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Iãíàòîâè÷Ñ.Þ. Àïðîêñèìàöiÿ àâòîíîìíèõ àôiííèõ êåðîâàíèõ

ñèñòåì ó ñåíñi øâèäêîäi¨ òà àëãåáðà¨÷íà àïðîêñèìàöiÿ. Ó ðîáîòi
äàþòüñÿ óìîâè, çà ÿêèõ äëÿ àâòîíîìíèõ àôiííèõ ñèñòåì ç àïðîêñèìàöi¨ ó
ñåíñi øâèäêîäi¨ âèïëèâà¹ àëãåáðà¨÷íà àïðîêñèìàöiÿ.
Êëþ÷îâi ñëîâà: íåëiíiéíi êåðîâàíi ñèñòåìè, çàäà÷à øâèäêîäi¨, àëãåáðà¨÷íà
àïðîêñèìàöiÿ.

Èãíàòîâè÷Ñ.Þ. Àïïðîêñèìàöèÿ àâòîíîìíûõ àôôèííûõ óïðàâëÿ-

åìûõ ñèñòåì â ñìûñëå áûñòðîäåéñòâèÿ è àëãåáðàè÷åñêàÿ àïïðîê-

ñèìàöèÿ. Â ðàáîòå äàþòñÿ óñëîâèÿ, ïðè êîòîðûõ äëÿ àâòîíîìíûõ àô-
ôèííûõ óïðàâëÿåìûõ ñèñòåì èç àïïðîêñèìàöèè â ñìûñëå áûñòðîäåéñòâèÿ
âûòåêàåò àëãåáðàè÷åñêàÿ àïïðîêñèìàöèÿ.
Êëþ÷åâûå ñëîâà: íåëèíåéíûå óïðàâëÿåìûå ñèñòåìû, çàäà÷à áûñòðîäåé-
ñòâèÿ, àëãåáðàè÷åñêàÿ àïïðîêñèìàöèÿ.
2000 Mathematics Subject Classi�cation 93B10, 93B25.

1. Background and statement of the problem

In this paper we deal with the time-optimal control problem for autonomous
nonlinear a�ne systems of the form

ẋ = a(x) + ub(x), x ∈ Rn, u ∈ R, a(0) = 0, (1)

|u(t)| ≤ 1, x(0) = x0, x(θ) = 0, θ → min, (2)
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10 S.Yu. Ignatovich

where a(x) and b(x) are real analytic vector �elds in a neighborhood of the origin.
The requirement a(0) = 0 means that the origin is a rest point for this system.
For brevity, we denote the system (1) by {a, b}.

Now we brie�y recall some results obtained in [1, 2]. Below, Sa,b = Sa,b(θ, u)
denotes the map taking a pair (θ, u) to the initial point x0 which is steered to
the origin by the control u = u(t) in the time θ. This map can be expressed as a
series

x0 = Sa,b(θ, u) =
∞∑
m=1

∑
m1+···+mk+k=m

vi1...ikξm1...mk
(θ, u),

where ξi1...ik(θ, u) are nonlinear power moments of the form

ξm1...mk
(θ, u) =

∫ θ

0

∫ τ1

0
· · ·
∫ τk−1

0

k∏
j=1

τ
mj

j u(τj)dτk · · · dτ1,

and vm1...mk
are constant vector coe�cients which can be found by the formula

vm1...mk
=

(−1)k

m1! . . .mk!
adm1

Ra
Rb ◦ · · · ◦ admk

Ra
RbE(x)|x=0, (3)

where the operators Ra and Rb are de�ned as Raφ(x) = φx(x)a(x) and
Rbφ(x) = φx(x)b(x), operator brackets admRa

Rb are de�ned as ad0
Ra
Rb = Rb,

adm+1
Ra

Rb = [Ra, admRa
Rb], m ≥ 0 ([·, ·] means the operator commutator), and

E(x) ≡ x. Since a(x) and b(x) are real analytic, there exist C1, C2 > 0 such that
‖vm1...mk

‖ ≤ k!C1C
m1+···+mk+k
2 for all k ≥ 1 and m1, . . . ,mk ≥ 0 [3].

For any �xed θ > 0, let us consider nonlinear power moments as functionals
de�ned on the unit ball of the space L∞[0, θ], i.e., on the set Bθ = {u ∈ L∞[0, θ] :
‖u(t)‖ ≤ 1}. The linear span (over R) of all such functionals form an associative
algebra Aθ with the concatenation product

ξm1...mk
(θ, ·) ∨ ξj1...jq(θ, ·) = ξm1...mkj1...jq(θ, ·).

One can show that the algebra Aθ is free for any θ > 0. On the other hand, since
ξm1...mk

(θ, u) = θm1+···+mk+kξm1...mk
(1, û) where û(t) = u(tθ), t ∈ [0, 1], we can

regard the number ord(ξm1...mk
) = m1 + · · ·+mk+k as the order of the functional

ξm1...mk
(θ, ·). This concept allows us to introduce a graded structure in Aθ.

Notice that algebras Aθ with di�erent θ > 0 are isomorphic to each other.
Therefore, it is convenient to deal with more abstract object. Namely, let us
consider the set of abstract free elements (letters) ξm, m ≥ 0. Strings of letters
(words) ξm1 · · · ξmk

are denoted by ξm1...mk
. In the set of words, the concatenation

is de�ned: ξm1...mk
∨ ξj1...jq = ξm1...mkj1...jq . All �nite linear combinations of

words (over R) form a graded free associative algebra A =
∑∞

m=1Am, where
homogeneous subspaces Am are de�ned as follows,

Am = Lin{ξm1...mk
: m1 + · · ·+mk + k = m}, m ≥ 1.



Âiñíèê ÕÍÓ, Ñåð."Ìàòåìàòèêà, ïðèêëàäíà ìàòåìàòèêà i ìåõàíiêà�, òîì 84 (2016) 11

This algebra is isomorphic to Aθ for any θ > 0; we call it the algebra of nonlinear

power moments. Below we identify Aθ and A.
We say that an element z ∈ Am is homogeneous and the number ord(z) = m

is its order. It is convenient to supplement A with the unity element 1 (which
can be thought of as the empty word) and consider the algebra Ae = A + R.
Throughout the paper we assume ξmp...mq = 1 if p > q. We also use the notation
`∨q = ` ∨ · · · ∨ ` (q times).

In A we consider the free graded Lie algebra L =
∑∞

m=1 Lm generated by the
letters ξm, m ≥ 0, with the Lie brackets [`1, `2] = `1 ∨ `2 − `2 ∨ `1; then A is
its universal enveloping algebra. We also use the shu�e product operation in A
de�ned by the following recurrent formula

ξi1...ikø ξj1...jq = ξi1 ∨ (ξi2...ikø ξj1...jq) + ξj1 ∨ (ξi1...ikø ξj2...jq),

and such that 1 ø z = z ø 1 = z for any z ∈ Ae. Below we also use the
notation zøq = zø · · ·øz (q times). We say that P (z1, . . . , zk) is a homogeneous

shu�e polynomial of order m if P (z1, . . . , zk) =
∑
αq1...qkz

øq1
1 ø · · ·øzøqkk where

αq1...qk ∈ R and the sum is taken over all q1, . . . , qn such that
∑k

i=1 qiord(zi) = m.
Finally, we introduce the inner product 〈·, ·〉 in A so that the basis ξi1...ik

becomes orthonormal.
Let us now consider the set of vector coe�cients (3). They generate the linear

map v : A → Rn de�ned as v(ξm1...mk
) = vm1...mk

. The important role is played
by the restriction of this map to the Lie algebra L ⊂ A. Namely, let us suppose
that the Rashevsky-Chow condition holds,

v(L) = Rn (4)

and consider the following subspaces

P1 = {` ∈ L1 : v(`) = 0}, Pk = {` ∈ Lk : v(`) ∈ v(L1 + · · ·+ Lk−1)}, k ≥ 2.

We say that

La,b =
∞∑
k=1

Pk

is a core Lie subalgebra corresponding to the system {a, b}. We say that

Ja,b = Lin{` ∨ z : ` ∈ La,b, z ∈ A}

is a right ideal corresponding to the system {a, b}. Due to properties of the map v,
if z ∈ Ja,b∩Am then v(z) ∈ v(A1+· · ·+Am−1). One can show that La,b = Ja,b∩L,
hence, La,b and Ja,b de�ne each other.

We notice that the Rashevsky-Chow condition (4) implies the attainability for
the system {a, b}. This means that the set of all initial vectors x0 which can be
steered to the origin has nonempty interior and the origin belongs to the closure
of this interior.
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Suppose `1, . . . , `n are homogeneous Lie elements such that

L = Lin{`1, . . . , `n}+ La,b,

and {`j}∞j=n+1 is a homogeneous basis of La,b. As is well known [4], the set

{`∨q1i1
∨ · · · ∨ `∨qkik

: i1 < . . . < ik, k ≥ 1}

forms a basis of the algebra A; we call it a Poincar�e-Birkho�-Witt basis.
Suppose {dq1...qki1...ik

} is a dual basis, that is,

〈dq1...qki1...ik
, `∨r1j1

∨ · · · ∨ `∨rsjs
〉 = 1 i� s = k, im = jm, qm = rm.

Then [5] it can be expressed as

dq1...qki1...ik
=

1

q1! · · · qk!
døq1i1

ø · · ·ødøqkik
,

where di = d1
i . In other words, the sequence {dj}∞j=1 de�nes all other elements of

the dual basis. Hence, the map Sa,b can be expressed as a series w.r.t. the dual
basis,

Sa,b(θ, u) =
∑

k≥1, i1<···<ik, qj≥1

1

q1! · · · qk!
v(`∨q1i1

∨ · · · ∨ `∨qkik
)døq1i1

ø · · ·ødøqkik
.

Moreover, if i1 ≥ n+ 1 then `i1 ∈ La,b and therefore `∨q1i1
∨ · · · ∨ `∨qkik

∈ Ja,b. This
representation justi�es the result which was obtained in [2]: for any system {a, b}
satisfying condition (4) there exists (polynomial) nonsingular change of variables
y = Φ(x) (Φ(0) = 0) such that

y0
k = (Φ(x0))k = dk(θ, u) + ρk(θ, u), k = 1, . . . , n,

where ρk ∈
∑∞

i=ord(dk)+1Ai. It turns out that there exists a (autonomous) system
{a∗, b∗} such that

(Sa∗,b∗)k = dk(θ, u), k = 1, . . . , n.

Let us notice that the components of the series of this system are homogeneous as
elements of A. In such a case we say that the system {a∗, b∗} is homogeneous. It
can be shown that if v(Ja∗,b∗) = 0 then there exists such a change of coordinates
that (F (Sa∗,b∗))k = d∗k(θ, u), k = 1, . . . , n, where d∗k are homogeneous elements (of
dual basis). In other words, the algebraic representation becomes homogeneous
after a change of coordinates y = F (x). Then we also say that the system is
homogeneous and the coordinates y are privileged for the system {a∗, b∗}.

De�nition 1 Suppose a homogeneous system {a∗, b∗} is such that Ja∗,b∗ = Ja,b
(or, what is the same, La∗,b∗ = La,b). Then we say that {a∗, b∗} is an algebraic

approximation of {a, b}.
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It can be shown that if {a, b} is autonomous then its algebraic approximation
{a∗, b∗} can be chosen as autonomous.

In [2] we propose the connection of such approximation with time optimality.
Let us adopt the following de�nition of equivalence in the sense of time optimality.
Consider two time-optimal control problems of the form (1), (2) for systems
{a∗, b∗} and {a, b}. Suppose there exists an open domain Ω ⊂ Rn\{0}, 0 ∈ Ω,
such that the time-optimal control problem for the system {a∗, b∗} has a unique
solution (θ∗x0 , u

∗
x0) for any x0 ∈ Ω. Denote by Ux0(θ) ⊂ Bθ the set of all controls

which steer the point x0 to the origin by virtue of the system {a, b} in the time θ,
then the optimal time for this system equals θx0 = min{θ : Ux0(θ) 6= ∅}.

De�nition 2 We say that the system {a∗, b∗} approximates the system {a, b} in
the sense of time optimality in the domain Ω if there exists a (real analytic)

nonsingular map Φ(x) of the neighborhood of the origin (Φ(0) = 0) and a set of

pairs (θ̃x0 , ũx0), x0 ∈ Ω, such that ũx0 ∈ UΦ(x0)(θ̃x0) and

θΦ(x0)

θ∗
x0
→ 1,

θ̃x0

θ∗
x0
→ 1,

1

θ

∫ θ

0

∣∣u∗x0(t)− ũx0(t)
∣∣ dt→ 0 as x0 → 0, x0 ∈ Ω,

where θ = min{θ∗x0 , θ̃x0}.

Controls ũx0(t) can be regarded as �almost optimal� controls for the system
{a, b} which steer the point Φ(x0) to the origin in the �almost optimal� time θ̃x0 .

In [2] the following result was obtained. Suppose the system {a∗, b∗} is an
algebraic approximation of the system {a, b}. Suppose also that there exists an
open domain Ω ⊂ Rn\{0}, 0 ∈ Ω, such that

(i) the time-optimal control problem for the system {a∗, b∗} has a unique
solution (θ∗x0 , u

∗
x0) for any x0 ∈ Ω;

(ii) the function θ∗x0 is continuous w.r.t. x0 ∈ Ω;

(iii) for the set K = {u∗x0(tθ∗x0) : x0 ∈ Ω} ⊂ L2[0, 1], the weak convergence
implies the strong convergence.

Then there exists a set {Ω(δ)}δ>0 of domains, Ω(δ1) ⊂ Ω(δ2) if δ1 > δ2,⋃
δ>0 Ω(δ) = Ω, such that {a∗, b∗} approximates {a, b} in the sense of time

optimality in each domain Ω(δ).

In other words, if the system {a∗, b∗} approximates {a, b} in the algebraic
sense then, under some conditions, it approximates {a, b} in the sense of time
optimality.

In [1] we considered a subclass of systems {a, b} whose approximation {a∗, b∗}
is linear. In this case we proved also the converse implication. Roughly speaking,
the result is as follows: if the system {a, b} is approximated by a linear system
in the sense of time optimality then its algebraic approximation is linear, i.e.,
di = ξmi , i = 1, . . . , n. The proof used essentially the fact that optimal controls
for linear systems are piecewise constant and, for a set of initial points of nonzero
measure, have n− 1 switchings.
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The question remains whether this statement can be proved for more general
class of approximating systems. In [6] we partially answered this question. The
main idea was to consider those systems {a∗, b∗} whose optimal controls are
piecewise constant with n− 1 switchings for a set of initial points with nonempty
interior.

In the present paper we develop the idea proposed in [6] and prove analogous
statement for autonomous systems under much weaker assumptions concerning
optimal controls. Preliminary lemmas are given in Section 2. The main result
(Theorem 1) is proved in Section 3.

2. Preliminary results

Notation. (a) Denote by ϕ : A+ R→ A and ϕ′ : A → A+ R di�erentiations in
A de�ned by

ϕ(ξm) = (m+ 1)ξm+1, ϕ(1) = 0,
ϕ′(ξ0) = 0, ϕ′(ξm) = mξm−1, m ≥ 1,

then

ϕ(ξm1...mk
) =

k∑
i=1

(mi + 1)ξm1...(mi+1)...mk
, ϕ′(ξm1...mk

) =

k∑
i=1

miξm1...(mi−1)...mk
.

(b) Denote by ψ0 : A+ R→ A and ψ′0 : A → A+ R linear mappings de�ned
by

ψ0(ξm1...mk
) = ξm1...mk

∨ ξ0, ψ0(1) = ξ0,

ψ′0(ξ0) = 1, ψ′0(ξm1...mk
) =

{
0, mk 6= 0,
ξm1...mk−1

, mk = 0.

Lemma 1 (a) Mappings ϕ and ϕ′ are transpose to each other, i.e., for any

y1 ∈ A+ R and any y2 ∈ A

〈ϕ(y1), y2〉 = 〈y1, ϕ
′(y2)〉.

(b) Mappings ψ0 and ψ′0 are transpose to each other, i.e., for any y1 ∈ A+R and

any y2 ∈ A
〈ψ0(y1), y2〉 = 〈y1, ψ

′
0(y2)〉.

Proof. (a) Notice that 〈ϕ(ξi1...is), ξm1...mk
〉 = 0 and 〈ξi1...is , ϕ′(ξm1...mk

)〉 = 0 if
s 6= k. Hence, suppose s = k. For any q = 1, . . . , k

〈ξi1...(iq+1)...ik , ξm1...mq ...mk
〉 = 〈ξi1...iq ...ik , ξm1...(mq−1)...mk

〉,

〈ξi1...iq ...ik , ξm1...(mq−1)...mk
〉 = 0 if iq + 1 6= mq.

Hence, for any ξm1...mk
∈ A and any ξi1...ik ∈ A+ R

〈ϕ(ξi1...ik), ξm1...mk
〉 =

k∑
q=1

(iq + 1)〈ξi1...(iq+1)...ik , ξm1...mq ...mk
〉 =

=
k∑
q=1

mq〈ξi1...iq ...ik , ξm1...(mq−1)...mk
〉 = 〈ξi1...ik , ϕ

′(ξm1...mk
)〉.
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(b) For any ξm1...mk
∈ A and any ξi1...is ∈ A+ R

〈ψ0(ξi1...is), ξm1...mk
〉 = 〈ξi1...is ∨ ξ0, ξm1...mk

〉 =

{
〈ξi1...is , ξm1...mk−1

〉 if mk = 0,
0 otherwise,

which, obviously, equals 〈ξi1...is , ψ′0(ξm1...mk
)〉.

Lemma 2 (a) Im(ϕ) + Im(ψ0) = A; (b) ker(ϕ′) ∩ ker(ψ′0) = {0}.

Proof. (a) First, let us show that any ξm1...mk
∈ A belongs to Im(ϕ) + Im(ψ0).

We use the induction w.r.t. mk.
If mk = 0 then ξm1...mk

= ψ0(ξm1...mk−1
) ∈ Im(ψ0) for any m1, . . . ,mk−1.

Suppose p ≥ 0 and ξm1...mk−1p ∈ Im(ϕ) + Im(ψ0) for any m1, . . . ,mk−1. Then

ϕ(ξm1...mk−1p) = ϕ(ξm1...mk−1
∨ ξp) = (p+ 1)ξm1...mk−1(p+1) + ϕ(ξm1...mk−1

) ∨ ξp.

By the induction supposition, ϕ(ξm1...mk−1
) ∨ ξp ∈ Im(ϕ) + Im(ψ0). Hence,

ξm1...mk−1(p+1) = 1
p+1

(
ϕ(ξm1...mk−1p)− ϕ(ξm1...mk−1

) ∨ ξp
)
∈ Im(ϕ) + Im(ψ0).

The induction arguments complete the proof.
(b) Now, let y1 ∈ ker(ϕ′) ∩ ker(ψ′0). Then Lemma 1 implies that for any

y2 ∈ A+ R

〈ϕ(y2), y1〉 = 〈y2, ϕ
′(y1)〉 = 0, 〈ψ0(y2), y1〉 = 〈y2, ψ

′
0(y1)〉 = 0.

Hence, y1 is orthogonal to Im(ϕ) + Im(ψ0) = A, therefore, y1 = 0.

Remark. It follows from [3] that if Ja,b is a right ideal corresponding to the
system {a, b} then ϕ and ψ0 are Ja,b-invariant, i.e.,

ϕ(Ja,b) ⊂ Ja,b, ψ0(Ja,b) ⊂ Ja,b. (5)

Relation (5) is necessary and su�cient for the ideal Ja,b to be a right ideal of an
autonomous control system.

Corollary 1 Suppose Ja,b is a right ideal corresponding to the system {a, b}.
Then ϕ′ and ψ′0 are J ⊥a,b-invariant, i.e., ϕ′(J ⊥a,b) ⊂ J ⊥a,b and ψ′0(J ⊥a,b) ⊂ J ⊥a,b.

Remark. Formally, Corollary 1 requires the system {a, b} to be autonomous.
However, one can weaken this condition by assuming that the algebraic

approximation of {a, b} is autonomous. On this way, Theorem 1 (which uses
Corollary 1) can be slightly generalized.

Lemma 3 Let us �x θ > 0 and consider u(t), t ∈ [0, θ], such that there exists

u(0) = limt→+0 u(t). Let us consider θδ = θ − δ and uδ(t) = u(t + δ), t ∈ [0, θδ]
for 0 < δ < δ0 < θ. Then for any z ∈ A

d

dδ
z(θδ, uδ)|δ=+0 = −ϕ′(z)(θ, u)− u(0)ψ′0(z)(θ, u).
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Proof. It su�ces to consider z = ξm1...mk
. We have

ξm1...mk
(θδ, uδ) =

∫ θ−δ

0

∫ θ−δ

τk

· · ·
∫ θ−δ

τ2

k∏
j=1

τ
mj

j u(τj + δ)dτ1 · · · dτk =

=

∫ θ

δ

∫ θ

τk

· · ·
∫ θ

τ2

k∏
j=1

(τj − δ)mju(τj)dτ1 · · · dτk.

Then
d

dδ
ξm1...mk

(θδ, uδ) =

= −(τk − δ)mku(τk)

∫ θ

τk

∫ θ

τk−1

· · ·
∫ θ

τ2

k−1∏
j=1

(τj − δ)mju(τj)dτ1 · · · dτk−1|τk=δ−

−
k∑
i=1

mi

∫ θ

δ

∫ θ

τk

· · ·
∫ θ

τ2

∏
j 6=i

(τj − δ)mj (τi − δ)mi−1
k∏
j=1

u(τj)dτ1 · · · dτk.

Hence, when δ → +0 we get

d

dδ
ξm1...mk

(θδ, uδ)|δ=+0=



−
k∑
i=1

miξm1...(mi−1)...mk
(θ, u)− u(0)ξm1...mk−1

(θ, u)

if mk = 0,

−
k∑
i=1

miξm1...(mi−1)...mk
(θ, u)

if mk 6= 0

which completes the proof.

3. Equivalence of autonomous homogeneous systems

In this section, a system {a∗, b∗} is supposed to be homogeneous. Then in
privileged coordinates we get (Sa∗,b∗)k = d∗k, where ord(d∗k) = w∗k, k = 1, . . . , n.
For such a system we introduce a dilation Hε(x) acting as (Hε(x))k = εw

∗
kxk,

k = 1, . . . , n. Notice that

θ∗Hε(x0) = εθ∗x0 and u∗Hε(x0)(t) = u∗x0( tε), t ∈ [0, εθ∗x0 ]. (6)

Let us suppose that an open domain Ω ⊂ Rn\{0}, 0 ∈ Ω, is such that the
time-optimal control problem for the (homogeneous) system {a∗, b∗} has a unique
solution (θ∗x0 , u

∗
x0) for any x0 ∈ Ω. We assume that in Ω optimal controls are

continuous from the right at t = 0, i.e., there exists u∗x0(0) = limt→+0 u
∗
x0(t) for

any x0 ∈ Ω. Without loss of generality we may assume that the domain Ω is
pseudo-conic w.r.t. {a∗, b∗}, i.e., if x ∈ Ω then Hε(x) ∈ Ω for any 0 < ε < ε0.

Now let us denote by x∗(t), t ∈ [0, θ∗x0 ] the optimal trajectory corresponding
to an optimal control u∗x0(t) (here x∗(0) = x0 and x∗(θ∗x0) = 0). Then obviously

θ∗x∗(δ) = θ∗x0 − δ and u∗x∗(δ)(t) = u∗x0(t+ δ), t ∈ [0, θ∗x∗(δ)], for δ ∈ (0, θ∗x0). (7)
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We assume that Ω is open, hence, for any x0 ∈ Ω some segment of the optimal
trajectory starting at x0 belongs to Ω, i.e., there exists δ0 > 0 such that x∗(δ) ∈ Ω
for 0 < δ < δ0 < θ∗x0 .

Finally, we call the set L = {x ∈ Rn : x1, . . . , xn−1 are �xed, xn ∈ R} a

vertical line.

Theorem 1 Suppose a homogeneous autonomous system {a∗, b∗} approximates

the autonomous system {a, b} in the sense of time optimality in any of (pseudo-

conic) domains Ωi, i ∈ I, with the same map Φ(x) (where I may be �nite or

in�nite set of indices) and for all x0 ∈
⋃
i∈I Ωi the time-optimal control problem

for {a∗, b∗} has a unique solution (θ∗x0 , u
∗
x0) such that u∗x0(t) is continuous from

the right at t = 0. Suppose there exists an open subset Ω′ ⊂
⋃
i∈I Ωi which satis�es

the following condition in privileged coordinates for the system {a∗, b∗}:

For any vertical line L, if the intersection M = Ω′∩L is nonempty

then the function f(x) = u∗x(0), x ∈M , is not constant.
(L)

Then {a∗, b∗} is an algebraic approximation of {a, b}.

Proof. Let La∗,b∗ and La,b be core Lie subalgebras corresponding to the systems
{a∗, b∗}, {a, b} and let {`∗k}nk=1, {`k}nk=1 be homogeneous Lie elements such that

L = Lin{`∗1, . . . , `∗n}+ La∗,b∗ = Lin{`1, . . . , `n}+ La,b.

Suppose {d∗k}nk=1 and {dk}nk=1 are the corresponding elements of dual basis and
wk = ord(dk), w

∗
k = ord(d∗k), where w

∗
1 ≤ · · · ≤ w∗n and w1 ≤ · · · ≤ wn. We

notice that for autonomous systems without loss of generality we may assume
`1 = `∗1 = d1 = d∗1 = ξ0.

We suppose the coordinates are privileged for the system {a∗, b∗}, then

(Sa∗,b∗)k = d∗k(θ, u), k = 1, . . . , n,

and
x0
k = d∗k(θ

∗
x0 , u

∗
x0), k = 1, . . . , n. (8)

Also, without loss of generality we assume

(Sa,b)k = dk(θ, u) + ρk(θ, u), k = 1, . . . , n.

and ρk ∈
∑∞

m=wk+1Am. By the supposition, the system {a∗, b∗} approximates
{a, b} in the sense of time optimality. Taking into account De�nition 2 we suppose
ũx0 ∈ UΦ(x0)(θ̃x0), then

(Φ(x0))k = dk(θ̃x0 , ũx0) + ρk(θ̃x0 , ũx0), k = 1, . . . , n.

Therefore,

dk(θ̃x0 , ũx0) + ρk(θ̃x0 , ũx0) = (Φ(d∗1(θ∗x0 , u
∗
x0), . . . , d∗n(θ∗x0 , u

∗
x0)))k =

=
n∑
i=1

αikd
∗
i (θ
∗
x0 , u

∗
x0) +

wk∑
m=1

pmk(d
∗
1, . . . , d

∗
n)(θ∗x0 , u

∗
x0) +Rk(θ

∗
x0 , u

∗
x0),

(9)
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where the matrix {αik} is nonsingular (it equals Φ′(0)), pmk are shu�e polynomial
without linear terms, ord(pmk(d

∗
1, . . . , d

∗
n)) = m, and Rk ∈

∑∞
m=wk+1Am.

Without loss of generality we assume that the elements {`∗k}nk=1 are chosen so
that Φ′(0) equals the identical matrix.

Due to De�nition 2 for any z ∈ Am and any i ∈ I we have

z(θ̃x0 , ũx0) = z(θ∗x0 , u
∗
x0) + ō((θ∗x0)m) as x0 → 0, x0 ∈ Ωi.

Then (9) implies for any x0 ∈ Ωi

dk(θ
∗
x0 , u

∗
x0) = d∗k(θ

∗
x0 , u

∗
x0) +

wk∑
m=1

pmk(d
∗
1, . . . , d

∗
n)(θ∗x0 , u

∗
x0) + ō((θ∗x0)wk), (10)

k = 1, . . . , n. Let us denote

Pmk(d
∗
1, . . . , d

∗
n) =

{
d∗k + pmk(d

∗
1, . . . , d

∗
n) if m = w∗k,

pmk(d
∗
1, . . . , d

∗
n) otherwise.

(11)

Considering (10) for x0
ε = Hε(x

0) ∈ Ωi, 0 < ε < ε0, instead of x0, we get

εwkdk(θ
∗
x0 , u

∗
x0) =

wk∑
m=1

εmPmk(d
∗
1, . . . , d

∗
n)(θ∗x0 , u

∗
x0) + ō(εwk)

as ε→ 0, which implies

Pmk(d
∗
1, . . . , d

∗
n)(θ∗x0 , u

∗
x0) = 0, m ≤ wk − 1, (12)

dk(θ
∗
x0 , u

∗
x0) = Pwkk(d

∗
1, . . . , d

∗
n)(θ∗x0 , u

∗
x0), k = 1, . . . , n, (13)

for any x0 ∈ Ωi. Using (8) we get from (12)

Pmk(x
0
1, . . . , x

0
n) = 0, m ≤ wk − 1,

for any x0 ∈
⋃
i∈I Ωi, which implies that polynomials Pmk are zero, Pmk ≡ 0. In

particular, (11) gives w∗k ≥ wk.
Now we consider (13) and use the induction arguments. Assume

wj = · · · = wj+q = c,
ws < c if s ≤ j − 1 and ws > c if s ≥ j + q + 1.

Suppose j = 1 or
d∗k = dk, k = 1, . . . , j − 1. (14)

As is shown above, w∗j ≥ wj . Hence, if j ≥ 2 then, due to the induction
supposition,

J ⊥a,b ∩ Am = J ⊥a∗,b∗ ∩ Am, m = 1, . . . , c− 1. (15)

Since ord(Pc(j+r)(d
∗
1, . . . , d

∗
n)) = c and w∗r ≥ ws > c for s > j + q, we get

Pc(j+r)(d
∗
1, . . . , d

∗
n) = Pc(j+r)(d

∗
1, . . . , d

∗
j+q). For brevity, we temporarily denote

fj+r = Pc(j+r)(d
∗
1, . . . , d

∗
j+q).
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Since Ωi is open then x∗(δ) ∈ Ωi for 0 < δ < δ0. Therefore, considering (13)
for x∗(δ) instead of x0, we get

dj+r(θδ, uδ) = fj+r(θδ, uδ), r = 0, . . . , q, 0 < δ < δ0,

where θδ = θ∗x0 − δ, uδ(t) = u∗x∗(δ)(t) = u∗x0(t + δ), t ∈ [0, θδ]. Hence, Lemma 3
gives

ϕ′(dj+r)(θ, u) + u(0)ψ′(dj+r)(θ, u) = ϕ′(fj+r)(θ, u) + u(0)ψ′(fj+r)(θ, u), (16)

where θ = θ∗x0 , u = u∗x0 . By construction, dj+r ∈ J ⊥a,b and fj+r ∈ J ⊥a∗,b∗ , hence,
applying Corollary 1 and using (15) we have

ϕ′(dj+r), ψ
′
0(dj+r) ∈ J ⊥a,b∩Ac−1 = J ⊥a∗,b∗∩Ac−1, ϕ′(fj+r), ψ

′
0(fj+r) ∈ J ⊥a∗,b∗∩Ac−1,

therefore, for any r = 0, . . . , q

ϕ′(dj+r − fj+r) ∈ J ⊥a∗,b∗ ∩ Ac−1, ψ′0(dj+r − fj+r) ∈ J ⊥a∗,b∗ ∩ Ac−1.

However, a basis of J ⊥a∗,b∗ is formed by polynomials of {d∗1, . . . , d∗n}. Let us take
into account that ord(dj+r) = ord(fj+r) = c ≤ w∗j . Hence, for some polynomials
P1r and P2r

ϕ′(dj+r− fj+r) = P1r(d
∗
1, . . . , d

∗
j−1), ψ′0(dj+r− fj+r) = P2r(d

∗
1, . . . , d

∗
j−1). (17)

Hence, (16) implies

P1r(d
∗
1, . . . , d

∗
j−1)(θ, u) + u(0)P2r(d

∗
1, . . . , d

∗
j−1)(θ, u) = 0

where θ = θ∗x0 , u = u∗x0 . Now recalling (8) we get

P1r(x
0
1, . . . , x

0
j−1) + u(0)P2r(x

0
1, . . . , x

0
j−1) = 0 (18)

for any x0 ∈
⋃
i∈I Ωi, where u(0) = u∗x0(0).

Suppose the polynomial P2r is not identically zero. Let us apply condition (L).
Namely, let us consider the set Ω′′ = {x ∈ Ω′ : P2r(x1, . . . , xj−1) 6= 0} which is
nonempty since the nonempty set Ω′ is open. For any x ∈ Ω′′ the optimal control

equals u(x) = −P1r(x1,...,xj−1)
P2r(x1,...,xj−1) , hence, it depends only on the �rst j−1 coordinates

of the point x (where j − 1 ≤ n − 1). Hence, the optimal control is constant on
the intersection of Ω′′ with any vertical line, what contradicts condition (L).

Hence, the polynomial P2r is zero, therefore, P1r also is zero. Then (17) implies
dj+r − fj+r ∈ ker(ϕ′) ∩ ker(ψ′0). Now, Lemma 2 gives dj+r = fj+r. Thus,

dj+r = Pc(j+r)(d
∗
1, . . . , d

∗
j+q). (19)

If w∗j+r > wj+r = c then, by (11), Pc(j+r)(d
∗
1, . . . , d

∗
j+q) = pc(j+r)(d

∗
1, . . . , d

∗
j−1)

is a shu�e polynomial without linear term, hence, Pc(j+r)(d
∗
1, . . . , d

∗
j+q) ∈ L⊥.

However, dj+r 6∈ L⊥, therefore, (19) leads to contradiction.
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Hence, w∗j+r = wj+r = c for all r = 0, . . . , q. Then (11) and (19) give

dj+r = d∗j+r + pc(j+r)(d
∗
1, . . . , d

∗
j−1), r = 0, . . . , q. (20)

We recall that monomials of pc(j+r) are elements of the dual basis. So, if pc(j+r)
contains the monomial (d∗1)øq1ø · · ·ø (d∗j−1)øqj−1 with nonzero coe�cient then
pc(j+r)(d

∗
1, . . . , d

∗
j−1) is not orthogonal to the element (`∗1)∨q1 ∨ · · · ∨ (`∗j−1)∨qj−1 .

However, the induction supposition (14) implies `∗k = `k, k = 1, . . . , j − 1, hence,
both dj+r and d∗j+r are orthogonal to this element. Then (20) implies that the
polynomial pc(j+r) is zero, pc(j+r)(d

∗
1, . . . , d

∗
j−1) ≡ 0, and therefore,

dj+r = d∗j+r, r = 0, . . . , q.

Using the induction arguments we get that dk = d∗k for k = 1, . . . , n. Therefore,
J ⊥a,b = J ⊥a∗,b∗ , which implies Ja,b = Ja∗,b∗ . The theorem is proved.

Remark. In Theorem 1, the controls u∗x0 are time-optimal. However, the
optimality itself is not used in the proof. Instead, the following two properties
of controls u∗x0 are applied: the requirement (6) connected with the homogeneity,
and the property (7) which is justi�ed by the autonomy of the system. One can
generalize the theorem assuming that for any point x0 ∈ Ω a control u∗x0 is chosen
which steers the point x0 to the origin by virtue of the system {a∗, b∗} and steers
the point Φ(x0) to the origin by virtue of the system {a, b} and, in addition,
satis�es (6), (7), and condition (L). Then equality (10) holds and, as one can
obtain by repeating the rest of the proof of the theorem, the systems {a∗, b∗} and
{a, b} have the same right ideals.

Remark. Let us also notice that condition (L), which is used in the proof in
order to conclude the identities P1r = P2r = 0 from equality (18), can be replaced
by some other condition. For example, one can require the existence of α ∈ R
and two open sets M1,M2 ⊂

⋃
i∈I Ωi such that û∗x0(0) = α for any x0 ∈ M1 and

û∗x0(0) 6= α for any x0 ∈M2.

Example. As {a∗, b∗}, let us consider the nonlinear homogeneous system of
the form

ẋ1 = u, ẋ2 = x1, ẋ3 = x3
1.

As was shown in [7], for any x0 the optimal control u∗x0(t) equals ±1 or 0 and
has �nite number of switchings. In [8] domains where the time-optimal control
problem for this system has a unique solution were described. In particular, it
turns out that conditions (i)�(iii) mentioned in Section 1 are satis�ed in several
open domains. Hence, if {a∗, b∗} is an algebraic approximation of {a, b} then
{a∗, b∗} approximates {a, b} in the sense of time optimality in these domains.
Moreover, there exists a domain Ω′ satisfying the conditions of Theorem 1; for
example, one can choose Ω′ = {x : x1 > 1, −x2

1 < x2 < 0}. Therefore, if {a∗, b∗}
approximates {a, b} in the sense of time optimality in some domains Ωi such that
Ω′ ⊂

⋃
i∈I Ωi then {a∗, b∗} is an algebraic approximation of {a, b}.
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