Вісник Харківського національного університету імені В.Н. Каразіна Серія "Математика, прикладна математика і механіка"
Том 81, 2015, с.4-9
УДК 517.982 .22

Visnyk of V.N.Karazin Kharkiv National University Ser. "Mathematics, Applied Mathematics and Mechanics"
Vol. 81, 2015, p. 4-9

Bishop-Phelps-Bollobás modulus of a uniformly non-square Banach space

M. V. Soloviova
V.N. Karazin Kharkiv National University, Svobody Sq. 4, 61022, Kharkiv, Ukraine mariiasoloviova93@gmail.com

Chica, Kadets, Martín and Soloviova demonstrated recently that the Bishop-Phelps-Bollobás modulus Φ_{X}^{S} of a Banach spaces X can be estimated from above through the parameter of uniform non-squareness $\alpha(X)$: $\Phi_{X}^{S}(\varepsilon) \leq \sqrt{2 \varepsilon} \sqrt{1-\frac{1}{3} \alpha(X)}$. In this short note we demonstrate that the right-hand side in the above theorem cannot be substituted by anything smaller than $\sqrt{2 \varepsilon} \sqrt{1-\alpha(X)}$.
Keywords: Bishop-Phelps theorem; uniformly non-square spaces.
Соловйова М. В. Модулі Бішопа-Фелпса-Болобаша в рівномірно неквадратних банахових простірах. Чіка, Кадець, Мартін, Соловйова нещодавно довели, що модуль Бішопа-Фелпса-Болобаша Φ_{X}^{S} банахового простора X може бути оцінений зверху через параметр рівномірної неквадратності $\alpha(X): \Phi_{X}^{S}(\varepsilon) \leq \sqrt{2 \varepsilon} \sqrt{1-\frac{1}{3} \alpha(X)}$. У цій короткій статті ми покажемо, що права частина оцінки не може бути змінена на щось меньше, ніж $\sqrt{2 \varepsilon} \sqrt{1-\alpha(X)}$.
Ключові слова: теорема Бішопа-Фелпса, рівномірно неквадратні простори.
Соловьева М. В. Модули Бишопа-Фелпса-Боллобаша в равномерно неквадратных банаховых пространствах Чика, Кадец, Мартин, Соловьёва недавно доказали, что модуль Бишопа-Фелпса-Боллобаша Φ_{X}^{S} банахового пространства X может быть оценен сверху через параметр равномерной неквадратности $\alpha(X): \Phi_{X}^{S}(\varepsilon) \leq \sqrt{2 \varepsilon} \sqrt{1-\frac{1}{3} \alpha(X)}$. В этой короткой статье мы покажем, что правая часть этой оценки не может быть заменена на что-то меньшее, чем $\sqrt{2 \varepsilon} \sqrt{1-\alpha(X)}$.
Ключевые слова: теорема Бишопа-Фелпса, равномерно неквадратные пространства.
2000 Mathematics Subject Classification 46B04, 46B20.
© Soloviova M. V., 2015

Introduction

In this paper letter X stands for a real Banach space. A functional $x^{*} \in X^{*}$ attains its norm, if there is an $x \in S_{X}$ with $x^{*}(x)=\left\|x^{*}\right\|$. The classical BishopPhelps theorem states that the set of norm attaining functionals on a Banach space is norm dense in the dual space ([1], see also [6, Chapter 1]). A refinement of this theorem, nowadays known as the Bishop-Phelps-Bollobás theorem [2], was proved by B. Bollobás and allows to approximate at the same time a functional and a vector in which it almost attains the norm. Very recently, the following quantity have been introduced [4] which measure, for a given Banach space, what is the best possible Bishop-Phelps-Bollobás theorem in this space. Denote by S_{X} and B_{X} the unit sphere and the closed unit ball of X respectively. We will also use the notation

$$
\Pi(X):=\left\{\left(x, x^{*}\right) \in X \times X^{*}:\|x\|=\left\|x^{*}\right\|=x^{*}(x)=1\right\}
$$

Definition 1 (Bishop-Phelps-Bollobás modulus, [4])
Let X be a real Banach space. The spherical Bishop-Phelps-Bollobás modulus of the space X is the function $\Phi_{X}^{S}:(0,2) \longrightarrow \mathbb{R}^{+}$such that given $\varepsilon \in(0,2), \Phi_{X}^{S}(\varepsilon)$ is the infimum of those $\delta>0$ satisfying that for every $\left(x, x^{*}\right) \in S_{X} \times S_{X^{*}}$ with $x^{*}(x)>1-\varepsilon$, there is $\left(y, y^{*}\right) \in \Pi(X)$ with $\|x-y\|<\delta$ and $\left\|x^{*}-y^{*}\right\|<\delta$.

It is known (see, for example, [4, Theorem 2.1]) that for every Banach space X and every $\varepsilon \in(0,2)$ one has $\Phi_{X}^{S}(\varepsilon) \leq \sqrt{2 \varepsilon}$. This estimate is sharp for the two-dimensional real space $\ell_{1}^{(2)}$ (see [2] or [4, Example 2.5]).

Uniformly non-square spaces were introduced by James [7] as those spaces whose two-dimensional subspaces are uniformly separated from $\ell_{1}^{(2)}$. The main result of [7] - the reflexivity of uniformly non-square spaces - was the origin of the theory of superreflexive spaces.

Recall that a Banach space X is uniformly non-square if and only if there is $\alpha>0$ such that

$$
\frac{1}{2}(\|x+y\|+\|x-y\|) \leq 2-\alpha
$$

for all $x, y \in B_{X}$. The parameter of uniform non-squareness of X, which we denote $\alpha(X)$, is the best possible value of α in the above inequality. In other words,

$$
\alpha(X):=2-\sup _{x, y \in B_{X}}\left\{\frac{1}{2}(\|x+y\|+\|x-y\|)\right\} .
$$

With this notation X is uniformly non-square if and only if $\alpha(X)>0$. In a uniformly non-square space the estimate $\Phi_{X}^{S}(\varepsilon) \leq \sqrt{2 \varepsilon}$ can be improved.

Theorem 1 (Theorem 3.3 of [5]) Let X be a Banach space with $\alpha(X)>0$. Then,

$$
\Phi_{X}^{S}(\varepsilon) \leq \sqrt{2 \varepsilon} \sqrt{1-\frac{1}{3} \alpha(X)} \quad \text { for } \quad 0<\varepsilon<\frac{1}{2}-\frac{1}{6} \alpha(X)
$$

Although we don't know whether the above estimate of $\Phi_{X}^{S}(\varepsilon)$ through $\alpha(X)$ is sharp, we are able to demonstrate (and this is the goal of this short article) that this result cannot be improved too much. Namely, we demonstrate that the unknown optimal estimate of $\Phi_{X}^{S}(\varepsilon)$ through $\alpha(X)$ cannot be better than $\sqrt{2 \varepsilon} \sqrt{1-\alpha(X)}$.

The main result

We will make a use of "hexagonal spaces" X_{ρ} introduced in [8] and the description of $\Pi\left(X_{\rho}\right)$ from that paper. Fix a $\rho>\frac{1}{2}$ and denote X_{ρ} the linear space \mathbb{R}^{2} equipped with the norm

$$
\left\|\left(x_{1}, x_{2}\right)\right\|=\left\|\left(x_{1}, x_{2}\right)\right\|_{\rho}=\max \left\{\left|x_{1}-\frac{1-\rho}{\rho} x_{2}\right|,\left|x_{2}-\frac{1-\rho}{\rho} x_{1}\right|,\left|x_{1}+x_{2}\right|\right\}
$$

In other words,

$$
\left\|\left(x_{1}, x_{2}\right)\right\|= \begin{cases}\left|x_{1}+x_{2}\right|, & \text { if } x_{1} x_{2} \geq 0 ; \\ \left|x_{1}-\frac{1-\rho}{\rho} x_{2}\right|, & \text { if } x_{1} x_{2}<0 \text { and }\left|x_{1}\right|>\left|x_{2}\right| ; \\ \left|x_{2}-\frac{1-\rho}{\rho} x_{1}\right|, & \text { if } x_{1} x_{2}<0 \text { and }\left|x_{1}\right| \leq\left|x_{2}\right| .\end{cases}
$$

and the unit ball B_{ρ} of X_{ρ} is the hexagon abcdef, where $a=(1,0) ; b=(0,1)$; $c=(-\rho, \rho) ; d=(-1,0) ; e=(0,-1) ;$ and $f=(\rho,-\rho)$.

The dual space to X_{ρ} is \mathbb{R}^{2} equipped with the polar to B_{ρ} as its unit ball. So the norm on X_{ρ}^{*} is given by the formula

$$
\left\|\left(x_{1}, x_{2}\right)\right\|^{*}=\left\|\left(x_{1}, x_{2}\right)\right\|_{\rho}^{*}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \rho\left|x_{1}-x_{2}\right|\right\}
$$

and the unit ball B_{ρ}^{*} of X_{ρ}^{*} is the hexagon $a^{*} b^{*} c^{*} d^{*} e^{*} f^{*}$, where $a^{*}=(1,1)$; $b^{*}=\left(-\frac{1-\rho}{\rho}, 1\right) ; c^{*}=\left(-1, \frac{1-\rho}{\rho}\right) ; d^{*}=(-1,-1) ; e^{*}=\left(\frac{1-\rho}{\rho},-1\right) ;$ and $f^{*}=\left(1,-\frac{1-\rho}{\rho}\right)$. The corresponding spheres S_{ρ} and S_{ρ}^{*} are shown on Fig. 1 and 2 respectively.

Fig. 1: Unit sphere of X_{ρ}.

Fig. 2: Unit sphere of X_{ρ}^{*}.

In the case of $\rho=\frac{1}{2}$ the sphere of X_{ρ} reduces to the square $a b d e$, and consequently $X_{1 / 2}$ is isometric to the spaces $\ell_{1}^{(2)}$ and $\ell_{\infty}^{(2)}$. When $\rho>\frac{1}{2}$, the space X_{ρ} is not isometric to $\ell_{\infty}^{(2)}$. Let us calculate the parameter of uniform nonsquareness for X_{ρ}.

Lemma 1 Let $\rho \in[1 / 2,1]$. Then, in the space $X=X_{\rho}$,

$$
\begin{equation*}
\alpha\left(X_{\rho}\right)=1-\frac{1}{2 \rho} \tag{1}
\end{equation*}
$$

Proof. Consider $\varphi(x, y)=\frac{1}{2}(\|x+y\|+\|x-y\|)$. Then $\alpha(X)=2-\sup \{\varphi(x, y):$ $\left.(x, y) \in B_{X_{\rho}} \times B_{X_{\rho}}\right\}$. Since $\varphi: B_{X_{\rho}} \times B_{X_{\rho}} \rightarrow \mathbb{R}$ is a convex function, it attains its maximum at some extreme point of $S_{X_{\rho}} \times S_{X_{\rho}}$, i.e. at a point of the form (x, y) with $x, y \in\{a, b, c, d, e, f\}$. Also, $\varphi(x, y)=\varphi(y, x)=\varphi(x,-y)$, so by symmetry of the function and symmetry of the ball, is sufficient to check values of functions φ for the following two pairs $(x, y): x=a, y=b$ and $x=a, y=c$.

If $x=a=(1,0), y=b=(0,1)$, then $\|x+y\|=\|(1,1)\|=2,\|x-y\|=$ $\|(1,-1)\|=1+\frac{1-\rho}{\rho}=\frac{1}{\rho}$. So, $\varphi(a, b)=1+\frac{1}{2 \rho}$.

If $x=a=(1,0), y=c=(-\rho, \rho)$, then $\|x+y\|=\|(1-\rho, \rho)\|=1-\rho+\rho=1$, $\|x-y\|=\|(1+\rho,-\rho)\|=1+\rho+1-\rho=2$. So, $\varphi(a, c)=1+\frac{1}{2} \leq 1+\frac{1}{2 \rho}$.

Therefore $\max \left\{\varphi(x, y):(x, y) \in B_{X_{\rho}} \times B_{X_{\rho}}\right\}=1+\frac{1}{2 \rho}$, and consequently $\alpha\left(X_{\rho}\right)=1-\frac{1}{2 \rho}$. The lemma is proved.

The set $\Pi\left(X_{\rho}\right)$ is the following polygon in $\mathbb{R}^{2} \times \mathbb{R}^{2}$:
$\Pi\left(X_{\rho}\right)=\left\{\left(a, x^{*}\right): x^{*} \in\left[f^{*}, a^{*}\right]\right\} \cup\left\{\left(x, a^{*}\right): x \in[a, b]\right\} \cup\left\{\left(b, x^{*}\right): x^{*} \in\left[a^{*}, b^{*}\right]\right\}$ $\cup\left\{\left(x, b^{*}\right): x \in[b, c]\right\} \cup\left\{\left(c, x^{*}\right): x^{*} \in\left[b^{*}, c^{*}\right]\right\} \cup\left\{\left(x, c^{*}\right): x \in[c, d]\right\}$
$\cup\left\{\left(d, x^{*}\right): x^{*} \in\left[c^{*}, d^{*}\right]\right\} \cup\left\{\left(x, d^{*}\right): x \in[d, e]\right\} \cup\left\{\left(e, x^{*}\right): x^{*} \in\left[d^{*}, e^{*}\right]\right\}$
$\cup\left\{\left(x, e^{*}\right): x \in[e, f]\right\} \cup\left\{\left(f, x^{*}\right): x^{*} \in\left[e^{*}, f^{*}\right]\right\} \cup\left\{\left(x, f^{*}\right): x \in[f, a]\right\}$,
where we use brackets like $[\cdot, \cdot],[\cdot, \cdot[$ to denote line segments in a linear space, for example, $[a, b]=\{\lambda b+(1-\lambda) a: 0 \leq \lambda \leq 1\}$; and parenthesis (\cdot, \cdot) are reserved to denote an element of a Cartesian product.

Theorem 2 For every $\alpha \in[0,1 / 2]$ there is a Banach space X with $\alpha(X)=\alpha$ such that

$$
\begin{equation*}
\Phi_{X}^{S}(\varepsilon) \geq \sqrt{2 \varepsilon} \sqrt{1-\alpha(X)} \tag{2}
\end{equation*}
$$

for all $0<\varepsilon<1$.
Proof. Let us demonstrate that the space $X=X_{\rho}$ with $\rho=\frac{1}{2(1-\alpha)}$ is what we are looking for. The direct application of lemma 1 gives $\alpha(X)=\alpha$, so what remains to show is (2).

Denote $x=(1-\sqrt{\varepsilon \rho}, \sqrt{\varepsilon \rho}), x^{*}=(1,1-\sqrt{\varepsilon / \rho})$. Then, $\left.x \in\right] a, b\left[, x^{*} \in\right] a^{*}, f^{*}[$ and $x^{*}(x)=1-\varepsilon$. In order to demonstrate (2) it is sufficient to prove the absence of such a pair $\left(y, y^{*}\right) \in \Pi(X)$ that $\max \left\{\|x-y\|,\left\|x^{*}-y^{*}\right\|\right\}<\sqrt{2 \varepsilon} \sqrt{1-\alpha}$.

Denote $r=\sqrt{2 \varepsilon} \sqrt{1-\alpha}$ and consider the set U of those $y \in S_{X}$ that $\|x-y\|<$ $r . U$ is the intersection of S_{X} with the open ball of radius r centered in $x(U$ is the bold line in Fig. 3). The radius of the ball equals to the distance from x to a :

$$
\|x-a\|=\|(-\sqrt{\varepsilon \rho}, \sqrt{\varepsilon \rho})\|=\sqrt{\varepsilon \rho}+\frac{1-\rho}{\rho} \sqrt{\varepsilon \rho}=\sqrt{\varepsilon / \rho}=\sqrt{2 \varepsilon} \sqrt{1-\alpha}=r
$$

which explains the picture for small r. Also for bigger values of r the set U can contain points b and c, but it never contains any point of $[d, e],[e, f]$ and $[f, a]$. Observe that the open ball of radius $1 / \rho$ centered in b contains the set U, as if $h \in U$, we have $\|b-h\| \leq\|b-x\|+\|x-h\|<\|b-x\|+\|x-a\|=\|b-a\|=$ $1 / \rho$. Therefore it is sufficient to check that the distance from b to every point of $[d, e],[e, f]$ and $[f, a]$ is no less than $1 / \rho$. Indeed, if $s=(-w, w-1)$ is a point of $[d, e](0 \leq w \leq 1)$, then

$$
\|b-s\|=\|(w, 2-w)\|=w+2-w=2 \geq 1 / \rho
$$

If $s=\left(w, \frac{1-\rho}{\rho} w-1\right)$ is a point of $[e, f], 0 \leq w \leq \rho$, and so

$$
\|b-s\|=\left\|\left(-w, 1-\frac{1-\rho}{\rho} w+1\right)\right\|=\frac{1-\rho}{\rho} w+2-\frac{1-\rho}{\rho} w=2 \geq 1 / \rho
$$

If s is a point of $[f, a], \rho \leq w \leq 1$, we shall consider cases $\rho<1$ and $\rho=1$ separately. For $\rho<1$ we have $s=\left(w,-\frac{\rho}{1-\rho}(1-w)\right)$, then
$\|b-s\|=\left\|\left(-w, 1+\frac{\rho}{1-\rho}(1-w)\right)\right\|=\frac{\rho}{1-\rho} w+1+\frac{\rho}{1-\rho}-\frac{\rho}{1-\rho} w \geq 2 \geq 1 / \rho$.
And for $\rho=1$ we have $s=(1,-w), 0 \leq w \leq 1$. Hence

$$
\|b-s\|=\|(-1,1+w)\|=\max \{1,1+w\} \geq 1=1 / \rho
$$

So,$U \subset] a, b] \cup[b, c] \cup[c, d[$.

Fig. 3: The set U.

Fig. 4: The set V.

Consider also the set V of those $y^{*} \in S_{X^{*}}$ that $\left\|x^{*}-y^{*}\right\|<r . V$ is the intersection of $S_{X^{*}}$ with the open ball of radius r centered in x^{*} (the bold line in Fig. 4). The radius of the ball equals to the distance from x^{*} to $a^{*}:\left\|x^{*}-a^{*}\right\|=$ $\|(0,-\sqrt{\varepsilon / \rho})\|=\sqrt{\varepsilon / \rho}=r$.

What remains to show is that $\left(y, y^{*}\right) \notin \Pi(X)$ for every $y \in U$ and every $y^{*} \in V$. The latter fact follows immediately form the above descriptions of the sets $\Pi\left(X_{\rho}\right)$ and U together with the fact that $\left.\left.V \subset\right] d^{*}, e^{*}\right] \cup\left[e^{*}, f^{*}\right] \cup\left[f^{*}, a^{*}[\right.$.

Acknowledgement. I express my deep gratitude to my scientific advisor Vladimir Kadets for posing the problem and for his constant help. My research is partially supported by a grant from Akhiezer's Fund, 2015. I am also thankful to the anonymous referee for the constructive comments.

REFERENCES

1. E. Bishop and R. R. Phelps. A proof that every Banach space is subreflexive// Bull. Amer. Math. Soc., 1961. - 67. - P. 97-98.
2. B. Bollobás. An extension to the theorem of Bishop and Phelps// Bull. London Math. Soc., - 1970. - 2. - P. 181-182.
3. B. Cascales, V. Kadets, and A. J. Guirao. A Bishop-Phelps-Bollobás type theorem for uniform algebras// Advances in Mathematics, 2013. - 240. P. 370-382.
4. M. Chica, V. Kadets, M. Martín, S. Moreno-Pulido, and F. Rambla-Barreno. Bishop-Phelps-Bollobás moduli of a Banach space// J. Math. Anal. Appl., 2014. - 412 no. 2. - P. 697-719.
5. M. Chica, V. Kadets, M. Martín, and M. Soloviova. Two refinements of the Bishop-Phelps-Bollobás modulus// Banach J. Math. Anal., 2015. - 9 No. 4. - P. 296-315.
6. J. Diestel. Geometry of Banach spaces// Lecture notes in Math. SpringerVerlag, Berlin, 1975. - 485. - 282 p.
7. R.C. James. Uniformly non-square Banach spaces // Ann. Math. (2), 1964. 80. - P. 542-550.
8. V. Kadets, M. Soloviova. A modified Bishop-Phelps-Bollobás theorem and its sharpness//Submitted to Matematychni Studii.
9. R. R. Phelps. Support Cones in Banach Spaces and Their Applications// Adv. Math., 1974. - 13. - P. 1-19.
10. R. R. Phelps. Convex functions, monotone operators and differentiability (second edition)// Lecture Notes in Math. Springer-Verlag, Berlin, 1993. 1364.

Article history: Received: 20 October 2015; Final form: 13 November 2015; Accepted: 16 November 2015.

