\right)\right) \cap C^{1}\left([-T, T] ; L^{2}\left(\Gamma_{0}\right)\right)\right) \\
& \times C\left([-T, T] ; H^{1}\left(\Gamma_{0}\right)\right)
\end{aligned}
$$

for every $T>0$. Estimate (100) yields that the sequence $\left\{v^{n}\right\}$ is uniformly with respect to n bounded in the space

$$
\mathfrak{C}_{2}=\left(C_{b n d}\left(\mathbb{R} ;\left[H_{0}^{1}(\Omega)\right]^{2}\right) \cap C_{b n d}^{1}\left(\mathbb{R} ;\left[H_{0}^{1}(\Omega)\right]^{2}\right) \cap C_{b n d}^{2}\left(\mathbb{R} ;\left[L^{2}(\Omega)\right]^{2}\right) .\right.
$$

Thus, we deduce that there exists a function $\{\mathbf{z}(t), \mathbf{w}(t), \Theta(t)\} \in \mathfrak{C}_{1}$ such that

$$
\begin{align*}
& \lim _{k \rightarrow \infty} \max _{[-T, T]}\left\{\left\|z^{n_{k}}(t)-\mathbf{z}(t)\right\|_{\mathcal{D}\left(L^{1 / 2-\delta_{1}}\right)}^{2}+\left\|z_{t}^{n_{k}}(t)-\mathbf{z}_{t}(t)\right\|_{L^{2}(\Omega)}^{2}\right. \\
& +\left\|w^{n_{k}}(t)-\mathbf{w}(t)\right\|_{H_{0}^{1}\left(\Gamma_{0}\right)}^{2}+\left\|w_{t}^{n_{k}}(t)-\mathbf{w}_{t}(t)\right\|_{L^{2}\left(\Gamma_{0}\right)}^{2} \\
& \quad+\left\|\theta^{n_{k}}(t)-\Theta(t)\right\|_{H_{0}^{1}\left(\Gamma_{0}\right)}^{2}=0 \tag{116}
\end{align*}
$$

for any $\delta_{1}>0$ in case $p<5$ and $\delta_{1} \geq 0$. Analogously, the sequence $\left\{v^{n}\right\}$ is compact in the space $C\left([-T, T] ;\left[H_{0}^{1-\delta_{2}}(\Omega)\right]^{2}\right) \cap C^{1}\left([-T, T] ;\left[L^{2}\left(\Gamma_{0}\right)\right]^{2}\right)$. Moreover, by (104), (105) we get that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \max _{[-T, T]}\left\{\left\|v^{n_{k}}+\nabla \mathbf{w}\right\|_{\left[H_{0}^{1-\delta_{2}}\left(\Gamma_{0}\right)\right]^{2}}+\left\|v_{t}^{n_{k}}+\nabla \mathbf{w}_{t}\right\|_{\left[L^{2}\left(\Gamma_{0}\right)\right]^{2}}\right\}=0 \tag{117}
\end{equation*}
$$

for every $T>0$. By the trace theorem we infer from (117) that

$$
\lim _{k \rightarrow \infty}\left\|v^{n_{k}}+\nabla \mathbf{w}\right\|_{\left[L^{2}\left(\partial \Gamma_{0}\right)\right]^{2}}=0
$$

therefore,

$$
\left.\nabla \mathbf{w}\right|_{\partial \Gamma_{0}}=0 .
$$

We can choose functions ϕ, ψ and χ in (48)-(50) of the following form: $\psi(t)=$ $\left(-\partial_{x_{1}} l,-\partial_{x_{2}} l, l\right) \cdot p(t)$ and $\chi(t)=\chi \cdot p(t)$, where $\phi \in\left(L^{1 / 2}\right), l \in H_{0}^{2}(\Omega), \chi \in H_{0}^{1}(\Omega)$ and $p(t)$ is a scalar continuously differentiable function such that $p(T)=0$. It is easy to see that

$$
\begin{gather*}
\left(\mathcal{A} u^{n_{k}}, \psi\right)=\left[-\nu\left(\operatorname{div} v^{n_{k}}, \Delta l\right)-(1-\nu) \int_{\Omega}\left[\partial_{x_{1}} v_{1}^{n_{k}} \cdot \partial_{x_{1}}^{2} l+\partial_{x_{2}} v_{2}^{n_{k}} \cdot \partial_{x_{2}}^{2} l\right.\right. \tag{118}\\
\left.\left.+\left(\partial_{x_{1}} v_{2}^{n_{k}}+\partial_{x_{2}} v_{1}^{n_{k}}\right) \partial_{x_{1} x_{2}} l\right] d x\right] p(t) .
\end{gather*}
$$

Therefore, passing to the limit $k \rightarrow \infty$ we get

$$
\lim _{k \rightarrow \infty} \int_{0}^{T}\left(\mathcal{A} u^{n_{k}}, \psi\right) d t=\int_{0}^{T}(\Delta \mathbf{w}, \Delta l) p(t) d t
$$

By Assumptions 1, 2, 3 we pass to the limit in the nonlinear terms. Observing (116) and (118) we get

$$
\begin{array}{r}
-\int_{0}^{T}\left(\mathbf{z}_{t}, \phi^{\prime}(t)\right) d t+\int_{0}^{T}\left(L^{1 / 2} \mathbf{z}, L^{1 / 2} \phi\right) d t+\int_{0}^{T}\left(g\left(\mathbf{z}_{t}\right), \phi\right) d t+\int_{0}^{T}(f(\mathbf{z}), \phi) d t \\
=\left(z_{1}, \phi(0)\right) \tag{119}
\end{array}
$$

$$
\begin{align*}
-\int_{0}^{T}\left(\mathbf{w}_{t}, l\right) p^{\prime}(t) d t- & \int_{0}^{T}\left(\nabla \mathbf{w}_{t}, \nabla l\right) p^{\prime}(t) d t+\int_{0}^{T}(K \mathbf{w}, K h) p(t) d t \\
& +\int_{0}^{T}\left(\operatorname{div} b\left(\nabla \mathbf{w}_{t}\right)+b_{0}\left(\mathbf{w}_{t}\right), l\right) p(t) d t \\
& +\int_{0}^{T}\left(\operatorname{div}\left[l\left(|\nabla \mathbf{w}|^{2}\right) \nabla \mathbf{w}\right], l\right) p(t) d t=\left(w_{1}, l\right) p(0)+\left(\nabla w_{1}, \nabla l\right) p(0) \tag{120}\\
& -\int_{0}^{T}(\Theta, \tau) p^{\prime}(t) d t+\int_{0}^{T}(\nabla \Theta, \nabla \tau) p(t) d t=\left(\theta_{0}, \tau\right) p(0) \tag{121}
\end{align*}
$$

where $K: H_{0}^{2}\left(\Gamma_{0}\right) \rightarrow L^{2}\left(\Gamma_{0}\right)$ such that $K^{2}=\Delta^{2}: H^{4} \cap H_{0}^{2}\left(\Gamma_{0}\right) \rightarrow L^{2}\left(\Gamma_{0}\right)$.
One can deduce from (119)-(121) that $\mathbf{z}(t), \mathbf{w}(t)$ are weak solutions to problems (112) and (113) possessing the properties

$$
\begin{gathered}
\sup _{t \in \mathbb{R}}\left\{\|\mathbf{z}(t)\|_{\mathcal{D}\left(L^{1 / 2}\right)}^{2}+\left\|\mathbf{z}_{t}(t)\right\|_{L^{2}(\Omega)}^{2}\right\} \leq C \\
\sup _{t \in \mathbb{R}}\left\{\|\mathbf{w}(t)\|_{H^{2} \cap H_{0}^{1}\left(\Gamma_{0}\right)}^{2}+\left\|\mathbf{w}_{t}(t)\right\|_{H_{0}^{1}\left(\Gamma_{0}\right)}^{2}+\|\Theta(t)\|_{L^{2}\left(\Gamma_{0}\right)}^{2}\right\} \leq C
\end{gathered}
$$

and

$$
\left.\nabla \mathbf{w}\right|_{\partial \Gamma_{0}}=0
$$

Consequently, $\left\{\mathbf{z}(t), \mathbf{z}_{t}(t)\right\}$ and $\left\{\mathbf{w}(t), \mathbf{w}_{t}(t)\right\}$ are full trajectories to (112) and (113) which belong to the attractor \mathfrak{A}^{1} and \mathfrak{A}^{2}. The function $\Theta(t)$ is a full trajectory to the problem

$$
\begin{gathered}
\Theta_{t}+\Delta \Theta=0, \quad x \in \Gamma_{0}, t>0 \\
\Theta=0, \quad x \in \partial \Gamma_{0}
\end{gathered}
$$

which is exponentially stable. Consequently, $\Theta \equiv 0$. Thus, it follows from (116) and (117) that

$$
\begin{gathered}
\lim _{n_{k} \rightarrow 0}\left\{\left\|v^{n_{k}}(0)+\nabla \mathbf{w}(0)\right\|_{\left[H_{0}^{1-\delta_{2}}\left(\Gamma_{0}\right)\right]^{2}}^{2}+\left\|w^{n_{k}}(0)-\mathbf{w}(0)\right\|_{H_{0}^{1}\left(\Gamma_{0}\right)}^{2}\right. \\
+\left\|v_{t}^{n_{k}}(0)+\nabla \mathbf{w}_{t}(0)\right\|_{\left[L^{2}\left(\Gamma_{0}\right)\right]^{2}}^{2}+\left\|w_{t}^{n_{k}}(0)-\mathbf{w}_{t}(0)\right\|_{L^{2}\left(\Gamma_{0}\right)}^{2} \\
\left.+\left\|\theta^{n_{k}}(0)\right\|_{H_{0}^{1}\left(\Gamma_{0}\right)}^{2}\right\}=0
\end{gathered}
$$

and

$$
\lim _{n_{k} \rightarrow 0}\left\{\left\|z^{n_{k}}(0)+\mathbf{z}(0)\right\|_{\mathcal{D}\left(L^{1 / 2-\delta_{1}}\right)}^{2}+\left\|z_{t}^{n_{k}}(0)-\mathbf{z}_{t}(0)\right\|_{L^{2}(\Omega)}^{2}\right\}=0
$$

and we obtain a contradiction to (115). Consequently, (114) holds true.

System with non-conservative forces $(\gamma \neq 0)$.
Consider now system (1)-(7) with $\gamma \neq 0$. This case corresponds to the nonconservative nonlinearity and non-monotone energy.

Note that Assumption 1 with $h^{*} h_{0}^{*}>2 \gamma^{2}$ guarantees that there exist a positive constant C_{0} such that

$$
H(r)=C_{0}+\frac{1}{2} \int_{0}^{r} h(\xi) d \xi \geq 0, \quad r \in \mathbb{R}_{+}, \quad H_{0}(s)=C_{0}+\frac{1}{2} \int_{0}^{s} h_{0}(\xi) d \xi \geq 0, \quad s \in \mathbb{R}
$$

Moreover, there exist positive constants C, C_{1} and C_{2} such that

$$
\begin{equation*}
\gamma r s+H(r)+H_{0}(s)+C \geq 0, \quad r \in \mathbb{R}_{+}, s \in \mathbb{R} \tag{122}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma r s \leq C_{1}\left(\sigma^{2}+H(r)\right)+C_{2}, \quad r \in \mathbb{R}_{+}, \quad s \in \mathbb{R} \tag{123}
\end{equation*}
$$

The additional assumption for the non-conservative case is the following:
Statement 5 - There exist positive constants c_{1} and c_{2} such that

$$
\begin{equation*}
-r h(r) \leq-c_{1} H(r)+c_{2}, \quad r \in \mathbb{R}_{+} \tag{124}
\end{equation*}
$$

and

$$
\begin{equation*}
-r h_{0}(r) \leq-c_{1} H_{0}(r)+c_{2}, \quad s \in \mathbb{R} \tag{125}
\end{equation*}
$$

- For any $\varepsilon>0$ there exists a positive constant C_{ε} such that

$$
\begin{equation*}
-\gamma r s \leq \varepsilon\left[H(r)+H_{0}(s)\right]+C_{\varepsilon}, \quad r \in \mathbb{R}_{+}, s \in \mathbb{R} \tag{126}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma r \sigma \leq \varepsilon\left[\sigma^{2}+H(r)\right]+C_{\varepsilon}, \quad r \in \mathbb{R}_{+}, \sigma \in \mathbb{R} \tag{127}
\end{equation*}
$$

- There exist positive constants c_{1} and c_{2} such that

$$
\begin{equation*}
-r f(r) \leq-c_{1} \Pi(r)+c_{2}, \quad r \in \mathbb{R} \tag{128}
\end{equation*}
$$

The assumptions (124)-(127) were made to guarantee the existence of the global attractor for the Mindlin plate system in [4]. Now we are in position to give the abstract formulation of system (1)-(7). Denote

$$
\begin{gather*}
F^{*}(u)=\left(0,0, \frac{\gamma}{2}|v|^{2}\right) \\
F_{2}(u)=\left(v_{1}\left[\gamma w+h\left(|v|^{2}\right)\right], v_{2}\left[\gamma w+h\left(|v|^{2}\right)\right], h_{0}(w)\right) \tag{129}
\end{gather*}
$$

and

$$
\Pi_{1}(u)=\frac{\gamma}{2} \int_{\Omega} w|v|^{2} d x
$$

Let

$$
\begin{equation*}
\varepsilon_{0}(t)=E_{z}^{0}\left(z, z_{t}\right)+E_{u}^{0}\left(u, u_{t}\right)+E_{\theta}^{0}(\theta)+\Pi(z)+\Pi_{0}(u) \tag{130}
\end{equation*}
$$

where $E_{z}^{0}, E_{z}^{0}, E_{z}^{0}, \Pi, \Pi_{0}$ are given by (37)-(39) and (29), (32) respectively. We define the total energy in the following way:

$$
\begin{equation*}
\mathcal{E}(t)=\mathcal{E}_{0}(t)+\Pi_{1}(u) \tag{131}
\end{equation*}
$$

It is easy to see from (122) and (123) that

$$
\begin{equation*}
-\frac{1}{2} \Pi_{0}(u)-C_{1} \leq \Pi_{1}(u) \leq C_{2} \int_{\Omega}\left[|w|^{2}+H\left(|v|^{2}\right)\right] d x+C_{3} \tag{132}
\end{equation*}
$$

Applying the same arguments as in case $\gamma=0$ we obtain the following theorem.
Theorem 10 Under Assumptions 1 with $h^{*} h_{0}^{*}>2 \gamma^{2}$, 3 for any initial conditions

$$
y_{0}=\left(z^{0}, z^{1}, u^{0}, u^{1}, \theta^{0}\right) \in H
$$

there exists a unique generalized solution $y(t)=\left(z(t), z_{t}(t), u(t), u_{t}(t), \theta(t)\right)$ to the PDE system (25)-(28) with F_{2} defined by (129), which depends continuously on initial data. This solution satisfies the energy inequality

$$
\begin{aligned}
\mathcal{E}(t)+\int_{s}^{t}\left(G\left(z_{t}\right), z_{t}\right)_{\Omega} d \tau & +\int_{s}^{t}\left(B\left(u_{t}\right), u_{t}\right)_{\Gamma_{0}} d \tau \\
& +\int_{s}^{t}\|\nabla \theta\|_{\Gamma_{0}}^{2} d \tau \leq \mathcal{E}(s)+\int_{s}^{t}\left(F^{*}(u), u_{t}\right) d \tau, \quad 0 \leq s \leq t
\end{aligned}
$$

with the total energy $\mathcal{E}(t)$ given by (131). Moreover, if initial data are such that

$$
z^{0}, z^{1} \in\left(L^{1 / 2}\right), \quad u^{0} \in \mathcal{D}(A), \quad u^{1} \in \mathcal{D}\left(A^{1 / 2}\right), \quad \theta^{0} \in \mathcal{D}(-\Delta)
$$

and

$$
L\left[z^{0}-\kappa N_{0} u^{1}\right]+G\left(z^{1}\right) \in L_{2}(\Omega)
$$

then there exists a unique strong solution $y(t)$ satisfying the energy identity:

$$
\begin{align*}
& \mathcal{E}(t)+\int_{s}^{t}\left(G\left(z_{t}\right), z_{t}\right)_{\Omega} d \tau+\int_{s}^{t}\left(B\left(u_{t}\right), u_{t}\right)_{\Gamma_{0}} d \tau \\
&+\int_{s}^{t}\|\nabla \theta\|_{\Gamma_{0}}^{2} d \tau=\mathcal{E}(s)+\int_{s}^{t}\left(F^{*}(u), u_{t}\right) d \tau, \quad 0 \leq s \leq t \tag{133}
\end{align*}
$$

In contrast to the conservative case, the non-conservative system is not gradient and the energy is not monotone, i.e. one cannot guarantee the existence of a bounded absorbing set without additional arguments. To prove the dissipativity of system (25)-(28) in case $\gamma \neq 0$ we resort to the Lapunov's method combined with the barriers method.
Theorem 11 Let Assumptions 1-3, 5 hold. Then the dynamical system $\left(H, S_{t}\right)$ generated by problem (25)-(28) possesses an absorbing ball $\mathcal{B}(R)$ of the radius R independent of β, κ, and μ.
Proof. Consider the functional

$$
V\left(z, z_{t}, u, u_{t}, \theta\right)=\mathcal{E}(t)+\delta\left[\left(z_{t}, z\right)+\left(u_{t}, u\right)\right],
$$

where $\delta>0$ will be chosen later. It follows from (132) that there exist positive constants $C_{i}, i=\overline{1,4}$ such that

$$
C_{1} E^{0}\left(z, z_{t}, u, u_{t}, \theta\right)-C_{2} \leq V\left(z, z_{t}, u, u_{t}, \theta\right) \leq C_{3} E^{0}\left(z, z_{t}, u, u_{t}, \theta\right)+C_{4} .
$$

After differentiating the Lyapunov function by t we obtain

$$
\begin{aligned}
& \frac{d}{d t} V=\left(G\left(z_{t}\right), z_{t}\right)+\left(B\left(u_{t}\right), u_{t}\right)-\left(F^{*}(u), u_{t}\right)+\delta\left[\left\|z_{t}\right\|^{2}+\left\|u_{t}\right\|^{2}\right. \\
& -\left(G\left(z_{t}\right), z\right)-\left\|L^{1 / 2} z\right\|^{2}-\kappa\left(L N_{0} u_{t}, z\right)-\left(F_{1}(z), z\right)-\left\|A^{1 / 2} u\right\|^{2}-\left(R_{1} \theta, z\right) \\
& \left.\quad-\left(B\left(u_{t}\right), u\right)-\left(F_{2}(u), u\right)-\kappa\left(N_{0}^{*} L z_{t}, u\right)\right] .
\end{aligned}
$$

Taking under consideration (24), (124)-(126), 128 we get

$$
\begin{align*}
& \frac{d}{d t} V \leq-\left(G\left(z_{t}\right), z_{t}\right)-\left(B\left(u_{t}\right), u_{t}\right)-\left(F^{*}(u), u_{t}\right)-\|\nabla \theta\|^{2}+\delta\left[\left\|z_{t}\right\|^{2}+\left\|u_{t}\right\|^{2}\right. \\
&-\left(G\left(z_{t}\right), z\right)-\frac{1}{2}\left\|L^{1 / 2} z\right\|^{2}-\frac{1}{2}\left\|A^{1 / 2} u\right\|^{2}+\|\nabla \theta\|^{2} \\
&-\left.\left(B\left(u_{t}\right), u\right)+C\left[\left\|z_{t}\right\|^{2}+\left\|u_{t}\right\|^{2}\right]-c_{1} / 2\left[\Pi_{0}(u)+\Pi(z)\right]+C\right] . \tag{134}
\end{align*}
$$

It follows from (127) that for any $\varepsilon>0$

$$
\begin{align*}
\left(F^{*}(u), u_{t}\right)=\frac{\gamma}{2} \int_{\Omega}|v|^{2} w_{t} d x \leq \varepsilon \int_{\Gamma_{0}}\left[|w|^{2}+H\left(|v|^{2}\right)\right] d x+C_{2} & \\
& \leq \varepsilon\left[\left\|w_{t}\right\|^{2}+\Pi_{0}(u)\right]+C . \tag{135}
\end{align*}
$$

Consider now the term $\left(B\left(u_{t}\right), u\right)$. Let $\Gamma_{0}^{1}=\left\{x \in \Gamma_{0}:\left|u_{t}(x)\right| \geq 1\right\}$ and $\Gamma_{0}^{2}=$ $\Gamma_{0} \backslash \Gamma_{0}^{1}$. We obviously have that

$$
\begin{align*}
& \left|\left(B\left(u_{t}\right), u\right)\right| \leq \int_{\Gamma_{0}}\left|b\left(u_{t}\right) \| u\right| d x \leq \int_{\Gamma_{0}^{1}}\left|b\left(u_{t}\right)\right||u| d x+C \int_{\Gamma_{0}^{2}}|u| d x \\
& \quad \leq\left(\left[\int_{\Gamma_{0}^{1}}\left|b\left(u_{t}\right)\right|^{\frac{p_{1}}{1+p_{1}}} d x\right]\left\|A^{1 / 2} u\right\|+C\|u\|^{2}\right) \\
& \leq C\left(B\left(u_{t}\right), u_{t}\right) E^{0}(z, u, \theta)+\bar{C}\|u\|^{2} \leq C\left(B\left(u_{t}\right), u_{t}\right)[V+1]^{1 / 2}+\bar{C}\|u\|^{2} . \tag{136}
\end{align*}
$$

Analogously,

$$
\begin{equation*}
\left|\left(G\left(z_{t}\right), z\right)\right| \leq C\left(G\left(z_{t}\right), z_{t}\right)[V+1]^{1 / 2}+\bar{C}\|z\|^{2} \tag{137}
\end{equation*}
$$

Consequently, collecting Assumption 2, (134)-(137) and choosing $\delta=4 \varepsilon(1 / 2+$ $\bar{C} \max \left\{\lambda_{z}, \lambda_{u}\right\}$), where λ_{z} and λ_{u} are the first eigenvalues of L and A respectively, we get

$$
\begin{align*}
\frac{d}{d t} V(t)+\varepsilon V(t) \leq & d_{1}(\\
\varepsilon & +C) \tag{138}\\
& +d_{2}\left(\varepsilon[1+V(t)]^{1 / 2}-d_{4}\right)\left[\left(G\left(z_{t}\right), z_{t}\right)+\left(B\left(u_{t}\right), u_{t}\right)\right]
\end{align*}
$$

Applying to (138) the barriers method described in [7, Th. 3.15] we obtain the statement of the theorem.

Applying the same arguments as in Section 2 we get the following theorem
Theorem 12 Let Assumptions 1-5 hold. Denote by $S_{t}^{\mu, \kappa, \beta}$ the evolution operator of problem (25)-(28) in the space

$$
H_{\mu}=H=\mathcal{D}\left(L^{1 / 2}\right) \times L^{2}(\Omega) \times \mathcal{D}\left(A^{1 / 2}\right) \times L^{2}\left(\Gamma_{0}\right) \times H^{1}\left(\Gamma_{0}\right)
$$

Let $\mathfrak{A}^{\mu, \kappa, \beta}$ be a global attractor for the system $\left(S_{t}^{\mu, \kappa, \beta}, H_{\mu}\right)$. Then the family of the attractors $\mathfrak{A}^{\mu, \kappa, \beta}$ is upper semi-continuous on $\Lambda=[1, \infty) \times[0,1] \times[0,1]$. Namely, we have that

$$
\lim _{(\mu, \kappa, \beta) \rightarrow(\infty, 0,0)} \sup _{y \in \mathfrak{A}^{\mu, \kappa, \beta}}\left\{\operatorname{dist}_{H^{\delta_{1}, \delta_{2}}}\left(y, \mathfrak{A}_{1} \times \mathfrak{A}_{3} \times 0\right)\right\}=0
$$

where

$$
H^{\delta_{1}, \delta_{2}}=\left(L^{1 / 2-\delta_{1}}\right) \times L^{2}(\Omega) \times\left[\left[H^{1-\delta_{2}}\left(\Gamma_{0}\right)\right]^{2} \times H^{1}\left(\Gamma_{0}\right)\right] \times L^{2}\left(\Gamma_{0}\right) \times L^{2}\left(\Gamma_{0}\right)
$$

and \mathfrak{A}_{3} is the attractor of the system

$$
\begin{gathered}
(1-\Delta) w_{t t}+\operatorname{divb}\left(-\nabla w_{t}\right)+b_{0}\left(w_{t}\right)+\Delta^{2} w-\operatorname{div}\left[h\left(|\nabla w|^{2}\right) \nabla w\right] \\
\quad+h_{0}(w)-\gamma / 2 \Delta\left[w^{2}\right]=0 \\
w(x, t)=0, \quad \nabla w(x, t)=0 \quad x \in \partial \Gamma_{0}, \quad t>0
\end{gathered}
$$

Acknowledgement. The research was partially supported by N.I. Akhiezer Foundation.

REFERENCES

1. Babin A. V., Vishik M. I. Attractors of evolution equations. - North-Holland, 1992. - 293 p.
2. Bucci F, Chueshov I. Long-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations// Discrete Contin. Dynam. Systems, 2008. - 22. - P. 557-586.
3. Bucci F, Chueshov I., Lasiecka I. Global attractor for a composite system of nonlinear wave and plate aquations// Commun. Pure Appl. Anal., 2007. - 6. - P. 113-140.
4. Chueshov I., Lasiecka I. Attractors for second-order evolution equations with a nonlinear damping// J. Dyn. Diff. Eqns, 2004. - 16, no. 2. - P. 469-512.
5. Chueshov I., Lasiecka I. Global attractors for Mindlin-Timoshenko plates and for their Kirchhoff limits// Milan J. Math., 2006. - 74. - P. 117 - 138.
6. Chueshov I.D. Introduction to the theory of infinite-dimensional dissipative systems. - Acta, Kharkov, 1999. - 433 p.
7. Chueshov I., Lasiecka I. Long-time behavior of second order evolution equations with nonlinear damping, Memoirs of AMS 912. - AMS, Providence, RI, 2008. - 188 p.
8. Chueshov I., Lasiecka I. Long-time dynamics of von Karman semi-flows with nonlinear boundary interior damping// J. Differential Equations, 2007. - 233. - P. 42-86.
9. Chueshov I., Lasiecka I. Von Karman evolution equations. Well-posedness and long-time dynamics. - Springer, New-York, 2010. - 781 p.
10. Fastovska T. Asymptotic properties of global attractors for nonlinear MindlinTimoshenko model of thermoelastic plate// Vesnik of Kharkov National University, series "Mathematics, applied mathematics and mechanics", 2006. - 56, no. 749. - P. 13-29.
11. Hale J. K. Asymptotic behavior of dissipative systems.- Amer. Math. Soc., Providence, Rhode Island, 1988. - 198 p.
12. Hale J. K., Raugel G., Upper semicontinuity of the attractor for a singulary perturbed hyperbolic equation// J. Diff. Equations, 1988. - 73. - P. 197-214.
13. Howe M.S. Acoustics of fluid-structure interactions. Cambridge Monographs on Mechanics. - Cambridge University Press, Cambridge, 1998. - 560 p.
14. Khanmamedov A.Kh., Global attractors for von Karman equations with nonlinear dissipation// J.Math.Anal.Appl., 2006. - 318, P. 92-101.
15. Lagnese J. Boundary stabilization of thing plates.-Philadelphia: SIAM, 1989. - 176 p.
16. Lasiecka I. Mathematical Control Theory of coupled PDE's, CBMS-NSF Regional Conference Series in Applied Mathematics 75- Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2002. - 242 p.
17. Lasiecka I., Lebiedzik C. Asymptotic behaviour of nonlinear structural acoustic interactions with thermal effects on the interface// Nonlinear Anal., Ser. A: Theory Methods, 2002. - 49 - P. 703-735.
18. Lasiecka I., Lebiedzik C. Decay rates of interactive hyperbolic-parabolic PDE models with thermal effects on the interface// Appl. Math. Optim., 2000. 42. - P. 127-167.
19. Lasiecka I., Lebiedzik C., Uniform stability in structural acoustic systems with thermal effects and nonlinear boundary damping// Control Cybernet., 1999. - 28. - P. 557-581.
20. Lasiecka I., Triggiani B. Control Theory for Partial Differential Equations: Continuous and Approximation Theories, Vol. 1: Abstract parabolic Systems; Vol. 2: Abstract Hyperbolic-like Systems over a Finite Time Horizon, Encyclopedia of Mathematics and its Applications, Voll. 74-75- Cambrige University Press, 2000. - 1067 p.
21. Lebiedzik C. Exponential stability in structural acoustic models with thermoelasticity// Dynam. Contin. Discrete Impuls. System, 2000. - 7. P. 369-383.
22. Morse P.M., Ingard K.U. Theoretical Acoustics- McGraw-Hill, New York, 1968. - 927 p.
23. Ryzhkova I. Dynamics of a thermoelastic von Karman plate in a subsonic gas flow // Z. Angew. Math. Phys, 2007. - 58-P. 246-261.
24. Schiavone P., Tait R. J. Thermal effects in Mindlin-type plates// Q. Jl. Mech. appl. Math., 1993. - 46, pt. 1. - P. 27-39.
25. Simon J. Compact sets in the space $L^{p}(0, T ; B) / /$ Ann. Mat. Pura Appl., 1987. - 148, Ser.4. - P. 65-96.
26. Temam R. Infinite-dimensional dynamical systems in Mechanics and PhysicsSpringer, New-York, 1988. - 500 p.

Article history:
Received: 25.06.2014; Final form: 9.10.2014; Accepted: 15.10.2014.

