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Kharitonov’s theorem for interval polynomials is given in terms of orthogonal
polynomials on [0,+∞) and their second kind polynomials. A family of robust
stabilizing controls for the canonical system is proposed.
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Абдон Е. Чоке-Рiверо Теорема Харитонова та робастна стабiлiзацiя,
заснованi на ортогональних полiномах. Представлена теорема Хари-
тонова для iнтервальних полiномiв у термiнах ортогональних полiномiв
на [0,+∞) та їх полiномiв другого роду. Запропонований клас керувань,
якi робастно стабiлiзують канонiчну систему.
Ключовi слова: теорема Харитонова; ортогональнi полiноми; полiноми
Гурвиця; стабiлiзацiя керованих систем.
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теорема Харитонова для интервальных полиномов в терминах ортого-
нальных полиномов на [0,+∞) и их полиномов второго рода. Предложено
семейство управлений, робастно стабилизирующее каноническую систему.
Ключевые слова: теорема Харитонова; ортогональные полиномы; полино-
мы Гурвица; стабилизация управляемых систем.
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1 Introduction

Throughout this paper, let n and m be positive integers. We will use C and
R to denote the set of all complex numbers and the set of all real numbers,
respectively.

The aim of this work is to rewrite Kharitonov’s well-known theorem [26] on
the Hurwitness of interval polynomials through orthogonal polynomials [0,∞) and
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their second kind polynomials; see Proposition 2 and Theorem 2. We will also
construct positional robust controls u = un(x) for the Brunovsky system of degree
n via two sets of Markov parameter sequences or equivalently by using two families
of Hurwitz polynomials; see Definition 8 and Theorem 3.

The motivation for present work comes from two sources. One comes from
the interrelations between the Markov parameters, orthogonal polynomials and
Hurwitz polynomials and their practical application on control theory. The second
comes from the generalization of the indicated results for the matrix case.

The present work is based on the Markov parameter approach which is
thoroughly studied in [20, Chapter XV]. We decisively use the explicit interrelation
between the coefficients of given polynomials and their Markov parameters; see
remark 1 or [10, Lemma 3.1]. This interrelation together with the Hurwitness
criteria in terms of the positive definiteness of two Hankel matrices; see lemma 1
or [10, Theorem 3.4]. The explicit representation of a Hurwitz polynomial through
orthogonal polynomials, allows us to rewrite the Kharitonov theorem on interval
polynomials with the help of orthogonal polynomials; see Proposition 1 or [9,
Theorem 7.10].

In this sense, the following notions play a relevant role for the present paper:

• The truncated Stieltjes moment problem,

• Orthogonal polynomials,

• Hurwitz polynomials.

In contrast to Kharitonov’s theorem, instead of verifying the Hurwitzness of
four polynomials of degree n = 2m (resp. n = 2m+ 1), we propose checking four
polynomials of the degree [n2 ] (resp. [

n+1
2 ]). To this end, the notion of Kharitonov

quadruples is introduced. Roughly speaking, this notion highlights the fact that
every stable interval polynomial can be constructed by two ordered sequences
of Markov parameters. The latter means that the corresponding orthogonal
polynomials and their second kind polynomials satisfy a certain order; see
Definition 8.

The paper contains three conjectures. The first one states that every stable
interval polynomial generates four sequences of ordered Markov parameters. The
second conjecture says that the ordering of the quadruple
(h

(max)
n , g

(max)
n , h

(min)
n , g

(min)
n ) can be written in terms of the degree of the

corresponding interval polynomial pn. Finally, the third conjecture states the
necessary and sufficient conditions for an interval polynomial to be a stable
interval polynomial in terms of the Kharitonov quadruples.

The construction of robust controls of control systems in terms of the
coefficient of certain interval polynomials was considered in [1], [25], [19], and
references therein. In contrast to these works, we apply the Markov parameter
approach. The advantages of using Markov parameters are explained in [22].
These consist mainly of the fact that the stable region in the coefficient space of
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a given polynomial is not convex, while the stable region in terms of the Markov
parameters sj with positive definite Hankel matrices (2) is convex set [24].

Future work can be devoted to the comparison of the descending degree
procedure of the interval polynomial proposed in the present work (as in example
1) with the Routh procedure considered in [3]. Furthermore, future research on the
characterization of two Markov sequences to be ordered sequences which generate
Kharitonov quadruples is relevant. Such characterization could notably improve
Algorithm 3.1.

This work is organized as follows. A brief summary of the truncated Stieltjes
moment problem, orthogonal polynomials and the Hurwitz polynomial are given
in the Introduction. In section 2, the Kharitonov theorem is represented via
orthogonal polynomials on [0,+∞) and their second kind polynomials. An
example of constructing a stable interval polynomial of degree n = 7 starting
from two sequences of Markov parameters is given. Additionally, in remark 4 an
example of a family of interval polynomials is proposed. In section 3, a result
on the construction of stable interval polynomials via orthogonal polynomials is
given; see Theorem 3. In subsection 3.1, an algorithm for the construction of a
robust control is suggested. Following this algorithm, a family of robust controls
is written; see examples 2 and 3. Finally, in section 4, the conclusion and three
conjectures what develop or complete some results of section 2 are presented.

In the subsequent three subsections, we recall the definitions and relevant
results concerning the Stieltjes moment problem, orthogonal polynomials on
[0,+∞) and Hurwitz polynomials.

Note that in [12] the stabilization of the canonical system through orthogonal
polynomials on [0,+∞) is treated.

1.1 The truncated Stieltjes moment problem and extremal solutions

The truncated Stieltjes moment problem is stated as follows: Let n be greater
than or equal to 2. Given a sequence (sj)

n−1
j=0 of real numbers, find the setM of

nondecreasing functions σ of bounded variation on [0,∞) such that

sj =

∫ ∞
0

tjdσ(t), 0 ≤ j ≤ n− 1. (1)

This problem was considered in [29, Page 176 and Page 192].
In case of an infinite sequence (sk)

∞
k=0 with (1) for j ≥ 0, the stated problem

is called the classical Stieltjes moment problem.
Let

H1,j :=


s0 s1 . . . sj
s1 s2 . . . sj+1
...

...
...

...
sj sj+1 . . . s2j

 , H2,j :=


s1 s2 . . . sj+1

s2 s3 . . . sj+2
...

...
...

...
sj+1 sj+2 . . . s2j−1

 . (2)

It is known [16], [17] that the truncated Stieltjes moment problem with given
moments (sj)

2m+1
j=0 (resp. (sj)2mj=0) as a solution if and only if H1,m and H2,m−1
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(resp. H1,m−1 and H2,m−1) are positive semidefinite. In [16], [17], the complete set
of solutions of the truncated Stieltjes moment problem when H1,m and H2,m−1
(resp. H1,m−1 and H2,m−1) are positive definite was given.

With the help of the analytic function in C \ [0,∞)

s(z) :=

∫ ∞
0

dσ(t)

t− z
,

called associated solution with σ ∈ M, the truncated Stieltjes moment problem
is reduced to finding a set of associated analytic functions s ∈ Z such that

s(z) = −s0
z
− s1
z2
− . . .− sn−1

zn
− . . . .

Assume that σ is normalized as σ(t) = σ(t+0)+σ(t−0)
2 , and σ(0) = 0. From the

Stieltjes inverse formula [2, Page 631], one gets a corresponding measure by

σ(t) =
1

π
lim
ε→0

∫ t

0
Im s(x+ iε)dx.

1.2 Orthogonal polynomials on [0,+∞)

Orthogonal polynomials [6], [39] play an important role in a number mathematical
areas. On one hand, orthogonal polynomials have been extensively used in
applications for solving practical problems, such as in signal processing [32] and
in filter design [38], [30]. On the other hand, the zeros of a certain family of
orthogonal polynomials can be interpreted as the electrostatic energy for a system
of a finite number of charges; see [43].

In the present subsection, we focus on truncated families of orthogonal
polynomials on [0,+∞).

Definition 1 The sequence (sj)
2m
j=0 (resp. (sj)2m−1j=0 ) is called a Stieltjes positive

definite sequence if H1,m and H2,m−1 (resp. H1,m−1 and H2,m−1) are positive
definite matrices.

In the sequel, we consider only Stieltjes positive definite sequences.

Definition 2 Let (sj)2m−1j=0 and (sj)
2m
j=0 be Stieltjes positive definite sequences. For

k = 1, 2, let

Dk,j(z) :=


sk−1 sk . . . sj+k−1
sk sk+1 . . . sj+k
. . . . . . . . . . . .

sj+k−2 sj+k−1 . . . s2j+k−2
1 z . . . zj

 ,

Ek,j(z) :=


sk−1 sk . . . sj+k−1
sk sk+1 . . . sj+k
. . . . . . . . . . . .

sj+k−2 sj+k−1 . . . s2j+k−2
ek,0(z) ek,1(z) . . . ek,j(z)

 ,



Вiсник ХНУ, Сер.«Математика, прикладна математика i механiка», том 86 (2017) 53

where (e1,0(z), e1,1(z), . . . , e1,j(z)) := (0,−s0,−zs0 − s1, . . . ,−
∑j−1

l=0 z
j−l−1sl)

and
(e2,0(z), e2,1(z), . . . , e2,j(z)) := (−s0,−zs0 − s1, . . . ,−

∑j
l=0 z

j−lsl).
Denote by p1,0(z) := 1, q1,0(z) := 0, p2,0(z) := 1, and q2,0(z) := s0. For j ≥ 1 and
k = 1, 2, let

pk,j(z) :=
detDk,j(z)

detHk,j−1
, qk,j(z) :=

detEk,j(z)

detHk,j−1
. (3)

The polynomials qk,j are called second kind polynomials.

Note that in [9] a matrix version of pk,j and qk,j is considered. In the proof of [8,
Remark 2.6], the transformation from the matrix form to the determinant form
(3) is performed.

Definition 3 Let n = 2m (resp. n = 2m+ 1). Let σ(t) be a positive distribution
on [0,∞) such that all moments sj :=

∫∞
0 tjdσ(t) are finite for 0 ≤ j ≤ n − 1.

The sequence of monic polynomials (p1,j)
m
j=0∫ ∞

0
p1,j(t)p1,k(t)dσ(t) =

{
0, j 6= k,
cj , j = k,

cj > 0

and respectively∫ ∞
0

p2,j(t)p2,k(t)tdσ(t) =

{
0, j 6= k,
dj , j = k,

dj > 0

are called the sequences of monic orthogonal polynomials on [0,∞) with respect to
dσ(t) (resp tdσ(t)).

For completeness, we recall two special, associated solutions of the truncated
Stieltjes moment problem for n = 2m+1 (resp. n = 2m) called extremal solutions:

s
(2m)
M (z) =:− q1,m(z)

p1,m(z)
, s(2m)

µ (z) =: − q2,m(z)

z p2,m(z)
, (4)

s
(2m−1)
M (z) =:− q1,m(z)

p1,m(z)
, s(2m−1)µ (z) =: − q2,m−1(z)

z p2,m−1(z)
. (5)

These solutions, introduced by Yu. Dyukarev in [18], play a relevant role as proving
Proposition 1.

1.3 Hurwitz polynomials and Markov parameters

The real polynomial of degree n

fn(z) := a0z
n + a1z

n−1 + . . .+ an−1z + an

can be written as with the help of two polynomials hn and gn such that

fn(z) = hn(z
2) + zgn(z

2),
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where

hn(z) :=

{
a0z

m + a2z
m−1 + . . .+ an−2z + an, n = 2m,

a1z
m + a3z

m−1 + . . .+ an−2z + an, n = 2m+ 1,
(6)

gn(z) :=

{
a1z

m−1 + a3z
m−2 + . . .+ an−3z + an−1, n = 2m,

a0z
m + a2z

m−1 + . . .+ an−3z + an−1, n = 2m+ 1.
(7)

A polynomial fn is called a Hurwitz polynomial if all its roots have negative
real parts.

Definition 4 The numbers (sj)
2m−1
j=0 (resp. (sj)2mj=0) appearing in the asymptotic

expansions

g2m(−z)
h2m(−z)

=− s0
z
− s1
z2
− s2
z3
− . . .− s2m−2

z2m−1
− s2m−1

z2m
− . . . , (8)

h2m+1(−z)
(−z) g2m+1(−z)

=− s0
z
− s1
z2
− s2
z3
− . . .− s2m−1

z2m
− s2m
z2m+1

+ . . . . (9)

are called Markov parameters of the polynomials fn

Note that the expansion (8) appears in [20, Chapter XV], meanwhile expansion
(9) was first introduced in [9] in the matrix case.

Here we highlight two of the Hurwitzness criteria.

• The algebraic Routh-Hurwitz criterion [23], [34], [4], which is given in terms
of the coefficients ak, of the polynomial fn. More precisely, one should verify
whether the so-called Hurwitz matrix, constructed by the coefficients ak has
positive principal minors; see [23], [34], [4].

• The Markov parameter criterion [20, Chapter XV] given in terms of the
Markov parameters sk. This criteria consists of finding out whether two
Hankel matrices of the form (2) are positive definite; see lemma 1.

Lemma 1 [10, Theorem 3.4] Let n be greater than or equal to 2. The polynomial
f2m+1 (resp. f2m) is a Hurwitz polynomial if and only if the associated Hankel
matrices H1,m and H2,m−1 (resp. H1,m−1 and H2,m−1) associated with fn are
positive definite matrices.

The following remark proved in [10] allows the calculation of the Markov
parameters sk from the coefficients aj of the polynomial fn.

Remark 1 [10, Lemma 3.1] Let fn be a real polynomial of degree n, and let hn,
gn be as in (6) and (7). The Markov parameter sequence (sj)

2m
j=0 (resp. (sj)2m−1j=0 )

from the relations (8) and (9) is determined by the following equalities:

(s0, s1, . . . , s2m−1)
ᵀ =A−12m(a1, a3, . . . , a2m−1, 0, . . . , 0)

ᵀ, n = 2m, (10)

(s0, s1, . . . , s2m)
ᵀ =A−12m+1(a1, a3, . . . , a2m+1, 0, . . . , 0)

ᵀ, n = 2m+ 1, (11)
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where

An :=


a0 0 . . . 0 0
a2 −a0 . . . 0 0
...

. . . . . . . . . 0
a2(n−1) −a2(n−2) . . . (−1)na2 (−1)n+1a0

 ,

for n ≥ 2 is the n× n matrix with ak = 0 for k > n.

In [9, Theorem 6.1], it was proven that every Hurwitz polynomial can be
written in terms of orthogonal polynomials pk,j , k = 1, 2, on [0,∞) and their
second kind polynomials qk,j ; see [7, Equality E.2]. We reformulate the latter as
a proposition.

Proposition 1 Every real Hurwitz polynomial fn with a0 = 1 admits the
following representation

fn(z) =

{
(−1)m(p1,m(−z2)− z q1,m(−z2)), n = 2m,
(−1)m(q2,m(−z2) + z p2,m(−z2)), n = 2m+ 1.

(12)

Here pk,j, k = 1, 2 are orthogonal polynomials on [0,∞), and qk,j are their second
kind polynomials defined as in Definition 2.

To prove Proposition 1, the subsequent, explicit relation between polynomials hn,
gn as in (6), (7) and orthogonal polynomials (3) was introduced in [9, Pages 78
and 79]:

h2m(z) = (−1)mp1,m(−z), g2m(z) = (−1)m+1q1,m(−z), (13)
g2m+1(z) = (−1)mp2,m(−z), h2m+1(z) = (−1)mq2,m(−z). (14)

2 Kharitonov’s theorem via orthogonal polynomials

In this section, we propose a new form of the Kharitonov theorem which first
appeared in [26] in 1978. This representation consists of writing the h(r)n (resp.
g
(r)
n ) part of each of the four Kharitonov polynomials via a member of a family
of orthogonal polynomials on [0,∞) and their second kind polynomials. Such
a procedure is based on the Markov parameters generated by the Kharitonov
polynomials K(r)

n .
Let δ ∈ Rn+1, and let Pn be a family of monic interval polynomials:

pn(z, δ) :=

n∑
j=0

δn−jz
j , (15)

with
xj ≤ δn−j ≤ yj , j = {0, 1, . . . , n}. (16)
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Denote

h(1)n (z) :=x0 + y2z + x4z
2 + . . . , (17)

g(1)n (z) :=x1 + y3z + x5z
2 + . . . , (18)

h(2)n (z) :=y0 + x2z + y4z
2 + . . . , (19)

and

g(2)n (z) := y1 + x3z + y5z
2 + . . . . (20)

Definition 5 Let pn be an interval polynomial as in (15), and let h(k)n , g(k)n be
polynomials as in (17)-(20). The following four polynomials

K(1)
n (z) =h(1)n (z2) + zg(1)n (z2), (21)

K(2)
n (z) =h(1)n (z2) + zg(2)n (z2), (22)

K(3)
n (z) =h(2)n (z2) + zg(1)n (z2), (23)

and

K(4)
n (z) = h(2)n (z2) + zg(2)n (z2) (24)

are called Kharitonov polynomials of the interval polynomial pn.

Note that the Kharitonov polynomials are usually defined in the following form:

K(1)
n (z) =x0 + x1z + y2z

2 + y3z
3 + x4z

4 + x5z
5 + . . . , (25)

K(2)
n (z) =x0 + y1z + y2z

2 + x3z
3 + x4z

4 + y5z
5 + . . . , (26)

K(3)
n (z) =y0 + x1z + x2z

2 + y3z
3 + y4z

4 + x5z
5 + . . . , (27)

K(4)
n (z) =y0 + y1z + x2z

2 + x3z
3 + y4z

4 + y5z
5 + . . . , (28)

The equivalence between (21)-(23) and (25)-(28) is obvious.

Definition 6 Let α := (α0, α1, . . . , αn) where αj are real numbers. An interval
polynomial pn(z, δ) as in (15) is said to be a stable interval polynomial if for each
αj ∈ [xj , yj ] all the zeros of pn(z, α) are strictly in the left-hand complex plane.

Let us recall the celebrated Kharitonov theorem [26].

Theorem 1 Let pn be an interval polynomial as in (15). Furthermore, let K(r)
n for

r = 1, 2, 3, 4 be Kharitonov polynomials as in Definition 5. The interval polynomial
pn (15) is stable if and only if the four Kharitonov polynomials K(r)

n for r =
1, 2, 3, 4 are stable.
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In the present work, we restrict ourselves to the case where the leading interval
coefficient δ0 is equal to [1, 1].

Definition 7 Let the polynomials h(k)n , g(k)n for k = 1, 2 be defined as in (17)-(20).
For n = 2m, define

s(1)(z) :=
g
(1)
n (−z)
h
(1)
n (−z)

, s(2)(z) :=
g
(2)
n (−z)
h
(1)
n (−z)

, (29)

s(3)(z) :=
g
(1)
n (−z)
h
(2)
n (−z)

, s(4)(z) :=
g
(2)
n (−z)
h
(2)
n (−z)

. (30)

Similarly for n = 2m+ 1, define

s(1)(z) :=
h
(1)
n (−z)

(−z)g(1)n (−z)
, s(2)(z) :=

h
(2)
n (−z)

(−z)g(1)n (−z)
, (31)

s(3)(z) :=
h
(1)
n (−z)

(−z)g(2)n (−z)
, s(4)(z) :=

h
(2)
n (−z)

(−z)g(2)n (−z)
. (32)

Each of these rational functions s(r) can be expanded as in (8) and (9),
respectively. Every sequence (s

(r)
j )n−1j=0 corresponding to such expansions is called

the Markov parameter sequence, which is associated with the polynomial K(r)
n .

Under the assumption that K(r)
n (z) are monic Hurwitz polynomials, we will

prove that the functions s(r)(z) are in fact extremal solutions of truncated Stieltjes
moment problems.

Lemma 2 Let the polynomials K
(r)
n (z) for r = 1, 2, 3, 4 be monic Hurwitz

polynomial, then the following is valid.
a) The Markov parameter sequence (s

(r)
j )n−1j=0 associated with the polynomial K(r)

n

is a truncated Stieltjes positive definite sequence for r = 1, 2, 3, 4.
b) The functions s(r)(z) defined by (29)-(32) are extremal solutions of the
truncated Stieltjes moment problem with (s

(r)
j )n−1j=0 for r = 1, 2, 3, 4.

P r o o f 1 Part a) is a direct consequence of lemma 1. Part b) is verified by
employing (4), (5) and equalities in lines 12, 22 on [9, Page 80].

The following Proposition can be readily verified by applying Proposition 1 for
every r = 1, 2, 3, 4.

Proposition 2 The interval polynomial (15) with δ0 = [1, 1] is stable if and only
if the four Kharitonov polynomials K(r)

n for r = 1, 2, 3, 4 as in (21)-(24) admit
the following representation

K(r)
n (z) =

{
(−1)m(p(r)1,m(−z2)− zq

(r)
1,m(−z2)), n = 2m,

(−1)m(q(r)2,m(−z2) + zp
(r)
2,m(−z2)), n = 2m+ 1

r = 1, 2, 3, 4, (33)
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where p(r)1,m and q(r)1,m (resp. p(r)2,m and q(r)2,m) are orthogonal polynomials on [0,+∞)
and second kind polynomials.

To write Kharitonov’s theorem of two sequences of Markov moments, we
introduce the following notion.

Definition 8 Let n = 2m (resp. n = 2m + 1). Let ((s(min)
j )n−1j=0 , (s

(max)
j )n−1j=0 ) be

Stieltjes positive definite sequences such that s(min)
j ≤ s

(max)
j , 0 ≤ j ≤ n − 1 with

at least one strict inequality. Furthermore, let (p(max)
k,m , q(min)

k,m ), for k = 1, 2, the
polynomials as in Definition 2. The quadruple

P2m := (p
(min)
1,m , q

(min)
1,m , p

(max)
1,m , q

(max)
1,m ) (34)

and
P2m+1 := (p

(min)
2,m , q

(min)
2,m , p

(max)
2,m , q

(max)
2,m ) (35)

are called Kharitonov quadruple if the Markov parameter sequences

((s
(i1)
j )2m−1j=0 , (s

(i2)
j )2m−1j=0 ) (resp. ((s

(i1)
j )2mj=0), (s

(i2)
j )2mj=0)) (36)

generated by(
−
p
(min)
1,m (z)

q
(max)
1,m (z)

,−
p
(max)
1,m (z)

q
(1min)
1,m (z)

)
(resp.

(
−
p
(min)
2,m (z)

zq
(max)
2,m (z)

,−
p
(max)
2,m (z)

zq
(min)
2,m (z)

)
) (37)

are Stieltjes positive definite sequences.

Remark 2 The Markov parameters (36) can be calculated by Laurent series
expansion of the rational functions appearing in (37), respectively.

Alternatively, to determine the Markov parameters (36) one can use remark 1
with

(hn(z), gn(z)) = ((−1)mp(min)
1,m (−z), (−1)m+1q

(min)
1,m (−z)), n = 2m (38)

and

(hn(z), gn(z)) = ((−1)mq(min)
2,m (−z), (−1)mp(min)

2,m (−z)), n = 2m+ 1. (39)

Definition 9 Let n = 2m (resp. n = 2m + 1), and let K(r)
n for r = 1, 2, 3, 4

be the monic Kharitonov polynomials as in Definition 5, which correspond to the
interval polynomial (15) with the leading coefficient δ0 = [1, 1]. Furthermore, let
h
(k)
n , g(k)n for k = 1, 2 be as in (17)-(20). We say that the Kharitonov polynomials
K

(r)
n form a Kharitonov quadruple if between the polynomials h(k)n , g(k)n , k = 1, 2

there are quadruples(
(−1)mh(i1)2m (−z), (−1)m+1g

(i2)
2m (−z), (−1)mh(i3)2m (−z), (−1)m+1g

(i4)
2m (−z)

)
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and(
(−1)mg(i2)2m+1(−z), (−1)

mh
(i1)
2m+1(−z), (−1)

mg
(i4)
2m+1(−z), (−1)

mh
(i3)
2m+1(−z)

)
,

that are Kharitonov quadruples. Here (ij) is one of the superscripts (1) or (2).

Now we state the main result of the present work.

Theorem 2 Let n = 2m (resp. n = 2m + 1) and K
(r)
n for r = 1, 2, 3, 4 be

monic Kharitonov polynomials as in Definition 5. If the polynomials K(r)
n form a

Kharitonov quadruple, then the corresponding interval polynomial pn is a stable
interval polynomial.

P r o o f 2 The proof follows by using Propositon 2 and Equalities (13)-(14).

Note that the converse statement to Theorem 2 appears in Conjecture 3.

The following remark verifies, for 2 ≤ j ≤ 7, some ordering of the pairs
(h

(ik)
j , g

(ik)
j ) appearing in (17)-(20). This ordering allows the identification of the

pairs (h(max)
j , g

(max)
j ) and (h

(min)
j , g

(min)
j ). For j ≥ 7, the corresponding equalities

are stated in Conjecture 2.

Remark 3 Let h(1)n , g(1)n , h(2)n , g(2)n be as in (17)-(20). Furthermore, let the pairs
(h

(i1)
n , g

(i2)
n ) for ik = 1 or ik = 2 with k = 1, 2. be Kharitonov quadruples as in

definition 9. Thus, the following equalities hold.

(h
(max)
2 , g

(max)
2 ) =(h

(2)
2 , g

(2)
2 ), (h

(min)
2 , g

(min)
2 ) = (h

(1)
2 , g

(1)
2 ), (40)

(h
(max)
3 , g

(max)
3 ) =(h

(1)
3 , g

(2)
3 ), (h

(min)
3 , g

(min)
3 ) = (h

(2)
3 , g

(1)
3 ), (41)

(h
(max)
4 , g

(max)
4 ) =(h

(1)
4 , g

(1)
4 ), (h

(min)
4 , g

(min)
4 ) = (h

(2)
4 , g

(2)
4 ), (42)

(h
(max)
5 , g

(max)
5 ) =(h

(2)
5 , g

(1)
5 ), (h

(min)
5 , g

(min)
5 ) = (h

(1)
5 , g

(2)
5 ), (43)

(h
(max)
6 , g

(max)
6 ) =(h

(2)
6 , g

(2)
6 ), (h

(min)
6 , g

(min)
6 ) = (h

(1)
6 , g

(1)
6 ), (44)

(h
(max)
7 , g

(max)
7 ) =(h

(1)
7 , g

(2)
7 ), (h

(min)
7 , g

(min)
7 ) = (h

(2)
7 , g

(1)
7 ). (45)

P r o o f 3 Equalities (40)-(45) can be verified by using lemma 1: see also [10,
Remark 3.1].

Example 1 Let the following Stieltjes positive definite sequences be given

{s(max)
k }6k=0={

19

2
,
913

4
,
49959

8
,
2753481

16
,
151846263

32
,
8374343913

64
,
461849056119

128
}

{s(min)
k }6k=0 ={9,

415

2
, 5538,

596853

4
,
16095575

4
,
868194535

8
, 2926929877}.
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Clearly, s(min)
k < s

(max)
k for 0 ≤ k ≤ 6. The corresponding orthogonal polynomials

and second kind polynomials (see Definition 2) are given by

p
(max)
2,3 (z) =z3 − 63z2

2
+ 111z − 153

2
, q

(max)
2,3 (z) =

19z3

2
− 71z2 +

219z

2
− 12,

p
(min)
2,3 (z) =z3 − 31z2 +

223z

2
− 76, q

(min)
2,3 (z) = 9z3 − 143z2

2
+ 109z − 25

2
.

Let

K
(min)
7 (z) :=− (q

(min)
2,3 (−z2) + z p

(min)
2,3 (−z2)), (46)

K
(max)
7 (z) :=− (q

(max)
2,3 (−z2) + z p

(max)
2,3 (−z2)), (47)

K
(3)
7 (z) :=− (q

(max)
2,3 (−z2) + z p

(min)
2,3 (−z2)), (48)

and

K
(4)
7 (z) :=− (q

(min)
2,3 (−z2) + z p

(max)
2,3 (−z2)). (49)

By applying remark 2, we calculate the Markov parameters

{s(3)k }
6
k=0 ={

19

2
,
447

2
,
23910

4
, 161131,

34763331

8
,
937569489

8
,
50573020801

16
} (50)

{s(4)k }
6
k=0 ={9, 212, 5788, 159466, 4396929,

242490639

2
,
13373470377

4
}. (51)

Next, we verify that (50) and (51) are Stieltjes positive definite sequences; see
Definition 1. Furthermore, we construct the corresponding orthogonal polynomials
p
(3)
2,3, p

(4)
2,3 and their second kind polynomials q(3)2,3, q

(4)
2,3. These are the following:

p
(1)
2,3(z) =z

3 − 31z2 +
223z

2
− 76, q

(1)
2,3(z) =

19z3

2
− 71z2 +

219z

2
− 12,

p
(4)
2,3(z) =z

3 − 63z2

2
+ 111z − 153

2
, q

(4)
2,3(z) = 9z3 − 143z2

2
+ 109z − 25

2
.

By Proposition 1, the corresponding Kharitonov polynomials K(min)
7 , K(max)

7 , K(3)
7

and K(4)
7 are Hurwitz polynomials. Finally, by Theorem 2 the interval polynomial

f7(z, δ) :=δ0z
7 + δ1z

6 + δ2z
5 + δ3z

4 + δ4z
3 + δ5z

2 + δ6z + δ7 (52)

is a stable interval polynomial. Here δ0 ∈ [1, 1], δ1 ∈ [9, 9.5], δ2 ∈ [31, 31.5], δ3 ∈
[71, 71.5], δ4 ∈ [111, 111.5], δ5 ∈ [109, 109.5], δ6 ∈ [76, 76.5] and δ7 ∈ [12, 12.5].

The interval coefficients δj are attained from the coefficients of K(min)
7 , K(max)

7 ,
K

(3)
7 and K(4)

7 , which in fact are the Kharitonov polynomials of f7.
Note that the interval polynomial (52) was considered in [4, Example 5.4,

Chapter 5].
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Remark 4 By using the moments of example 1 and Definition 2, we construct the
polynomials ((p(r)1,m)

3
m=0, (q

(r)
1,m)

3
m=0, (p

(r)
2,m)

3
m=0, (q

(r)
2,m)

3
m=0). With the help of these

polynomials and (12), we establish four finite sequences of Hurwitz polynomials:

f
(r)
k (z) := zk + a

(r)
k,1z

k−1 + . . .+ a
(r)
k,k, r = 1, . . . , 4,

and k ∈ Z6
1. Here Zp1 := {1, 2, . . . , p}. For every k, each interval coefficient of the

interval polynomial is defined by

[min
r∈Z4

1

a
(r)
k,j ,max

r∈Z4
1

a
(r)
k,j ].

The family of stable interval polynomials in descending order with an initial
interval polynomial (52) is then given by

f6(z) =z
6 + [9, 9.5]z5 + [30.57, 30.05]z4 + [66.61, 67.74]z3 + [97.24, 99.18]z2

+ [83.30, 85.84]z + [47.27, 48.74],

f5(z) =z
5 + [9, 9.5]z4 + [29.33, 29.94]z3 + [54.87, 57.75]z2

+ [61.43, 67.49]z + [26.00, 29.92],

f4(z) =z
4 + [9, 9.5]z3 + [28.41, 29.11]z2

+ [46.39, 50.06]z + [38.96, 43.07],

f3(z) =z
3 + [9, 9.5]z2 + [26.69, 27.35]z + [30.63, 33.71],

f2(z) =z
2 + [9, 9.5]z + [23.05, 24.02], f1(z) = z + [9, 9.5].

3 Robust stabilization of the canonical system

Let x := column(x1, x2, . . . , xn). Consider the linear system

ẋ = Anx, (53)

where

An :=


0 1 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . 0 1
−αn −αn−1 . . . −α2 −α1


with αj ∈ [αj , αj ] for 1 ≤ j ≤ n. System (53) represents a linear system subject to
some uncertainties, which may be caused by unknown perturbations with entries
within a given interval; see [25].

Definition 10 Let An be a matrix as in (53).
a) The interval polynomial

pAn(t) := (−1)n(tn + α1t
n−1 + α1t

n−2 + . . .+ αn−1t+ αn) (54)

is called the characteristic interval polynomial of the matrix An.
b) System (53) is called stable if (−1)npAn is a stable interval polynomial.
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Now consider the linear control system

ẋ = Anx+ bnun, (55)

with
bn := column (0, . . . , 0, 1). (56)

Definition 11 The system (55) is robustly stabilizable if there exists a 1 × n
interval matrix γ := −(γ1, γ2, . . . , γn) where γj ∈ [γj , γj ] for 1 ≤ j ≤ n such that
the linear system ẋ = (An + bγ)x is stable. Here

An + bγ =


0 1 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . 0 1
−δn −δn−1 . . . −δ2 −δ1

 ,

with δj = [xj , yj ] and
[xj , yj ] = [αj + γj , αj + γj ]. (57)

The linear interval function

un(x, γ) := −γnx1 − γn−1x2 − . . .− γ1xn (58)

is called the robust stabilizing control of the system (55).

In (57), we used interval arithmetic. For completeness, let us recall endpoint
formulas for the arithmetic operations of intervals; see [31].

Remark 5 Let [a, b] and [c, d] be closed intervals. The addition, subtraction,
multiplication and division of intervals are defined respectively as follows:

[a, b] + [c, d] :=[a+ c, b+ d],

[a, b]− [c, d] :=[a− d, b− c],
[a, b] · [c, d] :=[min{ac, ad, bc, bd},max{ac, ad, bc, bd}],

[a, b]

[c, d]
:=

[
min{a

c
,
a

d
,
b

c
,
b

d
},max{a

c
,
a

d
,
b

c
,
b

d
}
]
, 0 6∈ [c, d].

Remark 6 System (55) with An = An(α) and un = un(x, γ) a is parametric
differential equation

ẋ = An(α)x+ bnun(x, γ). (59)

In turn, differential equation (59) is a special case of the differential equation

ẋ = f(x, α, γ),

where α and γ are parameters taking certain given values within certain closed
intervals. See for example [33, Equality (1)], [21] and [35].
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Now we turn to the problem of the robust stabilization of the Brunovsky system.
Let

A(0)
n :=

(
0n−1×1 In−1

0 01×n−1

)
,

where In and 0p×q denotes the identity matrix and p× q zero matrix. The system

ẋ = A(0)
n x+ bnun (60)

is called the Brunovsky system or canonical system. System (60) is a widely used
control system for the study of the controllability and feedback stabilizability of
linear and nonlinear systems, with the latter after a certain transformation; see
[37], [36]. The Brunovsky system as the basic control model is used for testing
results or approximating more general systems for controllability, time optimal
control and stability problems; see [5], [37], [40], [41], [42], [44], [15], [13], and [11].
In particular, we emphasize the relevance of the controllability function method
created by B.I. Korobov in 1979 [27]. This method allows stabilization at a finite
time of the Brunovksy system and more general control systems under bounded
controls [28]. See also [14].

The following result allows the construction of a robust control that stabilizes
system (60) by employing the Kharitonov quadruples as in Definition 8.

Theorem 3 Let n = 2m (resp. n = 2m + 1). Let pn be the interval polynomial
of the form (15) with interval coefficients δj constructed via the Kharitonov
quadruples (p

(min)
1,m , q

(min)
1,m , p

(max)
1,m , q

(max)
1,m ), respectively (p

(min)
2,m , q

(min)
2,m , p

(max)
2,m , qmax

2,m ).
Thus, the linear interval function

un(x) = −δnx1 − δn−1x2 − . . .− δ1xn (61)

is a robustly stabilizing control for system (60).

P r o o f 4 Let δ(n) := −(δ1, δ2, . . . , δn). Write the positional control un (61) as
un(x) = δ(n)x. Substitute un for un(x) = δ(n)x in (60). The right-hand side of
(60) can be written in the form ẋ = Ãnx, where

Ãn := A(0)
n + bnδ

(n).

The characteristic polynomial of Ãn has the form

p
Ãn

(t) := det(tI − Ãn) = (−1)n(tn + δ1t
n−1 + δ1t

n−2 + . . .+ δn−1t+ δn)

Clearly (−1)np
Ãn

coincides with the stable interval polynomial pn of the form
(15) with coefficients (1, δ1, δ2, . . . , δn). Consequently, the control (61) robustly
stabilizes system (60).
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3.1 An algorithm for constructing a robust control

Let n = 2m (resp. n = 2m+ 1).

1) Find two Stieltjes positive sequences (s
(min)
j )n−1j=0 , (s

(max)
j )n−1j=0 such that

s
(min)
j ≤ s(max)

j with at least one strict inequality.

2) Construct polynomials (p
(min)
1,m , q

(min)
1,m , p

(max)
1,m , q

(max)
1,m ), and (p

(min)
2,m , q(min)

2,m ,

p
(max)
2,m , q(max)

2,m ) as in Definition 2.

3) In the case that the polynomials constructed in 2) form a Kharitonov
quadruple, using lemma 1 and remark 2 calculate the interval coefficients.
In the opposite case, return to Step 1).

4) With the help of (61), write the stabilizing robust control un.

Example 2 Consider the system (60) with n = 7. We use example 1, which in
fact follows the suggested algorithm. Thus, we attain the positional control

u7(x)=−[12.12.5]x1−[76, 76.5]x2−[109, 109.5]x3−[111, 111.5]x4−[71, 71.5]x5
− [31, 31.5]x6 − [9, 9.5]x7,

which robustly stabilizes system (60).

Example 3 As in a similar manner for 2 ≤ n ≤ 6, system (60) can be robustly
stabilized by

u6(x) =− [47.27, 48.47]x1 − [83.3, 85.84]x2 − [97.24, 99.18]x3

− [66.61, 67.74]x4 − [30.57, 30.05]x5 − [9, 9.5]x6,

u5(x) =− [26, 29.92]x1 − [61.43, 67.49]x2 − [54.87, 57.75]x3

− [29.33, 29.94]x4 − [9, 9.5]x5,

u4(x) =− [38.96, 43.07]x1 − [46.39, 50.06]x2 − [28.41, 29.11]x3 − [9, 9.5]x4,

u3(x) =− [30.63, 33.71]x1 − [26.69, 27.35]x2 − [9, 9.5]x3

and

u2(x) =− [23.05, 24.02]x1 − [9, 9.5]x2.

4 Conclusion and conjectures

In the present work, a reformulation of the Kharitonov theorem via quadruple
polynomials is given. A family of decreasing degrees stable interval polynomials
is proposed. With the help of constructed stable interval polynomials, a family of
robust controls is formulated.

Next we present three conjectures concerning the results of section 1.
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Conjecture 1 Let n = 2m (resp. n = 2m + 1) and let pn be a stable interval

polynomial of the form (15). Furthermore, for r = 1, 2, 3, 4 let
(
s
(r)
j

)n−1
j=0

be

Markov parameters
corresponding to Kharitonov polynomials K(r)

n of pn. Thus, the following order
yields

s
(min)
j ≤ s(i2)j ≤ s(i3)j ≤ s(max)

j , 0 ≤ j ≤ n− 1 (62)

where (min), (i2), (i3), and (max) take one of the values 1, 2, 3 or 4. Furthermore,
at least one of the inequalities in (62) is a strict inequality.

Conjecture 2 Let h(1)n , g(1)n , h(2)n , g(2)n be as in (17)-(20). The following equalities
hold.

(h
(max)
4`−2 , g

(max)
4`−2 ) =(h

(2)
4`−2, g

(2)
4`−2), (h

(min)
4`−2 , g

(min)
4`−2 ) = (h

(1)
4`−2, g

(1)
4`−2), (63)

(h
(max)
4`−1 , g

(max)
4`−1 ) =(h

(1)
4`−1, g

(2)
4`−1), (h

(min)
4`−1 , g

(min)
4`−1 ) = (h

(2)
4`−1, g

(1)
4`−1), (64)

(h
(max)
4` , g

(max)
4` ) =(h

(1)
4` , g

(1)
4` ), (h

(min)
4` , g

(min)
4` ) = (h

(2)
4` , g

(2)
4` ), (65)

(h
(max)
4`−3 , g

(max)
4`−3 ) =(h

(2)
4`−3, g

(1)
4`−3), (h

(min)
4`−3 , g

(min)
4`−3 ) = (h

(1)
4`−3, g

(2)
4`−3). (66)

This conjecture is a generalization of remark 3. It says that the superindex (min)
and (max) can be related to the degree of the interval polynomial pn (15).

Conjecture 3 Let n = 2m (resp. n = 2m + 1). The interval polynomial pn is
a stable if and only if the Kharitonov polynomials K(r)

n for r = 1, 2, 3, 4 form
Kharitonov quadruples.

Note that the sufficient condition of Conjecture 3 is proven in Theorem 2.

REFERENCES

1. J. Ackermann, Robust control-system with uncertain physical parameters,
1993. – Springer-Verlag, New York. – 406 p.

2. F.V. Atkinson, Discrete and continuous boundary problems (Russian
translation), 1964. – Mir, Moscow. – 750 p.

3. Bandyopadhyay B., Sreeram V., Shingare P., Stable γ − δ Routh
approximation of interval systems using Kharitonov polynomials. //
International Journal of Information and Systems Sciences, 1996. – 6(4). –
P. 1–12.

4. S.P. Bhattacharyya, H. Chapellat and L.H. Keel, Robust control. The
parametric approach, 1995.– Prentice–Hall. – 672 p.

5. Brunovsky P., A classification of lineal controllable systems. // Kybernetika,
1970. – 6. – P. 176–188.



66 Abdon E. Choque-Rivero

6. T.S. Chihara, An introduction to orthogonal polynomials (Mathematics and
its Applications), 1978. – Dover Publications, INC, New York. – 249 p.

7. Choque Rivero A.E., On Dyukarev’s resolvent matrix for a truncated Stieltjes
matrix moment problem under the view of orthogonal matrix polynomials.
// Linear Algebra Appl., 2015. – 474. – P. 44–109.

8. Choque Rivero A.E., From the Potapov to the Krein-Nudel’man
representation of the resolvent matrix of the truncated Hausdorff matrix
moment problem. // Bol. Soc. Mat. Mexicana, 2015. – 21(2). – P. 233–259.

9. Choque Rivero A.E., On matrix Hurwitz type polynomials and their
interrelations to Stieltjes positive definite sequences and orthogonal matrix
polynomials. // Linear Algebra Appl., 2015. – 476. – P. 56–84.

10. Choque Rivero A.E., Orthogonal polynomials and Hurwitz polynomials
generated by Routh-Markov parameters. // Submitted to Mediterr. J. Math.,
2017. – P. 1–16.

11. Choque Rivero A.E., On the solution set of the admissible control problem
via orthogonal polynomials, // IEEE Trans. Autom. Control, 2017. – 62(10).
– P. 5213–5219.
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32. Sandryhaila A., Kovačević J., Püschel M., Algebraic signal precessing theory:
1-D nearest neighbor models, // IEEE Trans. Signal Process, 2012. – 60(5).
– P. 2247–2259.



68 Abdon E. Choque-Rivero

33. Strebel O., A preprocessing method for parameter estimation in ordinary
differential equations, // Chaos, Solitons and Fractals, 2013. – 57. – P. 93–
104.

34. M.M. Postnikov, Stable polynomials (in Russian), 1981. – Nauka, Moscow.

35. Pulch R., Polynomials chaos for linear differential algebraic equations with
random parameters, // International Journal for Uncertainty Quantification,
2011. – bf 1(3). – P. 223–240.

36. G. Rigatos, Nonlinear control and filtering using differential flatness theory
approaches: Applications to electromechical systems, 2015. – Springer.

37. E.D. Sontag, Mathematical control theory: deterministic finite-dimensional
systems, 1998. – Revised 2nd edition. – Springer.

38. Stojanović N., Stamenković N., Živaljević D., Monotonic, critical monotonic,
and nearly monotonic low-pass filters designed by using the parity relation
for Jacobi polynomials, // Int. J. Circ., 2017. – 12. – P. 1978–1992. DOI:
10.1002/cta.2375
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