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The application of different alternative approaches for building linear regression equations in tasks which
are connected with description of physicochemical parameters of molecules has been described. The Ordi-
nary Least Squares, the Least Absolute Deviation, and the Orthogonal Distances methods are among the
chosen approaches. In tasks, connected with multicollinearity of predictor sets, the principle component re-
gression and Lp-regularization have been applied. The special attention has been given to those ap-
proaches that made possible to reduce the number of predictors (the Ls-regularization, the Least Angles
methods). In case of data with noticeable errors in both dependent and independent variables, the orthogo-
nal distance method has been examined as an alternative to the least square approach. The adequacy of
previously investigated least absolute deviation of orthogonal distances (LADOD) method has been demon-
strated.

Keywords: The Least Squares Method, Least Absolute Deviations method, L1—, Lo— regularization, The
Principle Component Regression, Orthogonal Distance method, Physical-Chemistry molecular properties.

Introduction

More than two hundred years ago the ordinary lest squares (OLS) method, which is cornerstone of
contemporary experimental investigations, has been developed in works of Gauss and Legendre (in the
present article we treated the OLS as a simplest approach for building regression equation). Later,
profound statistical justification of the OLS in conjunction with huge amount of experimental data
demonstrated great significance of the OLS in descriptive and predictive tasks. The wide application
of OLS in chemical science made it possible to construct a set of both purely phenomenological
(correlational) and theoretically justified equations (e.g. [1]). The regression analysis plays a
significant role in the construction of QSAR (Quantitative structure-activity relationship) equations.
Such dependences allow to describe and predict the important physical-chemical characteristics and
biological effect of molecular systems. A lot of regression equations which describe biological activity
can be found for instance, in [2].

Of course, if a) the required equation is theoretically justified, b) the data contains set of linearly
independent descriptors, c) the equation calibrated with the “sufficiently” sized training sample, and e)
there is no significant “noise” in the data, then using the OLS provides an unambiguous solution of the
regression analysis problem. However, in practice, there are much more data sets with a wide spread.
In addition, a typical QSAR problem does not provide any reason to how many and which descriptors
should be included in the desired equation. Thus, we have to deal with a redundant (multicollinear)
descriptor set.

It should be noted that for the present day the statistical science offers alternatives to OLS
approach. They are focused on robust estimations — stability in relation to outliers and
multicollinearity. There are also the regression methods which aim to shrink the set of descriptors.

Some of these approaches are known for a long while. For instance, the least absolute deviation
(LAD) first appeared in 1755, 50 years prior to OLS [3]! But it is surprising that even in present-day
most of calculations of regression equations in chemistry are performed only with the OLS method. In
addition, many of these approaches are not implemented in common statistical packages at all ! Thus,
the possibilities of alternative models for regression equations constructing are still outside of the
scope of chemists.

With this in mind, a package of computer programs with various approaches to construct regression
equations was developed in the present work. We used the programming languages FORTRAN and
Python for effective implementation of different methods. The calculations of different molecular
parameters have been performed for illustrative purposes.
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Methods for calculations of linear regression equations

In this section, we give a brief description of the methods used in the article. Detailed information
can be found in original works (see references in the text). In general, the goal of constructing linear
regressions is to find the coefficients of the following equation (g, ):

y =B, +BX, +B,x, +...+B.X,, (1)
where X1, X,, ... Xy, are independent variables (predictors, descriptors), y is a single dependent variable
(property, system’s response). It is assumed that the equation (1) is calibrated according to the training
(N-size) sample.

Y={y}; X= {Xa,w X, xm,...,xi,m} , i=1L..,N (2)

In the standard OLS method, task of finding the p, coefficients is associated with minimization prob-
lem:

BoLs = argming ||Y - XB"j . 3)

In this expression and below with symbol || . ||2 we denote the Euclidean (L,) norm. Expression (3) can

be transformed to the well-known matrix representation (see, for example [4, 5]):
Bos = (X X)"XY . )
In the eq. (4) X* designates the transposition of matrix of predictors X .
The least absolute deviation method, LAD, is a more robust approach.
BLap = argming ||Y—X|3||1- )
Here | . Il is an absolute value (L,-norm). The feature of LAD is an “automatic” adjustment of weights

for certain data points. Thus, LAD can be interpreted as a “weighted” OLS method, but without the
use of a priori information about data errors. Several algorithms for solving problem (5) are described
in the literature [6].

In the present article we are using an iterative method called “variational-weighted quadratic
approximations” [7,8], which is implemented in the matrix form:

Buap =argming (Y"=B*X")S™ (B)(Y - XB)> (6)
where S7'(B) — pseudoinverse diagonal matrix.

S(B)ij = Sij ’ (7)

Bo+ Zkaik -Yi
k=1

Obviously, the strict reason for applying the LAD method is the Laplace distribution of data errors. An
important feature of LAD is the robustness of the method. However, it is necessary to acknowledge
the drawbacks of the method. There are cases when multiple and degenerate solutions of LAD exist.

In the situations where the initial set of descriptors is deliberately redundant, Tikhonov's
regularization (also known as Ridge-regression) can be used [9,10]. A special feature of the method is
the presence of an additional factor in eq. (3) in the form of an L,-norm ||B||§ =p'p (we will designate

the method as L,-OLS):

B(A),. o = argmin, { Y -Xp|: + x||[3||j} . ®)
The “strength” of the regularizing factor in (8) is determined by the parameter A > 0. In this method,

the problem of explicit (or not explicit) inversion of the matrix (XX ) (4) is solved, even in the case
when it is ill-conditioned or even degenerate. L,-OLS approach makes it possible to obtain a closed
expression for regression coefficients:

BM), ors = (X X+ XY ©
In (9) 1 is an unity matrix.

An analog of L,-OLS is the principal component regression (PCR) method [11]. Formally, the
PCR is described with the same expression as the OLS (3,4). But the inversion of the matrix (X*X) is
performed by using a singular value decomposition (SVD) of the matrix X. In these matrix
manipulations we take into account only “sufficiently large” singular numbers of X (pseudoinversion).
The PCR approach does not attempt to reduce the set of descriptors. In practice, in PCR, as well as in
L,-OLS, a “long”, not easily visualized (and therefore difficult to analyze) equation is usually
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obtained. This equation can include thousands of terms in the form (1), which turns the method into a
“black box” approach.

Also, we should note the distinctive features of PCR and L,-OLS. In the L,-OLS, a smooth
deviation from the solutions of eq. (3) occurs with increase of the regularization parameter . In the
PCR, the solution of eq. (3) changes discretely with removal of terms of the SVD of matrix X. The
most common implementation of PCR ideology is the partial least squares (PLS) method [11,12,13].
Sometimes this abbreviation interpreted as projection to latent structures. The PLS takes into account
the joint factor structure {X,Y}.

The LASSO (Least Absolute Selection and Shrinkage Operator) method [14] is an opposite to PCR.
B(A) asso = argming { ||Y - X|3||§ + 7»"[3"1 } . (10)

Function (10) is similar to (8), however here the regularization factor is an absolute value of regression
parameters [, IB],, =[B|=B"sign(B) - Such a regularization guarantees the shrinkage of descriptor set,

when A > 0. Detailed description of the LASSO and discussion on how and why such shrinkage can be
achieved can be found in [15].

In the elastic net, EN, both (8) and (10) regularization factors have to be included to the minimiza-
tion function [16]. This variant of regression is characterized by numerical stability in the initial stages
of calculation, when the set of descriptors is still large and can be multicollinear.

B, =argmin, | [ X, +2(wf], + - |B]}) | (11)

The parameters A > 0 and 0<a <1 give control of the relative contributions of both L;- and L,- norms
in function (11).

The least angle regression and shrinkage (LARS) [17,18] is a variant of forward stepwise regres-
sion [19]. The classical stepwise regression is a kind of so-called “greedy” algorithms which have
several essential drawbacks. For instance, it cannot include several correlated variables to the regres-
sion. In general, the simple stepwise regression poorly takes into account the factorial structure of the
problem. In the LARS method new predictors are included sequentially (step by step, starting from the
simplest equation y =g, ), and these new predictors should be correlated with the remainder (Y -xp) to

the same degree as those variables that have already been included in the regression. According to
[17], the LARS algorithm does not lose in computational costs to OLS. The most important
peculiarity of modified LARS is a possibility to obtain compact LASSO-solution. For this, an
additional condition is included into the algorithm. While moving to the next predictor, if one of the
coefficients already included to the model (say p,) changes its sign, the movement in this direction is

canceled, p, is equated to zero, and the ¢-th descriptor is excluded from the model (for the details see

[17,18]). In the present article we are using this modified variant of LARS.

It should be noted that in all the above-mentioned regression models (including OLS) it is assumed
that X is error free matrix of predictors. It is common when theoretical indices are used as the
predictors and their values are absolutely determined. However, in the situations when both dependent
and independent parameters are obtained from the experimental measurements (Errors in Variables,
EIV), made with certain error, it is essential to use different specialized approaches.

One among them is the fotal least squares (TLS) which is general case of orthogonal distances re-
gression (ODR) method. In the ODR method, the desired regression equation can be found by
minimizing the sum of the Euclidean distances from the given points to the hyperplane determined by
the regression equation (Fig. 1).

The well-known expression [20] allows one to obtain the form of a minimized ODR-function. In
general, ODR can be implemented both within the frameworks of least squares (ODR as such)”:

Bopy = arg minﬁ{ [y -X[L /(1+18;) } (12)
and in least absolute deviation (Least Absolute Deviation of Orthogonal Distances, LADOD):
Busoon =argmin {|Y - Xg], 1+ Bl | (13)

The latter case, LADOD, has been investigated by us in [21].

) here data is autoscaled, B, =0-
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predictors X,
Figure. 1. Geometrical interpretation of difference between OLS and ODR
(the figure corresponds to the equation y = B, +Bx, + B2X2)~

A remarkable peculiarity of ODR and LADOD is the presence of only one equation which
connects the dependent and all independent variables. Unlike ODR and LADOD in the OLS for the
regression (1), additionally to itself, it is possible to obtain m additional linear equations where the
corresponding predictors take place of the dependent variable.

To evaluate the predictive ability of the obtained equations, we used the well-known formulas for
the determination coefficients (for the discussion see, for instance, ref. [22]):

R2=1—Z(Yi_§i)2/Z(Yi_?)2 (14)
Qzzl_Z(Yi_gli/i)z/Z(Yi_?)z (15)
o_R: -0 (16)

where y — approximated values, y — mean value for sample {y}, y — calculated values which were
obtained for training sample, y. . — «predicted» by leave-one-out cross validation (LOO-CV) proce-
dure. Determination coefficient obtained by LOO-CV (Q?), and @ are important parameters of predic-

tive ability of regression model. Namely, the model is treated as successful when Q*>0.5 and 6<0.3
[23]. For the detailed discussion of predictive ability of QSAR models see refs. [24,25].

Numerical Results

In the present article, before construction of the descriptor set, we optimized the geometry of the
corresponding molecules (with semiempirical method AM1 from GAMESS package [26]). Next, a
number of descriptors was calculated with the PaDEL-Descriptor program [27].

lonization constants of carbonic acids
This problem has been considered as a first test case. To find the equation for pK, (pKa =—logK, ,

where K, — acidity constant at equilibrium) as a function of structural parameters, 15 saturated
carboxylic acids were selected:

HCOOH CH;COOH C,H;COOH C;H,COOH  (CH;),CHCOOH
CH;3(CH,);COOH  (CH;),CHCH,COOH  (CH;);CCOOH CH,FCOOH  CH,CICOOH
CH,BrCOOH CH,ICOOH CHCI,COOH CCI;COOH CF;COOH

Experimental values for pK, (25°C) were taken from [28]. We selected 9 parameters as molecular
descriptors: the charges on oxygen of the carbonyl (x;, a.u.) and hydroxyl (x,, a.u.) groups, on the
hydrogen of hydroxyl group (xs, a.u.), the surface area of the molecule (x4, A%, its volume (xs, A*),
molar refraction (xq, A’), polarizability (x;, A*), Randic index (xs) and informational index of routes in
the graph of the molecule (x9). Hence the equation for pK, should be obtained from the most general
expression:

Y =B +BX; +Box, +o 4+ BoXg (17)
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The selection of the necessary descriptors, from these nine could be done manually from structural
and chemical considerations. Let's see, however, how the L,-OLS and LASSO approaches behave in
this task.

By changing the parameter A in the expressions (8) and (10), we obtain the dependences (Fig. 2)
and (Fig. 3), respectively, which describe the changes of the regression coefficients.

For the sake of comparability of the L,-OLS and LASSO data in both cases we show the
dependence of the regression coefficients g, on the norm IB[l, =8| - As one can see, with fairly strict

limitations (HBHI <0.7) in the LASSO method, only three descriptors out of nine survive — X, X», X3
(Fig. 3). Here B, ~p, and |, > B,|-

Further increasing of A, in the LASSO regression, leads to elimination of all but one parameter — x,
(charge on oxygen of the hydroxyl group). Unlike LASSO, in the L,-OLS method the values of all
coefficients g _ decrease monotonically (Fig. 2). Obviously, the nature of changes g, in the L,-OLS

method does not allow to make conclusion about the significance of a particular descriptor.
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Figure. 2. Regression  coefficients of L,-OLS Figure. 3. Regression coefficients of LASSO method
method in the problem of pK, of carboxylic acids in the problem of pK, of carboxylic acids

Thus, according to the LASSO the most important descriptor is X,. The required equation using the
OLS method has the form:

pK, =—24.44-91.35x,,R*=0.852, s =0.27, Q* =0.805, 6 ~0.05, (18)
while in the LAD:
pK_ =-20.53-79.06x,, R* =0.839, s=0.28, Q> =0.798, 6~ 0.04 . (19)
The equations (18) and (19) can be considered as satisfactory and consistent with each other, including
proximity of standard deviations, s.
Let’s check the equations which include three descriptors selected by LASSO (at ||, 0.7, see

Fig. 3).
OoLsS: pK, =-1.08-19.93x, —46.80x, —67.61x,, R>=0.971, s=0.62, Q* =0.746, (20)
LAD: pK, =-4.28-17.22x, —55.12x, —61.17x,> R*=0.969, s =0.67, Q* =0.201. (21)

As we can see, although OLS is characterized by a rather good value of R?, the predictive ability is
noticeably worse than one of (18) with 6~0.23. At the same time, the LAD (Q? =0.201) equation is

completely inadequate. The poor quality of the LAD approach in this case requires additional
research.

It is usual to see an increase in value of R? as the number of parameters increases. However, it is
not associated with an enhance of the predictive ability of the equation. In the present example the
one-parameter equation based on OLS (18), or LAD (19), should be considered as the best.

The ideology of PCR does not assume an explicit selection of descriptors. Instead of definite
selection of the descriptors, in the PCR adjustable parameter is the number of singular values (n;)
included in the SVD expansion. The results of PCR calculations for different ng are presented in

10
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Fig. 4. It is clear from the picture that at n =1 the PCR equation does not allow reliable estimates
(R*~0.2, Q° ~0.1). With increasing n_ to two, the predictive ability of the method is significantly

enhanced. Further increase of n, does not lead to the significant increase in value of Q2.
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Figure. 4. pK, of organic acids. The R* and Q? as a function of singular values numbers, n_, in PCR.

Thus, the PCR method with only two singular numbers (n, =2, PCR (2)) gives the best regression

equation. We are not presenting here the complicated PCR equation which includes 9 terms in the
expansion. In this example, the merit of LASSO analysis is obvious simplicity of the resulting

regression equation.

The boiling points of organic sulfides (thioethers)

For these calculations we used the training sample with 43 molecules of organic sulfides [29]. As
the training sample contains the same type of molecules with different aliphatic residues, it can be
assumed that to describe the boiling point (BP), only two-dimensional (2D) descriptors would be
sufficient.

These quantities describe the order of bonding of atoms in a molecule — “molecular topology”. We
removed descriptors which have same values for all the molecules of the training sample. After
removing the constant descriptors, a set of 501 descriptors was used in the calculations. L-regularized
methods (LASSO, LARS, EN) allowed us to select the most statistically important values. Based on
these descriptors, models were built within the frameworks of OLS and LAD. Our calculations
showed that the use of single descriptor, namely MLFER L (Solute gas-hexadecane partition
coefficient) [30], is sufficient to describe BP. The corresponding equations have the form.

In OLS: BP(° C)=-52.04+48.58MLFER L, R*=0.982, Q*=0.979, (22)
In LAD: BP(°C)=-49.31+47.75MLFER L, R*=0.981, Q> =0.981. (23)
As one can see the equations are almost identical. Predictive ability of both equations are close to
each other.
The PCR method in this task needed several singular values to achieve the values R* and Q* close
to ones obtained in the OLS (22) and LAD (23) methods (Table. 1). Also, the PCR method leads to

equation which includes the 501 terms in the eq. (1).

Table. 1. Determination coefficients R* and Q” as a function of number of accounted singular values (n,)PCR.

n, R? Q’
1 0.919 0.926
2 0.979 0.978
3 0.981 0.976
4 0.981 0.976
5 0.989 0.985

11
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It is obvious that the one-parameter equations (22,23) are not unique. In order to find alternative and
rather simple equations, we excluded the “good” descriptor (MLFER L) and repeated the calculations.
In Fig. 5 it is shown profiles of p. changes in the LARS method.
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Figure. 5. BP thioethers. Profile of LARS regression coefficients.

As one can see the most important descriptors are SpMAD_Dt (Spectral mean absolute deviation
from detour matrix), ATS31 (Broto-Moreau autocorrelation - lag 3 / weighted by first ionization po-
tential) and 1C, (First-order Informational Contents Index). Detailed information about these parame-
ters can be found in PaDEL-Descriptor manual [27] and in the book [31].

The characteristic of the equations (OLS vs LAD) are presented in the Table. 2. As one can see the
equations have a good predicting ability.

Table 2. Coefficients, R? and Q2 values in alternative equations for thioethers” BP. Methods OLS / LAD, m —
number of descriptors in equation.

m By SpMAD Dt ATS3i IC, R’ Q?

1 -13.02/-17.54 33.83/34.48 - - 0.961/0.958  0.956/0.955
103

2 1.23/2.01 20.98 /21.99 /65'1227.1100_3 - 0.978/0.977  0.974/0.975
103

3 -35.26/-35.71 18.47/19.14 /66‘9737.1100_3 26.64/26.07  0.985/0.984 0.981/0.981

A graphical representation of the relationship “theory (LOO-CV) — experiment” for regression
from LAD method (m = 3) is shown in Fig. 6. We don’t show corresponding plot for OLS, as it coin-
cides with one for LAD (Fig. 6).

[BP(exp)=0.4653+0.9958 BPitheor) |

40 80 ‘ 12IU I wéu I 2EIIEI
BP (predicted)

Figure. 6. Theoretical (LAD) and experimental values of thioethers” BP.
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To validate results obtained in calculation without descriptor MLER L we selected test sample
which consisted of 10 molecules, other 33 molecules were used as a training set to build models in
PCR, OLS, and LAD methods.

We used equation (14) to calculate R* as the metric of external validation for the test sample. It ap-
peared that in the worst case for PCR with the number of latent variables equal to one R?=0.875 .

With higher amount of latent variables R> ~0.97 . In OLS and LAD coefficient R? for the test sample
appeared to be R*~0.9 with one descriptor used in calculation. With increase of the number of de-

scriptors used in calculation R* also tended to increase. Coefficients of internal validation almost did
not change when we decreased the number of molecules in training set from 43 to 33.

Liquid viscosity and saturated vapor pressure of organic compounds
In this part we demonstrate application of orthogonal distance methods (ODR and LADOD). The
correlation between two experimental parameters, viscosity (logn) and saturated vapor pressure of

organic compounds at the temperature 20 °C is considered. Experimental data for 116 different organic
molecules was taken from [32]. Brief analysis shows some level of correlation between these two pa-
rameters, and the biggest deviation from linear dependence is observed only in systems with high vis-
cosity of the corresponding liquids. Of course, such simple dependences cannot be used to describe
liquids with strong intermolecular interactions (e.g. containing strong hydrogen bonds). Nevertheless,
chosen data shows weak linear relation between logn and logP (see Table 3 and Fig. 7). Equations

from LADOD and LAD approaches are almost identical and notably different from ones from OLS
and ODR (Fig. 7). These distinctions come from robustness of the LADOD and LAD methods. On
the last note, even with weakly correlated data, LADOD shows stability towards LOO-CV procedure
with 6~0.

Table 3. Regression coefficients and approximation criteria for dependence of logn (mPa-s) on logP (kPa)

at T =20 °C.
Method Regression coefficients R’ Q? 0
-0.004
oLS Py 0.0043 0.677 0.663 0.014
B, -0.300
By -0.09
LAD 0.629 0.611 0.019
B, -0.257
By 0.0004
ODR 0.676 0.661 0.015
B, -0.312
Bo -0.0870
LADOD 0.634 0.634 0.000
B, -0.262
1.5 4
By
1.0 Tz —E— QLS
—O0—LAD
" - - .ODR

——LADOD
& Data
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Figure. 7. Dependence oflogn (mPa-s) on logP (kPa)at T =20 °C.
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Evaluation of quality of nonempirical computations of phenols’ pK,

Standard approach to demonstrate accuracy of theoretical model is to graphically represent relation
“theory-experiment” and show corresponding equations. In this part we show correlation between
nonempirical computations of phenols’ pK, with experimental data. Theoretical and experimental data
was taken from [33]. We chose two methods of pK, estimations with different basis functions used in
the quantum chemical computations:

Version Neutral Molecule Anion
a CPCM/HF/6-31G(d) CPCM/HF/6-31+G(d)
b CPCM/HF/6-31+G(d) CPCM/HF/6-31+G(d)

Regression model’s computations are presented in Table 4, Table 5 and Fig. 8. Obviously, best
“theory-experiment” relation corresponds to equation with intercept, equal to zero, and slope, equal to
one:

y(theor) — y(exp) (24)
Nonzero value of intercept tells about presence of systematic error, and deviation of slope from one
characterizes discrepancy in quality of pK, calculations of different molecules. From our calculations,
LADOD shows high evaluation of accuracy in pK, calculations, compared to other linear regression
models. LADOD has minimal intercept B, and slope B, =1, highest value of Q* and 6 ~0. LAD

method, compared to LADOD, lowers accuracy of theoretical calculations of pK,. OLS and ODR
also hint on lower predicting ability of ab initio pK, calculations.

Table 4. Regression coefficients and approximation criteria for dependence “theory-experiment”
relation of pK, values (version a).

Method Regression coefficients R’ Q° 0

0.312

OLS Py 0.860 0.816 0.044
B, 0.970
Bo 1.001

LAD 0.855 0.842 0.013
B, 0.898
Bo -0.423

ODR 0.855 0.800 0.055
B, 1.049
Bo 0.050

LADOD 0.859 0.859 0.000
By 1.000

L3

Table 5. Regression coefficients and approximation criteria for dependence “theory-experiment
relation of pK, values (version b).

Method Regression coefficients R’ Q° 0
0.318
OLS Py 0.877 0.833 0.043
B, 0.987
Bo 0.504
LAD 0.867 0.864 0.003
B, 0.977
Bo -0.339
ODR 0.872 0.821 0.051
B, 1.058
Bo 0.290
LADOD 0.868 0.867 0.000
B, 1.000
Conclusion

In conclusion, it is worth to emphasize several important points concerning the regression analysis.
Confronted with an abundance of approaches for construction of regression models, a naturally
occurring problem is choice of appropriate model. Of course, this choice can be made based on a
statistical investigation of the nature of the errors in the particular problem. Subsequent assessments of
the significance of the regression coefficients and the equation as a whole (#-statistics, F-statistics),
calculations of the studentized residuals, estimates of possible outliers, confidence intervals, efc., give

14
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the most complete description of regression dependence. However, the reality of modern QSAR
calculations suggests that a detailed analysis of the nature of the errors is usually impossible due to the
limited data. In addition, the main criterion, characterizing prognostic ability of the equation, is the
adequacy of the calculation’s results with the training and, most importantly, test samples. Therefore,
the methods of sample generation are intensively discussed in modern literature, e.g. LOO-CV, Jack-
knife, bootstrap [34]. Following discussion on predictors selection, it is important to mention the crite-
ria, based on theoretical-informational interpretation of statistical data. Among them are the
information indices AlIC (4kaike Information Criterion) and BIC (Bayesian Information Criterion)
[35].
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Figure. 8. Linear relationship between theoretical estimations of pKa and experimental values for two version of
computations are shown.

Additionally, it should be noted that we did not feature all possible regression approaches that exist
today, but included in the article only those which, in our opinion, constitute certain “reference
points”. The methods such as Genetic Algorithms, Quasi Least Squares, Support Vector Machine
Regression, Recursive Least Squares, Alternating Least Squares, etc. have been out of consideration in
the present article.

Speaking about the problem of choosing regression model in QSAR, we propose a pragmatic
approach, partially demonstrated in this paper. Our approach is based on the fact that today's level of
computer technology allows implementation and usage of different regression models simultaneously
with low computational cost. Registration of significant discrepancies for the test sample calculations
can serve as an indicator of necessity of an additional research of the problem. On the other hand, the
identical results (within the limits of statistical significance) of analyses with different models indicate
the effectiveness of the proposed equation.
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M.I. Berdnyk, M.O. Onizhuk, V.V. Ivanov

M.N. BepaHuk, H.O. OHmxyk, B.B. ViBaHOB. MeToabl NOCTPOEHUS YpaBHEHUA NMHENHOW perpeccum B 3agadvax
«CTPYKTYpa-CBOWCTBO».

MpoaeMOHCTPUPOBaAHO MPUMEHEHME psfa anbTepHaTUBHBLIX MOAXOAO0B K MOCTPOEHUIO YPaBHEHWIN NUHEWHOWN
perpeccun B 3agadvax onucaHus puanKo-XMMMYeckux napameTpoB monekyn. Cpeau paccMOTPEHHbIX NOAXOL4OB
CTaHAapTHbIA MEeTO HaMMEHbLUUX KBAApaToB, METOA HAaUMEHbLLUMX MOAYNEN, METOALI OPTOrOHasbHbLIX PaccTosi-
HUIA. B 3agavax cBsi3aHHbIX C MYNbTUKOMNIMHEAPHOCTLIO B Habope NpeauKTOpoB paccMaTpuBaloTCs MeTon per-
peccumn rnaBHbIX KOMMNOHEHT n Lo—perynapusauusa. Ocoboe BHMMaHue yaoensetcs nogxogam no3BosoLmUM co-
KpaTuUTb KONMYecTBO NPeankTopoB (Li—perynapusauus, MeTon HauMeHbLlUnX yrrnoB). [ns AaHHbIX, COAepKaLLUmMX
MOrpeLIHOCTb U B 3aBMCHMMbIX U B HE3ABMCHMMbIX MEPEMEHHbLIX, B KAYECTBE arnbTepHaTUBbI CTaH4APTHOMY METOAY
HaMMeHbLUUX KBaZpaToOB, pacCMaTpMBAETCA MeTO[ OPTOroHasbHbIX PaccTosiHUi. MNpoaeMOHCTpMpoBaHa afek-
BaTHOCTb UCCINEeA0BaHHOIo paHee MeToaa HanMeHbLUMX MoAYyNe opToroHanbHbix pacctosHuin (LADOD).

KnioueBble crioBa: MeTo[ HaMMeHbLUMX KBaApaToB, METOL HauMeHbLUMX Moaynen, Li—, Lo—perynapusauus,
perpeccus rmaBHbIX KOMMNOHEHT, MeTOL OPTOrOHarbHbIX PACCTOAHMIA, (PU3UKO-XMMUYECKME CBOMCTBA MOSEKY.

M.l. BepaHuk, M.O. OHixyk, B.B. IBaHoB. MeToan nobynoBu piBHsIHb MiHIAHOI perpecii B 3agayax «CTpykTypa-
BNacTUBICTbY.

MpencraBneHo 3acTocyBaHHs psgy anbTepHaTUBHMX NiaxodiB 4o NoOyaoBuM piBHSAHL NiHIMHOI perpecii B 3aaa-
Yyax onucy gisuko-xiMivHUX napameTpis Mmonekyn. Cepen po3rnsiHyTUX NiAXoAiB CTaHAAPTHUA MeTOA HaMEHLLMX
ksagpaTiB (Ordinary Least Squares, OLS) Ta meTtoq HanmeHwux mopaynis (Least Absolute Deviation, LAD). Y
3aBAaHHAX NOB'A3aHMX i3 MYyNbTUKONNIHEAPHICTIO AaHWX B HAOOpi NpeanKTopiB po3rnaaalnTbca MeToan perpecii
ronoBHmx komnoHeHT (Principal Component Regression, PCR) i Lo-perynapusauis (Ridge Regression). Ocobnusy
yBary npuainseTbcs nigxogam siki A03BOMSTb CKOPOTUTU KiMbKicTb npeaukTopiB: Li-perynsipusauis (Least
Absolute Selection and Shrinkage Operator, LASSO) Ta meToa HalimeHwwux kyTiB (Least Angle Regression and
Shrinkage, LARS). [1na gaHux Wwo MiCTsiTb NOXMUOKY i B 3aNeXHUX | B HE3ANEXHUX 3MiHHMX, B SIKOCTi anbTepHaTh-
BM CTaHOApTHOMY MEeTO4Y HaWMeHLUMX KBaaparTiB, po3rnagaeTbca MeTon opToroHansHux BigctaHen (Orthogonal
Distance Regression, ODR). Y cTaTTi JaHO CKOpOYeHWIA ONUC nepepaxoBaHuMX MeToAiB nMobyaoBU perpecinHmx
piBHSIHb Ta 0COBNMBOCTI iX BUKOpUCTaHHA. Ha npuknaai 3agadi onvcy pK, opraHivyHux kapboHOBUX KMCNOT HaBe-
AeHOo TexHiky pospaxyHky metogom LASSO. OTpuMaHi HannpocTili PiBHAHHSA, WO onucyloTb pKa SK YHKLiO
napameTpiB €NeKTPOHHOro po3noginy. [laHo NOpPiBHAHHSA NPOrHOCTUYHOI 3A4aTHOCTI piBHAHb ANS pKa, WO oTpumaHi
y pamkax OLS, LAD ta PCR. Ha npuvknaai 3agavi woao nobyaosu perpecinHoro onucy TemnepaTtypy KuMiHHi
opraHiYHux cynbgifiB BCTAHOBIEHO Kinbka HainpocTiwmx OLS ta LAD piBHSIHb iX NPOrHOCTUYHY 34aTHICTb, Byno
nopiBHsAHO i3 pesynbtatamm PCR. B sikocTi npuknaay nobyaoBu perpeciiHuX piBHSAHb, WO NOB’SI3YHOTb eKcrnepu-
MEHTanbHO 3HanaeHi BenuuuHu, 6yno JocnigXeHo 3anexHOCTi B'A3KOCTi Bid TMCKY HAacU4EHOro napy opraHidyHux
cnonyk. [1na 3HaxooKeHHS LUyKaHUX piBHSHb 6yno BukopucTaHo Metog ODR Ta gocnigxeHui paHille aBTopamu
MeTo4 HanWMeHLMX MoayniB opToroHanbHux BiactaHen (Least Absolute Deviation Orthogonal Distances,
LADOD). B nepepaxoBaHux npobrnemax, a Takox a 3ajayax OLUiHKW afeKBaTHOCTI HEEMMNIPUYHMX PO3pPaxyHKiB
pKa opraHiuyHux kncnot, 6yno npoaeMoHCTPOBaHO pe3ynbTaTuBHicTb Metogy ODR ta LADOD.

KnioyoBi cnoBa: MeTo HanmeHLMX KBagpaTiB, MeTo HanmeHLwmnx mogynis, L1—, Lo—perynsapu3sauis, perpecisa
rONIOBHUX KOMMOHEHT, METO OPTOroHarbHUX BiAcTaHen, Pi3nKo-XiMidHi BMacTUBOCTI MOMNEKYI.
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