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The application of different alternative approaches for building linear regression equations in tasks which 
are connected with description of physicochemical parameters of molecules has been described. The Ordi-
nary Least Squares, the Least Absolute Deviation, and the Orthogonal Distances methods are among the 
chosen approaches. In tasks, connected with multicollinearity of predictor sets, the principle component re-
gression and L2-regularization have been applied. The special attention has been given to those ap-
proaches that made possible to reduce the number of predictors (the L1-regularization, the Least Angles 
methods). In case of data with noticeable errors in both dependent and independent variables, the orthogo-
nal distance method has been examined as an alternative to the least square approach. The adequacy of 
previously investigated least absolute deviation of orthogonal distances (LADOD) method has been demon-
strated. 
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Introduction 

More than two hundred years ago the ordinary lest squares (OLS) method, which is cornerstone of 
contemporary experimental investigations, has been developed in works of Gauss and Legendre (in the 
present article we treated the OLS as a simplest approach for building regression equation). Later, 
profound statistical justification of the OLS in conjunction with huge amount of experimental data 
demonstrated great significance of the OLS in descriptive and predictive tasks. The wide application 
of OLS in chemical science made it possible to construct a set of both purely phenomenological 
(correlational) and theoretically justified equations (e.g. [1]). The regression analysis plays a 
significant role in the construction of QSAR (Quantitative structure-activity relationship) equations. 
Such dependences allow to describe and predict the important physical-chemical characteristics and 
biological effect of molecular systems. A lot of regression equations which describe biological activity 
can be found for instance, in [2]. 

Of course, if a) the required equation is theoretically justified, b) the data contains set of linearly 
independent descriptors, c) the equation calibrated with the “sufficiently” sized training sample, and e) 
there is no significant “noise” in the data, then using the OLS provides an unambiguous solution of the 
regression analysis problem. However, in practice, there are much more data sets with a wide spread. 
In addition, a typical QSAR problem does not provide any reason to how many and which descriptors 
should be included in the desired equation. Thus, we have to deal with a redundant (multicollinear) 
descriptor set. 

It should be noted that for the present day the statistical science offers alternatives to OLS 
approach. They are focused on robust estimations – stability in relation to outliers and 
multicollinearity. There are also the regression methods which aim to shrink the set of descriptors. 

Some of these approaches are known for a long while. For instance, the least absolute deviation 
(LAD) first appeared in 1755, 50 years prior to OLS [3]! But it is surprising that even in present-day 
most of calculations of regression equations in chemistry are performed only with the OLS method. In 
addition, many of these approaches are not implemented in common statistical packages at all ! Thus, 
the possibilities of alternative models for regression equations constructing are still outside of the 
scope of chemists. 

With this in mind, a package of computer programs with various approaches to construct regression 
equations was developed in the present work. We used the programming languages FORTRAN and 
Python for effective implementation of different methods. The calculations of different molecular 
parameters have been performed for illustrative purposes. 

https://doi.org/10.26565/2220-637X-2018-30-01
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Methods for calculations of linear regression equations 

In this section, we give a brief description of the methods used in the article. Detailed information 
can be found in original works (see references in the text). In general, the goal of constructing linear 
regressions is to find the coefficients of the following equation (

k ): 

 
0 1 1 2 2 m my x x ... x       (1) 

where x1, x2, … xm are independent variables (predictors, descriptors), y is a single dependent variable 
(property, system’s response). It is assumed that the equation (1) is calibrated according to the training 
(N-size) sample. 
  i i,1 i,2 i,3 i,mY {y }; X x , x , x ,..., x , i 1,..., N    (2) 

In the standard OLS method, task of finding the 
k  coefficients is associated with minimization prob-

lem: 
 2

OLS 2
arg min Y X    . (3) 

In this expression and below with symbol 
2

  we denote the Euclidean (L2) norm. Expression (3) can 

be transformed to the well-known matrix representation (see, for example [4, 5]): 
 1

OLS (X X) X Y    . (4) 

In the eq. (4) X  designates the transposition of matrix of predictors X . 
The least absolute deviation method, LAD, is a more robust approach. 

 
LAD 1

arg min Y X    . (5) 

Here 
1

  is an absolute value (L1-norm). The feature of LAD is an “automatic” adjustment of weights 

for certain data points. Thus, LAD can be interpreted as a “weighted” OLS method, but without the 
use of a priori information about data errors. Several algorithms for solving problem (5) are described 
in the literature [6]. 

In the present article we are using an iterative method called “variational-weighted quadratic 
approximations” [7,8], which is implemented in the matrix form: 
    1

LAD arg min Y X S ( ) Y X   
      , (6) 

where 1S ( )   – pseudoinverse diagonal matrix. 

 
m

ij ij 0 k ik i
k 1

S( ) x y


       . (7) 

Obviously, the strict reason for applying the LAD method is the Laplace distribution of data errors. An 
important feature of LAD is the robustness of the method. However, it is necessary to acknowledge 
the drawbacks of the method. There are cases when multiple and degenerate solutions of LAD exist. 

In the situations where the initial set of descriptors is deliberately redundant, Tikhonov's 
regularization (also known as Ridge-regression) can be used [9,10]. A special feature of the method is 
the presence of an additional factor in eq. (3) in the form of an L2-norm 2

2

     (we will designate 

the method as L2-OLS): 
  2

2 2

L OLS 2 2
( ) arg min Y X .         (8) 

The “strength” of the regularizing factor in (8) is determined by the parameter 0  . In this method, 

the problem of explicit (or not explicit) inversion of the matrix ( X X ) (4) is solved, even in the case 
when it is ill-conditioned or even degenerate. L2-OLS approach makes it possible to obtain a closed 
expression for regression coefficients: 
 

2

1
L OLS( ) (X X I) X Y  

      (9) 

In (9) I is an unity matrix. 
An analog of L2-OLS is the principal component regression (PCR) method [11]. Formally, the 

PCR is described with the same expression as the OLS (3,4). But the inversion of the matrix ( X X ) is 
performed by using a singular value decomposition (SVD) of the matrix X. In these matrix 
manipulations we take into account only “sufficiently large” singular numbers of X (pseudoinversion). 
The PCR approach does not attempt to reduce the set of descriptors. In practice, in PCR, as well as in 
L2-OLS, a “long”, not easily visualized (and therefore difficult to analyze) equation is usually 
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obtained. This equation can include thousands of terms in the form (1), which turns the method into a 
“black box” approach. 

Also, we should note the distinctive features of PCR and L2-OLS. In the L2-OLS, a smooth 
deviation from the solutions of eq. (3) occurs with increase of the regularization parameter  . In the 
PCR, the solution of eq. (3) changes discretely with removal of terms of the SVD of matrix X. The 
most common implementation of PCR ideology is the partial least squares (PLS) method [11,12,13]. 
Sometimes this abbreviation interpreted as projection to latent structures. The PLS takes into account 
the joint factor structure  X, Y . 

The LASSO (Least Absolute Selection and Shrinkage Operator) method [14] is an opposite to PCR. 
  2

LASSO 2 1
( ) arg min Y X .        (10) 

Function (10) is similar to (8), however here the regularization factor is an absolute value of regression 
parameters β, 

1
sign( )      . Such a regularization guarantees the shrinkage of descriptor set, 

when λ > 0. Detailed description of the LASSO and discussion on how and why such shrinkage can be 
achieved can be found in [15]. 

In the elastic net, EN, both (8) and (10) regularization factors have to be included to the minimiza-
tion function [16]. This variant of regression is characterized by numerical stability in the initial stages 
of calculation, when the set of descriptors is still large and can be multicollinear. 
   2 2

EN 2 1 2
( , ) arg min Y X (1 )             (11) 

The parameters λ > 0 and 0 1    give control of the relative contributions of both L1- and L2- norms 
in function (11). 

The least angle regression and shrinkage (LARS) [17,18] is a variant of forward stepwise regres-
sion [19]. The classical stepwise regression is a kind of so-called “greedy” algorithms which have 
several essential drawbacks. For instance, it cannot include several correlated variables to the regres-
sion. In general, the simple stepwise regression poorly takes into account the factorial structure of the 
problem. In the LARS method new predictors are included sequentially (step by step, starting from the 
simplest equation 

0y   ), and these new predictors should be correlated with the remainder (Y X  ) to 

the same degree as those variables that have already been included in the regression. According to 
[17], the LARS algorithm does not lose in computational costs to OLS. The most important 
peculiarity of modified LARS is a possibility to obtain compact LASSO-solution. For this, an 
additional condition is included into the algorithm. While moving to the next predictor, if one of the 
coefficients already included to the model (say  ) changes its sign, the movement in this direction is 

canceled,   is equated to zero, and the  -th descriptor is excluded from the model (for the details see 

[17,18]). In the present article we are using this modified variant of LARS. 
It should be noted that in all the above-mentioned regression models (including OLS) it is assumed 

that X is error free matrix of predictors. It is common when theoretical indices are used as the 
predictors and their values are absolutely determined. However, in the situations when both dependent 
and independent parameters are obtained from the experimental measurements (Errors in Variables, 
EIV), made with certain error, it is essential to use different specialized approaches. 

One among them is the total least squares (TLS) which is general case of orthogonal distances re-
gression (ODR) method. In the ODR method, the desired regression equation can be found by 
minimizing the sum of the Euclidean distances from the given points to the hyperplane determined by 
the regression equation (Fig. 1). 

The well-known expression [20] allows one to obtain the form of a minimized ODR-function. In 
general, ODR can be implemented both within the frameworks of least squares (ODR as such)*): 
   2 2

ODR 2 2
arg min Y X / 1       (12) 

and in least absolute deviation (Least Absolute Deviation of Orthogonal Distances, LADOD): 
  2

LADOD 1 2
arg min Y X / 1       (13) 

The latter case, LADOD, has been investigated by us in [21]. 

                                                           
*) here data is autoscaled, 

0 0  . 
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Figure. 1. Geometrical interpretation of difference between OLS and ODR 

(the figure corresponds to the equation 
0 1 1 2 2y x x    ). 

 
A remarkable peculiarity of ODR and LADOD is the presence of only one equation which 

connects the dependent and all independent variables. Unlike ODR and LADOD in the OLS for the 
regression (1), additionally to itself, it is possible to obtain m additional linear equations where the 
corresponding predictors take place of the dependent variable. 

To evaluate the predictive ability of the obtained equations, we used the well-known formulas for 
the determination coefficients (for the discussion see, for instance, ref. [22]): 
 2 2 2

i ii
i i

R 1 (y y ) (y y)      (14) 

 2 2 2
i ii/i

i i

Q 1 (y y ) (y y)      (15) 

 2 2R Q    (16) 

where 
iy  – approximated values, y  – mean value for sample 

i{y }, 
iy  – calculated values which were 

obtained for training sample, 
i/iy  – «predicted» by leave-one-out cross validation (LOO-CV) proce-

dure. Determination coefficient obtained by LOO-CV ( 2Q ), and   are important parameters of predic-

tive ability of regression model. Namely, the model is treated as successful when 5.0Q2   and 0.3   
[23]. For the detailed discussion of predictive ability of QSAR models see refs. [24,25]. 

 

Numerical Results 

In the present article, before construction of the descriptor set, we optimized the geometry of the 
corresponding molecules (with semiempirical method AM1 from GAMESS package [26]). Next, a 
number of descriptors was calculated with the PaDEL-Descriptor program [27]. 

 
Ionization constants of carbonic acids 

This problem has been considered as a first test case. To find the equation for pKa ( a apK logK  , 

where Ka – acidity constant at equilibrium) as a function of structural parameters, 15 saturated 
carboxylic acids were selected: 

HCOOH CH3COOH  C2H5COOH C3H7COOH (CH3)2CHCOOH 
CH3(CH2)3COOH (CH3)2CHCH2COOH (CH3)3CCOOH CH2FCOOH CH2ClCOOH 
CH2BrCOOH CH2ICOOH CHCl2COOH CCl3COOH CF3COOH 

Experimental values for pKa (25°C) were taken from [28]. We selected 9 parameters as molecular 
descriptors: the charges on oxygen of the carbonyl (x1, a.u.) and hydroxyl (x2, a.u.) groups, on the 
hydrogen of hydroxyl group (x3, a.u.), the surface area of the molecule (x4, Å

2), its volume (x5, Å
3), 

molar refraction (x6, Å
3), polarizability (x7, Å

3), Randic index (x8) and informational index of routes in 
the graph of the molecule (x9). Hence the equation for pKa should be obtained from the most general 
expression: 
 

9922110 x...xxy   (17) 
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The selection of the necessary descriptors, from these nine could be done manually from structural 
and chemical considerations. Let's see, however, how the L2-OLS and LASSO approaches behave in 
this task. 

By changing the parameter λ in the expressions (8) and (10), we obtain the dependences (Fig. 2) 
and (Fig. 3), respectively, which describe the changes of the regression coefficients. 

For the sake of comparability of the L2-OLS and LASSO data in both cases we show the 
dependence of the regression coefficients 

k  on the norm 
1

   . As one can see, with fairly strict 

limitations ( 7.0
1
 ) in the LASSO method, only three descriptors out of nine survive – x1, x2, x3 

(Fig. 3). Here 
31   and 

32  . 

Further increasing of λ, in the LASSO regression, leads to elimination of all but one parameter – x2 
(charge on oxygen of the hydroxyl group). Unlike LASSO, in the L2-OLS method the values of all 
coefficients 

k  decrease monotonically (Fig. 2). Obviously, the nature of changes 
k  in the L2-OLS 

method does not allow to make conclusion about the significance of a particular descriptor. 

Figure. 2. Regression coefficients of L2-OLS 
method in the problem of pKa of carboxylic acids 

 Figure. 3. Regression coefficients of LASSO method 
in the problem of pKa of carboxylic acids 

 
Thus, according to the LASSO the most important descriptor is х2. The required equation using the 

OLS method has the form: 
 

a 2pK 24.44 91.35x   , 2R 0.852 , s 0.27 , 2Q 0.805 , 0.05  , (18) 

while in the LAD: 
 

a 2pK 20.53 79.06x   , 2R 0.839 , s 0.28 , 2Q 0.798 , 0.04  . (19) 

The equations (18) and (19) can be considered as satisfactory and consistent with each other, including 
proximity of standard deviations, s. 

Let’s check the equations which include three descriptors selected by LASSO (at 
1

0.7  , see 

Fig. 3). 
OLS: 

a 1 2 3pK 1.08 19.93x 46.80x 67.61x     , 2R 0.971 , s 0.62 , 2Q 0.746 , (20) 

LAD: 
a 1 2 3pK 4.28 17.22x 55.12x 61.17x     , 2R 0.969 , s 0.67 , 2Q 0.201 . (21) 

 
As we can see, although OLS is characterized by a rather good value of 2R , the predictive ability is 
noticeably worse than one of (18) with 0.23  . At the same time, the LAD ( 2Q 0.201 ) equation is 
completely inadequate. The poor quality of the LAD approach in this case requires additional 
research. 

It is usual to see an increase in value of R2 as the number of parameters increases. However, it is 
not associated with an enhance of the predictive ability of the equation. In the present example the 
one-parameter equation based on OLS (18), or LAD (19), should be considered as the best. 

The ideology of PCR does not assume an explicit selection of descriptors. Instead of definite 
selection of the descriptors, in the PCR adjustable parameter is the number of singular values (ns) 
included in the SVD expansion. The results of PCR calculations for different ns are presented in 
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Fig. 4. It is clear from the picture that at 
sn 1  the PCR equation does not allow reliable estimates 

( 2 2R 0.2, Q 0.1  ). With increasing 
sn  to two, the predictive ability of the method is significantly 

enhanced. Further increase of 
sn  does not lead to the significant increase in value of 2Q . 

 
Figure. 4. pKa of organic acids. The 2R  and 2Q  as a function of singular values numbers, 

sn , in PCR. 

 
Thus, the PCR method with only two singular numbers (

sn 2 , PCR (2)) gives the best regression 

equation. We are not presenting here the complicated PCR equation which includes 9 terms in the 
expansion. In this example, the merit of LASSO analysis is obvious simplicity of the resulting 
regression equation. 

 
The boiling points of organic sulfides (thioethers) 

For these calculations we used the training sample with 43 molecules of organic sulfides [29]. As 
the training sample contains the same type of molecules with different aliphatic residues, it can be 
assumed that to describe the boiling point (BP), only two-dimensional (2D) descriptors would be 
sufficient. 

These quantities describe the order of bonding of atoms in a molecule – “molecular topology”. We 
removed descriptors which have same values for all the molecules of the training sample. After 
removing the constant descriptors, a set of 501 descriptors was used in the calculations. L1-regularized 
methods (LASSO, LARS, EN) allowed us to select the most statistically important values. Based on 
these descriptors, models were built within the frameworks of OLS and LAD. Our calculations 
showed that the use of single descriptor, namely MLFER_L (Solute gas-hexadecane partition 
coefficient) [30], is sufficient to describe BP. The corresponding equations have the form. 
In OLS: ( C) 52.04 48.58MLFER _ L  BP , 2R 0.982 , 2Q 0.979 , (22) 

In LAD: ( C) 49.31 47.75MLFER _ L  BP , 2R 0.981 , 2Q 0.981 . (23) 
As one can see the equations are almost identical. Predictive ability of both equations are close to 

each other. 
The PCR method in this task needed several singular values to achieve the values R2 and Q2 close 

to ones obtained in the OLS (22) and LAD (23) methods (Table. 1). Also, the PCR method leads to 
equation which includes the 501 terms in the eq. (1). 

 
Table. 1. Determination coefficients R2 and Q2 as a function of number of accounted singular values ( sn ) PCR. 

sn  R2 Q2 

1 0.919 0.926 
2 0.979 0.978 
3 0.981 0.976 
4 0.981 0.976 
5 0.989 0.985 
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It is obvious that the one-parameter equations (22,23) are not unique. In order to find alternative and 
rather simple equations, we excluded the “good” descriptor (MLFER_L) and repeated the calculations. 
In Fig. 5 it is shown profiles of 

i  changes in the LARS method. 

 
Figure. 5. BP thioethers. Profile of LARS regression coefficients. 

 
As one can see the most important descriptors are SpMAD_Dt (Spectral mean absolute deviation 

from detour matrix), ATS3i (Broto-Moreau autocorrelation - lag 3 / weighted by first ionization po-
tential) and IC1 (First-order Informational Contents Index). Detailed information about these parame-
ters can be found in PaDEL-Descriptor manual [27] and in the book [31]. 

The characteristic of the equations (OLS vs LAD) are presented in the Table. 2. As one can see the 
equations have a good predicting ability. 

 
Table 2. Coefficients, R2 and Q2 values in alternative equations for thioethers’ BP. Methods OLS / LAD, m – 

number of descriptors in equation. 

m 0  SpMAD_Dt ATS3i IC1 R2 Q2 

1 -13.02 / -17.54 33.83 / 34.48 – – 0.961/0.958 0.956/0.955 

2 1.23 / 2.01 20.98 / 21.99 
6.12·10-3 

/ 5.27·10-3 
– 0.978/0.977 0.974/0.975 

3 -35.26 / -35.71 18.47 / 19.14 
6.93·10-3 

/ 6.77·10-3 
26.64 / 26.07 0.985/0.984 0.981/0.981 

 
A graphical representation of the relationship “theory (LOO-CV) – experiment” for regression 

from LAD method (m = 3) is shown in Fig. 6. We don’t show corresponding plot for OLS, as it coin-
cides with one for LAD (Fig. 6). 

 
Figure. 6. Theoretical (LAD) and experimental values of thioethers’ BP. 
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To validate results obtained in calculation without descriptor MLER_L we selected test sample 
which consisted of 10 molecules, other 33 molecules were used as a training set to build models in 
PCR, OLS, and LAD methods. 

We used equation (14) to calculate R2 as the metric of external validation for the test sample. It ap-
peared that in the worst case for PCR with the number of latent variables equal to one 2R 0.875 . 

With higher amount of latent variables 2R 0.97 . In OLS and LAD coefficient R2 for the test sample 

appeared to be 2R 0.9  with one descriptor used in calculation. With increase of the number of de-
scriptors used in calculation R2 also tended to increase. Coefficients of internal validation almost did 
not change when we decreased the number of molecules in training set from 43 to 33. 

 
Liquid viscosity and saturated vapor pressure of organic compounds 

In this part we demonstrate application of orthogonal distance methods (ODR and LADOD). The 
correlation between two experimental parameters, viscosity ( log) and saturated vapor pressure of 
organic compounds at the temperature 20 ºС is considered. Experimental data for 116 different organic 
molecules was taken from [32]. Brief analysis shows some level of correlation between these two pa-
rameters, and the biggest deviation from linear dependence is observed only in systems with high vis-
cosity of the corresponding liquids. Of course, such simple dependences cannot be used to describe 
liquids with strong intermolecular interactions (e.g. containing strong hydrogen bonds). Nevertheless, 
chosen data shows weak linear relation between log  and log P  (see Table 3 and Fig. 7). Equations 
from LADOD and LAD approaches are almost identical and notably different from ones from OLS 
and ODR (Fig. 7). These distinctions come from robustness of the LADOD and LAD methods. On 
the last note, even with weakly correlated data, LADOD shows stability towards LOO-CV procedure 
with 0  . 

 
Table 3. Regression coefficients and approximation criteria for dependence of log  (mPa·s) on log P  (kPa) 

at Т = 20 ºС. 
Method Regression coefficients R2 Q2 θ 

0  -0.0043 
OLS 

1  -0.300 
0.677 0.663 0.014 

0  -0.09 
LAD 

1  -0.257 
0.629 0.611 0.019 

0  0.0004 
ODR 

1  -0.312 
0.676 0.661 0.015 

0  -0.0870 
LADOD 

1  -0.262 
0.634 0.634 0.000 

 

 
Figure. 7. Dependence of log  (mPa·s) on log P  (kPa) at Т = 20 ºС. 
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Evaluation of quality of nonempirical computations of phenols’ pKa 
Standard approach to demonstrate accuracy of theoretical model is to graphically represent relation 

“theory-experiment” and show corresponding equations. In this part we show correlation between 
nonempirical computations of phenols’ pKa with experimental data. Theoretical and experimental data 
was taken from [33]. We chose two methods of pKa estimations with different basis functions used in 
the quantum chemical computations: 

Version Neutral Molecule Anion 
а CPCM/HF/6-31G(d) CPCM/HF/6-31+G(d) 
b CPCM/HF/6-31+G(d) CPCM/HF/6-31+G(d) 

Regression model’s computations are presented in Table 4, Table 5 and Fig. 8. Obviously, best 
“theory-experiment” relation corresponds to equation with intercept, equal to zero, and slope, equal to 
one: 

 (theor) (exp)y y  (24) 
Nonzero value of intercept tells about presence of systematic error, and deviation of slope from one 
characterizes discrepancy in quality of pKa calculations of different molecules. From our calculations, 
LADOD shows high evaluation of accuracy in pKa calculations, compared to other linear regression 
models. LADOD has minimal intercept 0  and slope 1 1  , highest value of Q2 and 0  . LAD 

method, compared to LADOD, lowers accuracy of theoretical calculations of pKa. OLS and ODR 
also hint on lower predicting ability of ab initio pKa calculations. 

 
Table 4. Regression coefficients and approximation criteria for dependence “theory-experiment” 

relation of рКа values (version a). 
Method Regression coefficients R2 Q2 θ 

0  0.312 
OLS 

1  0.970 
0.860 0.816 0.044 

0  1.001 
LAD 

1  0.898 
0.855 0.842 0.013 

0  -0.423 
ODR 

1  1.049 
0.855 0.800 0.055 

0  0.050 
LADOD 

1  1.000 
0.859 0.859 0.000 

 
Table 5. Regression coefficients and approximation criteria for dependence “theory-experiment” 

relation of рКа values (version b). 
Method Regression coefficients R2 Q2 θ 

0  0.318 
OLS 

1  0.987 
0.877 0.833 0.043 

0  0.504 
LAD 

1  0.977 
0.867 0.864 0.003 

0  -0.339 
ODR 

1  1.058 
0.872 0.821 0.051 

0  0.290 
LADOD 

1  1.000 
0.868 0.867 0.000 

 

Conclusion 

In conclusion, it is worth to emphasize several important points concerning the regression analysis. 
Confronted with an abundance of approaches for construction of regression models, a naturally 
occurring problem is choice of appropriate model. Of course, this choice can be made based on a 
statistical investigation of the nature of the errors in the particular problem. Subsequent assessments of 
the significance of the regression coefficients and the equation as a whole (t-statistics, F-statistics), 
calculations of the studentized residuals, estimates of possible outliers, confidence intervals, etc., give 
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the most complete description of regression dependence. However, the reality of modern QSAR 
calculations suggests that a detailed analysis of the nature of the errors is usually impossible due to the 
limited data. In addition, the main criterion, characterizing prognostic ability of the equation, is the 
adequacy of the calculation’s results with the training and, most importantly, test samples. Therefore, 
the methods of sample generation are intensively discussed in modern literature, e.g. LOO-CV, Jack-
knife, bootstrap [34]. Following discussion on predictors selection, it is important to mention the crite-
ria, based on theoretical-informational interpretation of statistical data. Among them are the 
information indices AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion) 
[35]. 

 

 
Figure. 8. Linear relationship between theoretical estimations of рКа and experimental values for two version of 

computations are shown. 
 
Additionally, it should be noted that we did not feature all possible regression approaches that exist 

today, but included in the article only those which, in our opinion, constitute certain “reference 
points”. The methods such as Genetic Algorithms, Quasi Least Squares, Support Vector Machine 
Regression, Recursive Least Squares, Alternating Least Squares, etc. have been out of consideration in 
the present article. 

Speaking about the problem of choosing regression model in QSAR, we propose a pragmatic 
approach, partially demonstrated in this paper. Our approach is based on the fact that today's level of 
computer technology allows implementation and usage of different regression models simultaneously 
with low computational cost. Registration of significant discrepancies for the test sample calculations 
can serve as an indicator of necessity of an additional research of the problem. On the other hand, the 
identical results (within the limits of statistical significance) of analyses with different models indicate 
the effectiveness of the proposed equation. 
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М.И. Бердник, Н.О. Онижук, В.В. Иванов. Методы построения уравнений линейной регрессии в задачах 
«структура-свойство». 

Продемонстрировано применение ряда альтернативных подходов к построению уравнений линейной 
регрессии в задачах описания физико-химических параметров молекул. Среди рассмотренных подходов 
стандартный метод наименьших квадратов, метод наименьших модулей, методы ортогональных расстоя-
ний. В задачах связанных с мультиколлинеарностью в наборе предикторов рассматриваются метод рег-
рессии главных компонент и L2–регуляризация. Особое внимание уделяется подходам позволяющим со-
кратить количество предикторов (L1–регуляризация, метод наименьших углов). Для данных, содержащих 
погрешность и в зависимых и в независимых переменных, в качестве альтернативы стандартному методу 
наименьших квадратов, рассматривается метод ортогональных расстояний. Продемонстрирована адек-
ватность исследованного ранее метода наименьших модулей ортогональных расстояний (LADOD). 

Ключевые слова: метод наименьших квадратов, метод наименьших модулей, L1–, L2–регуляризация, 
регрессия главных компонент, метод ортогональных расстояний, физико-химические свойства молекул. 

 

М.І. Бердник, М.О. Оніжук, В.В. Іванов. Методи побудови рівнянь лінійної регресії в задачах «структура-
властивість». 

Представлено застосування ряду альтернативних підходів до побудови рівнянь лінійної регресії в зада-
чах опису фізико-хімічних параметрів молекул. Серед розглянутих підходів стандартний метод найменших 
квадратів (Ordinary Least Squares, OLS) та метод найменших модулів (Least Absolute Deviation, LAD). У 
завданнях пов'язаних із мультиколлінеарністю даних в наборі предикторів розглядаються методи регресії 
головних компонент (Principal Component Regression, PCR) і L2-регуляризація (Ridge Regression). Особливу 
увагу приділяється підходам які дозволяють скоротити кількість предикторів: L1-регуляризація (Least 
Absolute Selection and Shrinkage Operator, LASSO) та метод найменших кутів (Least Angle Regression and 
Shrinkage, LARS). Для даних що містять похибку і в залежних і в незалежних змінних, в якості альтернати-
ви стандартному методу найменших квадратів, розглядається метод ортогональних відстаней (Orthogonal 
Distance Regression, ODR). У статті дано скорочений опис перерахованих методів побудови регресійних 
рівнянь та особливості їх використання. На прикладі задачі опису pKa органічних карбонових кислот наве-
дено техніку розрахунку методом LASSO. Отримані найпростіші рівняння, що описують pKa як функцію 
параметрів електронного розподілу. Дано порівняння прогностичної здатності рівнянь для pKa, що отримані 
у рамках OLS, LAD та PCR. На прикладі задачі щодо побудови регресійного опису температури кипінні 
органічних сульфідів встановлено кілька найпростіших OLS та LAD рівнянь їх прогностичну здатність, було 
порівняно із результатами PCR. В якості прикладу побудови регресійних рівнянь, що пов’язують експери-
ментально знайдені величини, було досліджено залежності в’язкості від тиску насиченого пару органічних 
сполук. Для знаходження шуканих рівнянь було використано метод ODR та досліджений раніше авторами 
метод найменших модулів ортогональних відстаней (Least Absolute Deviation Orthogonal Distances, 
LADOD). В перерахованих проблемах, а також а задачах оцінки адекватності неемпіричних розрахунків 
pKa органічних кислот, було продемонстровано результативність методу ODR та LADOD. 

Ключові слова: метод найменших квадратів, метод найменших модулів, L1–, L2–регуляризація, регресія 
головних компонент, метод ортогональних відстаней, фізико-хімічні властивості молекул. 
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