УДК 512.546

ON THE ISOMORPHISMS OF FREE PARATOPOLOGICAL GROUPS AND FREE HOMOGENEOUS SPACES II

Nazar PYRCH

Ukraine Academy of Printing, 79020, L'viv, Pidgolosko St., 19 e-mail: pnazar@ukr.net

In the paper we prove that a free paratopological group on a T_0 -topological space is a T_0 -topological space. We consider the functors that preserve the isomorphisms of the free (abelian) paratopological groups and free homogeneous spaces.

Key words: free paratopological group, free homogeneous space, isomorphism of paratopological groups, isomorphism of homogeneous spaces.

1. Preliminaries. The paper is a continuation of the paper [11]. All the notations and definition are taken from [11].

In the second section of the paper we prove that a free paratopological group on a T_0 -space is a T_0 -space. The third section is devoted to functors preserving isomorphisms of free (abelian) paratopological groups and free homogeneous spaces. The fourth section contains a method of the reducing of the isomorphic classification of free (abelian) paratopological groups to the isomorphic classification of free (abelian) paratopological groups on T_0 -spaces.

Some results of the paper were announced in [10].

2. Free paratopological groups on T_0 -spaces. For every $n \ge 1$, by D_n we denote the set $\{1, 2, \ldots, n\}$ with the topology $\{\emptyset, U_1, U_2, \ldots, U_n\}$, where $U_k = \{1, 2, \ldots, k\}$.

It was proved in [13, Pr. 3.4] that a Markov free abelian paratopological group on T_0 -space is a T_0 -space.

Theorem 1. A Markov free paratopological group over a T_0 -space is a T_0 -space.

To prove the theorem we need the following lemmas.

Lemma 1. Let X be a T_0 -space, Y a finite non-empty subset of X and n = |Y|. Then there exists a continuous mapping $f: X \to D_n$ such that f|Y is injective.

[©] Pyrch N., 2009

Proof. Let $Y = \{x_1, x_2, ..., x_n\}$, $G = (\mathbb{R}, +)$ and τ be the topology on G with the base $\{[x; +\infty) : x \in \mathbb{R}\}$. Then (G, τ) is a paratopological group [14, Ex. 2.14]. We shall denote this group by \mathbb{R}^* . Since X is a T_0 -space, for each pair $\{i, j\}$ such that $i \neq j$ there exists an open set U_{ij} containing exactly one of the points x_i and x_j . Consider the mapping $f_{ij}: X \to \mathbb{R}^*$ defined by $f_{ij}(U_{ij}) = 2^{ni+j}$ and $f_{ij}(X \setminus U_{ij}) = 0$. The mapping f_{ij} is continuous [13, Lem. 2.3]. Since \mathbb{R}^* is a paratopological group, the mapping $g: X \to \mathbb{R}^*$ such that $g(x) = \sum f_{ij}(x)$ is continuous. Then $f_{ij}(x) = 2^{ni+j}([g(x)/2^{ni+j}] \mod 2)$ for every $x \in X$ and $i \neq j$. Since $f_{ij}(x_i) \neq f_{ij}(x_j)$ provided $i \neq j$, we see that g|Y is an injection. Let $g(Y) = \{a_1, a_2, ..., a_n\}$ where $a_1 > a_2 > \cdots > a_n$. Consider the mapping $h: \mathbb{R}^* \to D_n$ such that h(x) = i, where i = n if $x < a_n$ and i is the smallest number such that $x \geq a_i$ otherwise. It is easy to check that h is continuous. Now we put $f = hg: X \to D_n$. Since g|Y is an injection and $h(a_i) = i$ for each i, the map f|Y is an injection too.

Lemma 2. (T.O. Banakh) A Markov free paratopological group $F_p(D_n)$ is a T_0 -space for every positive integer n.

Proof. It was proved in [13, Pr. 3.4] that a Markov free abelian paratopological group on a T_0 -space is a T_0 -space. Let $\varphi: F_p(D_n) \to A_p(D_n)$ be a continuous homomorphism such that $\varphi(x) = x$ for each $x \in D_n$, K be the commutant of $F_p(D_n)$. Since $A_p(D_n)$ is abelian, $K \subset \ker \varphi$. Let $\pi: F_p(D_n) \to F_p(D_n)/K$ be the quotient homomorphism. Since the group $F_p(D_n)/K$ is abelian, there exists a continuous homomorphism $\psi: A_p(D_n) \to F_p(D_n)/K$ such that $\psi(x) = \pi(x)$ for every $x \in D_n$. Since the group $F_p(D_n)$ is generated by the set D_n , we obtaine $\pi = \psi \varphi$. Then $K = \ker \pi \supset \ker \varphi$, thus $K = \ker \varphi$.

Therefore, in order to prove that $F_p(D_n)$ is a T_0 -space it suffices to construct a topology τ on $F(D_n)$ which separates every point from $K \setminus \{e\}$ and the identity $\{e\}$ of $F_p(D_n)$ and D_n is a subspace of $(F_p(D_n), \tau)$. Using results from [15] it is easy to prove that the group $F_p(D_n)$ is algebraically free over the set D_n . For every word $A \in F_p(D_n)$ let $\varphi_i(A)$ be the sum of degrees of the letters "i" in the word A. Consider the subsemigroup Sof $F_p(D_n)$ generated by $\{e\}$ and the set of all the words $A \in F_p(D_n)$ over the alphabet D_n such that the last nonzero element in the sequence $(\varphi_1(A), \varphi_2(A), \dots, \varphi_n(A))$ is positive. For every $s \in S$ and for every $g \in F_p(D_n)$ we see that $g^{-1}xg \in S$, thus the semigroup Sdefines a semigroup topology τ on $F_p(D_n)$ [14, 2] such that $S \subset \tau$. Then D_n is a subspace of $(F_p(D_n), \tau)$ and the topology τ induces the discrete topology on K.

Proof of the theorem. Using results from [15] it is easy to prove that the group $F_p(X)$ is algebraically free over the set X. Since the space of paratopological group is homogeneous, it is sufficient to prove that for each word $A \in F_p(X)$ over the alphabet X there exists an open set U separating A and the identity of $F_p(X)$. Let $A = x_1^{\epsilon_1} x_2^{\epsilon_2} \dots x_n^{\epsilon_n}$ be a word in the irreducible form and $a_1, a_2, \dots, a_k, k \leq n$, be its letters. Then by Lemmma 1 there exists a continuous mapping $f: X \to D_k$ such that $f(a_i) \neq f(a_j)$ provided $i \neq j$. We may extend the mapping f to a continuous homomorphism $f^*: F_p(X) \to F_p(D_k)$. Then $f^*(A) \neq e_{F_p(D_k)}$. Since $F_p(D_k)$ is a T₀-space, there exists an open set $U \subseteq F_p(D_k)$ containing exactly one of the points $f^*(A)$ and $e_{F_p(D_k)}$. The set $(f^*)^{-1}(U)$ is open and contains exactly one of the points A and $e_{F_p(X)}$. 3. The reflections of spaces and the isomorphisms of free paratopological groups. A topological space is *totally disconnected* if each its quasicomponent is a singleton.

Let T be a class of spaces satisfying the following property:

Let X be a space such that for every $x, y \in X$ there exists $f: X \to Y$, where $Y \in T$ with $f(x) \neq f(y)$, then $X \in T$. (*)

Examples of the classes spaces satisfying property (*) are: T_0 -spaces, T_1 -spaces, T_2 -spaces, functionally Hausdorff spaces, totally disconnected spaces.

A class T of spaces is *hereditary* provided that if $X \in T$ then $Y \in T$ for each subspace Y of X. The following observation was made by T. O. Banakh.

Proposition 1. A class T of spaces satisfies condition (*) if and only if T is a hereditary class closed under Tychonoff products and strengthening of topology.

Let T be a class of spaces satisfying condition (*) and let X be a space. Consider the following equivalence relation on X. Let $x, y \in X$. Put $x \sim_T y$ if and only if f(x) = f(y) for each continuous mapping $f: X \to Y$, where $Y \in T$. The quotient space X/\sim_T is called the *T*-reflection of X and is denoted by TX. If $X \in T$ then the identity homeomorphism $i: X \to X$ separates all pairs of different points of X, thus X = TX.

For some classes T of spaces the equivalence relation \sim_T has an other descriptions. If T_0 is the class of T_0 -spaces and $x, y \in X$ then $x \sim_{T_0} y$ if and only if either x = y or there is no open subset of the space X containing exactly one of the points x, y. If fT_2 is the class of functionally Hausdorff spaces and $x, y \in X$ then $x \sim_{fT_2} y$ if and only f(x) = f(y) for each continuous mapping $f: X \to [0; 1]$, where the segment [0; 1] has the standard topology. If TD is the class of totally disconnected spaces and $x, y \in X$ then $x \sim_{TD} y$ if and only if the points x and y have the same quasicomponent (see also [5, §46, V.]).

Proposition 2. Any class T satisfying condition (*) determines a covariant functor T-from the category of spaces and continuous mappings to the category of spaces from the class T and their continuous mappings.

Proof. Let us check that $TX \in T$ for each space X. Note that for each continuous mapping $f: X \to Y \in T$ there exists a continuous mapping $g: TX \to Y$ such that $f = g \circ t_X$, where $t_X: X \to TX$ is the quotient mapping. Let $x, y \in TX, x \neq y$. Choose points $x_1 \in t_X^{-1}(x), y_1 \in t_X^{-1}(y)$. Then there exists a continuous mapping $f: X \to Y \in T$ such that $f(x_1) \neq f(y_1)$. Then for the above defined g we have that $g(x) \neq g(y)$, therefore $TX \in T$.

Let $f: X \to Y$ be a continuous mapping, $t_X: X \to TX$, $t_Y: Y \to TY$ be the quotient mappings. Let us prove that there exists a unique continuous mapping $g: TX \to TY$ such that $g \circ t_X = t_Y \circ f$. Let $u \in TX$ and $x \in t_X^{-1}(u)$. Put $g(u) = t_Y(f(x))$. Let us check that the mapping g is well-defined. If $z \in t_X^{-1}(u)$ then h(x) = h(z) for all continuous mappings $h: X \to Z$, where $Z \in T$. Since $TY \in T$, we obtain $t_Y(f(x)) = t_Y(f(z))$, and we are done. Since t_X is the quotient mapping and the composition $t_Y \circ f$ is continuous, the mapping t_X is continuous too. Put Tf = q.

It is easy to check that the rule which corresponds a space TX to each space X and a mapping $Tf: TX \to TY$ to each continuous mapping $f: X \to Y$ is a covariant functor.

The functor from Proposition 2 is called the *T*-reflection.

Theorem 2. Let T be a class of spaces satisfying condition (*) such that $F_p(X') \in T$ for each space $X' \in T$. Let X and Y be spaces such that the Markov free paratopological groups $F_p(X)$ and $F_p(Y)$ are topologically isomorphic. Then the quotient mappings $t_X: X \to TX$ and $t_Y: Y \to TY$ are M_p -equivalent and hence the Markov free paratopological groups $F_p(TX)$ and $F_p(TY)$ are topologically isomorphic.

Proof. Let $i: F_p(X) \to F_p(Y)$ be a topological isomorphism, $t_X: X \to TX, t_Y: Y \to TY$ be the quotient mappings, $t_X^*: F_p(X) \to F_p(TX)$ and $t_Y^*: F_p(Y) \to F_p(TY)$ be their homomorphic extensions.

Let us construct a continuous mapping $h: TX \to F_p(TY)$ such that $h \circ t_X = t_Y^* \circ (i|X)$. Let $x' \in TX$. Choose an arbitrary point $x \in X$ such that with $t_X(x) = x'$ and put $h(x') = t_Y^*i(x)$. Let $y \in X$. There is a point $x \in X$ such that $t_X(x) = t_X(y)$ and $ht_X(x) = t_Y^*i(x)$. Thus $ht_X(y) = ht_X(x) = t_Y^*i(x) = t_Y^*i(y)$ since $TY \in T$ and therefore $F_p(TY) \in T$. Thus $h \circ t_X = t_Y^* \circ (i|X)$. The continuity of the mapping h is implied from the continuity of i and t_Y^* and the fact that the mapping t_X is quotient.

Similarly, we can construct a continuous mapping $g: TY \to F_p(TX)$ such that $g \circ t_Y = t_X^* \circ (i^{-1}|Y)$. Let us extend the mappings h, g to the continuous homomorphisms $h^*: F_p(TX) \to F_p(TY)$ and $g^*: F_p(TY) \to F_p(TX)$. Let $x \in X$. Then

$$h^* t_X^*(x) = h^* t_X(x) = h t_X(x) = t_Y^* i(x).$$

Since the group $F_p(X)$ is generated by the set X, we have $h^* \circ t_X^* = t_Y^* \circ i$. Similarly we can show that $g^* \circ t_Y^* = t_X^* \circ i^{-1}$. Since

$$g^* \circ h^* \circ t_X^* = g^* \circ t_Y^* \circ i = t_X^* \circ i^{-1} \circ i = t_X^*,$$

we obtain $g^* \circ h^* = 1_{F_p(TX)}$. Similarly, we can prove that $h^* \circ g^* = 1_{F_p(TY)}$. Thus $h^* \colon F_p(TX) \to F_p(TY)$ is a topological isomorphism. Since $h^* \circ t_X^* = t_Y^* \circ i$, the mappings t_X and t_Y are M_p -equivalent.

Corollary 1. Let T be one of the following clasess:

- T_0 -spaces,
- functionally Hausdorff spaces,
- totally disconnected spaces.

Let X and Y be spaces such that the Markov free paratopological groups $F_p(X)$ and $F_p(Y)$ are topologically isomorphic. Then the Markov free paratopological groups $F_p(TX)$ and $F_p(TY)$ are topologically isomorphic too.

Proof. If X' is a T_0 -space then $F_p(X')$ is a T_0 -space too [12]. If X' is a functionally Hausdorff space then $F_p(X')$ is a functionally Hausdorff space too [13, Pr. 3.8]. If X' is a totally disconnected space then by [13, Pr. 2.15] the quasicomponent of the unit in $F_p(X')$ is a singleton, thus $F_p(X')$ is a totally disconnected space too.

Corollary 2. Let T be a class of spaces satisfying condition (*) such that $F_p(X') \in T$ for each space $X' \in T$. Let X_1, X_2, Y_1, Y_2 be spaces, $f_1: X_1 \to Y_1$ and $f_2: X_2 \to Y_2$ be M_p -equivalent mappings. Then the mappings Tf_1 and Tf_2 are M_p -equivalent. Proof. Let $i: F_p(X_1) \to F_p(X_2)$, $j: F_p(Y_1) \to F_p(Y_2)$ be topological isomorphisms such that $f_2^* \circ i = j \circ f_1^*$. Similarly to the proof of Theorem 2 we can build topological isomorphisms $i_T: F_p(TX_1) \to F_p(TX_2)$ and $j_T: F_p(TY_1) \to F_p(TY_2)$ such that $i_T \circ t_{X_1}^* = t_{X_2}^* \circ i$ and $j_T \circ t_{Y_1}^* = t_{Y_2}^* \circ j$. Proposition 2 implies that $Tf_1 \circ t_{X_1} = t_{Y_1} \circ f_1$ and $Tf_2 \circ t_{X_2} = t_{Y_2} \circ f_2$. If $x \in X_2$ then

$$t_{Y_2}^* f_2^*(x) = t_{Y_2}^* f_2(x) = t_{Y_2} f_2(x) = (Tf_2) t_{X_2}(x) = (Tf_2)^* t_{X_2}(x) = (Tf_2)^* t_{X_2}^*(x) = ($$

Since the group $F_p(X_2)$ is generated by the set X_2 , we have $t^*_{Y_2} \circ f^*_2 = (Tf_2)^* \circ t^*_{X_2}$. Let $x \in X_1$. Then

$$j_T(Tf_1)^* t_{X_1}^*(x) = j_T(Tf_1)^* t_{X_1}(x) = j_T(Tf_1) t_{X_1}(x) = j_T t_{Y_1} f_1(x) = j_T t_{Y_1}^* f_1(x) = t_{Y_2}^* j_f_1(x) = t_{Y_2}^* j_f_1(x) = t_{Y_2}^* j_f_1(x) = (Tf_2)^* t_{X_2}^* i(x) = (Tf_2)^* i_T t_{X_1}^*(x).$$

Since the group $F_p(TX_1)$ is generated by the set $t^*_{X_1}(X_1)$, we obtain $(Tf_2)^* \circ i_T = j_T \circ (Tf_1)^*$. Thus, the mappings Tf_1 and Tf_2 are M_p -equivalent.

If we replace the words "free paratopological group" by the words "free abelian paratopological group" in the Definitions 1.8 and 1.9 from the paper [11] then we obtain the definitions of A_p -equivalent spaces and A_p -equivalent mappings (remark that in the paper [11] the author did misprints in these definitions; there must we written "in Definitions 1.8 and 1.9" instead of "in Definitions 1.10 and 1.11").

Similarly to Theorem 2 we can prove the following

Theorem 3. Let T be a class of spaces satisfying condition (*) such that $A_p(X') \in T$ for each space $X' \in T$. Let X and Y be spaces such that the Markov free abelian paratopological groups $A_p(X)$ and $A_p(Y)$ are topologically isomorphic. Then the quotient mappings $t_X : X \to TX$ and $t_Y : Y \to TY$ are A_p -equivalent and hence the Markov free abelian paratopological groups $A_p(TX)$ and $A_p(TY)$ are topologically isomorphic.

Corollary 3. Let T be one of the following clasess:

- T_0 -spaces,
- T_1 -spaces,
- functionally Hausdorff spaces,
- totally disconnected spaces.

Let X and Y be spaces such that the Markov free abelian paratopological groups $A_p(X)$ and $A_p(Y)$ are topologically isomorphic. Then Markov free abelian paratopological groups $A_p(TX)$ and $A_p(TY)$ are topologically isomorphic too.

Proof. If X' is a T_0 -space then $A_p(X')$ is a T_0 -space too [13, Pr. 3.4]. If X' is a T_1 -space then $A_p(X')$ is a T_1 -space too [12, Pr. 3.5]. If X' is a functionally Hausdorff space then $F_p(X')$ is a functionally Hausdorff space too [13, Pr. 3.8].

Now let X' be a totally disconnected space. We are going to show that the quasicomponent of the zero in $A_p(X')$ is a singleton. Let $x \in A_p(X') \setminus \{0\}$. Then there exists a finite nonempty subset $F \in X'$ and a set $\{n_y : y \in F\}$ of non-zero integers such that $x = \sum \{n_y y : y \in F\}$. Since the space X' is totally disconnected, for every point $y \in F$ there exists a clopen neighborhood $U_y \subset X'$ of y such that $U_y \cap F = \{y\}$. For every point $y \in F$ put $V_y = U_y \setminus \bigcup \{U_{y'} : y' \in F \setminus \{y\}\}$. Then $\{V_y : y \in F\}$ is a family of pairwise disjoint clopen subsets of X'. Let $f : X \to \mathbb{Z}$ be a mapping such that $f(z) = n_y$ if $z \in V_y$ for some $y \in F$ and $F(X' \setminus \bigcup \{V_y : y \in F\}) = \{0\}$. Then f is a continuous mapping. Let $f^*: A_p(X') \to \mathbb{Z}$ be a continuous homomorphic extension of the mapping f. Then $f^*(0) = 0$ but $f^*(x) = \sum \{n_y^2: y \in F\} > 0$. Therefore $f^{*-1}(0)$ is a clopen neighborhood of the zero of the group $A_p(X')$ not containing x. Thus $A_p(X')$ is a totally disconnected space.

Corollary 4. Let T be a class of spaces satisfying condition (*) such that $A_p(X') \in T$ for each space $X' \in T$. Let X_1, X_2, Y_1, Y_2 be spaces, $f_1: X_1 \to Y_1$ and $f_2: X_2 \to Y_2$ be A_p -equivalent mappings. Then the mappings Tf_1 and Tf_2 are A_p -equivalent.

Proof. The proof is similar to the proof of Corollary 2.

Let X_1, X_2, Y_1, Y_2 be spaces. A mapping $f_1 : X_1 \to Y_1$ is called *B*-equivalent to a mapping $f_2 : X_2 \to Y_2$ if there exist isomorphisms $i : H(X_1) \to H(X_2)$ and $j : H(Y_1) \to H(Y_2)$ such that $j \circ \bar{f_1} = \bar{f_2} \circ i$. Recall that here by $H(X) = (H_B(X), G(X), h)$ we denote the free homogeneous space on a space X described in the beginning of [11, Part 2].

We shall need the following

Lemma 3. Let X, Y be spaces and $(i, \varphi) : H(X) \to H(Y)$ be a morphism. Let $n \ge 0$ and $z_1, z_2, \ldots, z_{2n+1} \in H_B(X)$. Then $z = z_1 z_2^{-1} \cdots z_{2n}^{-1} z_{2n+1} \in H_B(X)$ and

$$i(z) = i(z_1)i(z_2)^{-1}\cdots i(z_{2n})^{-1}i(z_{2n+1})$$

Proof. Let $x, y \in H_B(x)$. Then $xy^{-1} \in G(X)$ and since (i, φ) is a morphism,

$$\varphi(xy^{-1}) = i(xy^{-1}y)i(y)^{-1} = i(x)i(y)^{-1}.$$

It is clear that $z \in H_B(X)$. Put $g = z_1 z_2^{-1} \cdots z_{2n}^{-1}$ if n > 0 and g = e if n = 0. Then $g \in G(X)$ and $i(z) = i(gz_{2n+1}) = \varphi(g)i(z_{2n+1})$. Since φ is a homomorphism,

$$\varphi(g) = \varphi(z_1 z_2^{-1}) \cdots \varphi(z_{2n-1} z_{2n}^{-1}) = i(z_1)i(z_2)^{-1} \cdots i(z_{2n-1})i(z_{2n})^{-1}.$$

Corollary 5. Let X, Y be spaces and $(i, \varphi), (j, \psi) : H(X) \to H(Y)$ be morphisms. If i|X = j|X then $(i, \varphi) = (j, \psi)$.

Theorem 4. Let T be a class of spaces satisfying condition (*) such that $H_B(X') \in T$ for each space $X' \in T$. Let X and Y be spaces such that the free homogeneous spaces H(X)and H(Y) are isomorphic. Then the quotient mappings $t_X \colon X \to TX$ and $t_Y \colon Y \to$ TY are B-equivalent and hence the free homogeneous spaces H(TX) and H(TY) are isomorphic.

Proof. Let (i, φ) : $H(X) \to H(Y)$ be an isomorphism of the homogeneous spaces, $t_X: X \to TX, t_Y: Y \to TY$ be the quotient mappings and $\bar{t}_X = (t_X^*, \psi_X): H(X) \to H(TX), \bar{t}_Y = (t_Y^*, \psi_Y): H(Y) \to H(TY)$ be the morphisms constructed from the mappings t_X and t_Y (see [11, Part 2]).

Let us construct a continuous mapping $h: TX \to H_B(TY)$ such that $h \circ t_X = t_Y^* \circ (i|X)$. Let $x' \in TX$. Choose an arbitrary point $x \in X$ such that with $t_X(x) = x'$ and put $h(x') = t_Y^*i(x)$. Let $y \in X$. There is a point $x \in X$ such that $t_X(x) = t_X(y)$ and $ht_X(x) = t_Y^*i(x)$. Thus $ht_X(y) = ht_X(x) = t_Y^*i(x) = t_Y^*i(y)$ because $TY \in T$ and therefore $H_B(TY) \in T$. So $h \circ t_X = t_Y^* \circ (i|X)$. The continuity of the mapping h follows from the continuity of i and t_Y^* and the fact that the mapping t_X is quotient. Similarly, we can construct a continuous mapping $g: TY \to H_B(TX)$ such that $g \circ t_Y = t_X^* \circ (i^{-1}|Y)$. Let $(h^*, \varphi_X): H(TX) \to H(TY), (g^*, \varphi_Y): H(TY) \to H(TX)$ be the morphisms constructed from the mappings h and g. Let $x \in X$. Then

$$h^* t_X^*(x) = h^* t_X(x) = h t_X(x) = t_Y^* i(x).$$

Corollary 5 implies that $h^* \circ t_X^* = t_Y^* \circ i$. Similarly we can show that $g^* \circ t_Y^* = t_X^* \circ i^{-1}$. Since $g^* \circ h^* \circ t_X^* = g^* \circ t_Y^* \circ i = t_X^* \circ i^{-1} \circ i = t_X^*$, $g^* \circ h^* = 1_{H_B(TX)}$. Similarly, we can prove that $h^* \circ g^* = 1_{H_B(TY)}$. Corollary 5 implies that $(h^*, \varphi_X) \circ (g^*, \varphi_Y) = 1_{H(TY)}$ and $(g^*, \varphi_Y) \circ (h^*, \varphi_X) = 1_{H(TX)}$. Hence (h^*, φ_X) is an isomorphism. Since $h^* t_X^* = t_Y^* i$, $\bar{t}_Y \circ (i, \varphi) = h^* \circ \bar{t}_X$ by Corollary 5 and the mappings t_X and t_Y are *B*-equivalent.

Corollary 6. Let T be one of the following clasess:

- T_0 -spaces,
- T_1 -spaces,
- T_2 -spaces,
- functionally Hausdorff spaces,
- totally disconnected spaces.

Let X and Y be spaces such that the free homogeneous spaces H(X) and H(Y) are isomorphic. Then the free homogeneous spaces H(TX) and H(TY) are isomorphic too.

Proof. If T is either the class of T_0 -spaces or the class of totally disconnected spaces or the class of functionally Hausdorff spaces and $X' \in T$ then $F_p(X') \in T$ (see the proof of Corollary 1) and therefore $H_p(X') \in T$ thus $H_B(X') \in T$ by Lemma 1 from [11]. If X' is a T_1 -space then $H_B(X')$ is a T_1 -space too [6]. If X' is a T_2 -space then $H_B(X')$ is a T_2 -space too [7].

Corollary 7. Let T be a class of spaces satisfying condition (*) such that $H_B(X') \in T$ for each space $X' \in T$. Let X_1, X_2, Y_1, Y_2 be spaces, $f_1: X_1 \to Y_1$ and $f_2: X_2 \to Y_2$ be B-equivalent mappings. Then the mappings Tf_1 and Tf_2 are B-equivalent.

Proof. Let $(i, \varphi): H(X_1) \to H(X_2), (j, \psi): H(Y_1) \to H(Y_2)$ be topological isomorphisms such that $\overline{f}_2 \circ (i, \varphi) = (j, \psi) \circ \overline{f}_1$. Similarly to the proof of Theorem 4 we can construct isomorphisms $(i_T, \varphi_T): H(TX_1) \to H(TX_2)$ and $(j_T, \psi_T): H(TY_1) \to H(TY_2)$ such that $(i_T, \varphi_T) \circ \overline{t}_{X_1} = \overline{t}_{X_2} \circ (i, \varphi)$ and $(j_T, \psi_T) \circ \overline{t}_{Y_1} = \overline{t}_{Y_2} \circ (j, \psi)$. Proposition 2 implies that $Tf_1 \circ t_{X_1} = t_{Y_1} \circ f_1$ and $Tf_2 \circ t_{X_2} = t_{Y_2} \circ f_2$. If $x \in X_2$ then

 $t_{Y_2}^* f_2^*(x) = t_{Y_2}^* f_2(x) = t_{Y_2} f_2(x) = (Tf_2) t_{X_2}(x) = (Tf_2)^* t_{X_2}(x) = (Tf_2)^* t_{X_2}^*(x).$

Corollary 5 implies that $t_{Y_2}^* \circ f_2^* = (Tf_2)^* \circ t_{X_2}^*$. Let $x \in X_1$. Then

$$j_T(Tf_1)^* t_{X_1}^*(x) = j_T(Tf_1)^* t_{X_1}(x) = j_T(Tf_1) t_{X_1}(x) = j_T t_{Y_1} f_1(x) = j_T t_{Y_1}^* f_$$

 $= t_{Y_2}^* j f_1(x) = t_{Y_2}^* j f_1^*(x) = t_{Y_2}^* f_2^* i(x) = (Tf_2)^* t_{X_2}^* i(x) = (Tf_2)^* i_T t_{X_1}^*(x).$

Since the set $H_B(TX_1)$ is generated by the set $t^*_{X_1}(X_1)$, we see that $\overline{Tf_2} \circ (i_T, \varphi_T) = (j_T, \psi_T) \circ \overline{Tf_1}$ by Corollary 5. Thus the the mappings Tf_1 and Tf_2 are *B*-equivalent.

4. On T_0 -reflection.

Proposition 3. For each topological space X the quotient mapping t_X has a continuous right inverse.

Proof. Let X_1 be a subset of X such that $X_1 \cap C$ is a singleton for each class C of the relation \sim_{T_0} on X. Define the mapping $f: T_0X \to X_1$ by putting f(x) = y, where $y = t^{-1}(x) \cap X_1$. It is clear that $t_X \circ f$ is the identity mapping on the space TX. Let us check that the mapping f is continuous. Let U be an open subset in X_1 . Let us put $V = \{x \in X :$ there exists a point $y \in U$ such that $x \sim_{T_0} y\}$. Since U is open in X_1 , there exists an open set W in X such that $U = W \cap X_1$. Let us prove that V = W. Suppose that there exists $z \in V \setminus W$. Then there exists $z_1 \in U$ such that $z \sim_{T_0} z_1$. Since the points z and z_1 are not separated by open subsets in X, we see that $z_1 \notin W$. We get a contradiction with the fact that $U = W \cap X_1$. Let $z \in W$. Then there exists $z_1 \in X_1$ such that $z \sim_{T_0} z_1$. Since the points z and z_1 are not separated by open subsets in X, we have $z_1 \in W$, therefore $z_1 \in U$ and $z \in V$. Thus V = W and the set V is open in X. By the construction, $V = t_X^{-1}(f^{-1}(U))$. Since the mapping t_X is quotient and V is open subset in X, we see that $f^{-1}(U)$ is an open subset in T_0X .

Remark 1. Let X be a topological space. Let X_1 be a subset of X such that $X_1 \cap C$ is a singleton for each class C of the relation \sim_{T_0} on X. The above lemma imply that the mapping $t_X|X_1$ is a homeomorphism. Since every neighborhood of the set X_1 coincides with X, the quotient space X/X_1 is antidiscrete. It easy to check that the size of the set X/X_1 does not depend on the choice of X_1 . The cardinal of this size with antidiscrete topology is denoted as the space X/T_0X .

Let (X, x_0) and (Y, y_0) be pointed spaces such that $X \cap Y = \emptyset$. The quotient space $(X \oplus Y)/\{x, y\}$ is called a bouquet of pointed spaces (X, x_0) and (Y, y_0) and is denoted by $(X, x_0) \vee (Y, y_0)$.

Lemma 4. Let X, Y be disjoint spaces, $x_1, x_2 \in X$, $y_1, y_2 \in Y$. Then spaces $(X, x_1) \lor (Y, y_1)$ and $(X, x_2) \lor (Y, y_2)$ are B-equivalent.

Proof. For i = 1, 2 put $K_i = \{x_i, y_i\}$ and define maps $r_i : X \oplus Y \to K_i$ such that $r_i(X) = \{x_i\}$ and $r_i(Y) = \{y_i\}$. Then the maps r_1 and r_2 are parallel retractions. So by [11, Pr. 3] the spaces $(X, x_1) \lor (Y, y_1)$ and $(X, x_2) \lor (Y, y_2)$ are *B*-equivalent.

We shall write sometimes " $X \vee Y$ " instead of " $(X, x_0) \vee (Y, y_0)$ ". We also recall that the *B*-equivalence of spaces implies their M_p -equivalence.

Lemma 5. Let X, Y be spaces and $f: X \to Y$ be a continuous map. Let $f^*: F_p(X) \to F_p(Y)$ be the homomorphic extension of the map f. Then ker f^* is the subgroup N of $F_p(X)$ generated by the set $\{g^{-1}xy^{-1}g: x, y \in X, g \in F_p(X), f(x) = f(y)\}$.

Proof. It is clear that $N \subset \ker f^*$. Now we prove the opposite inclusion. Using results from [15] it is easy to prove that the group $F_p(X)$ is algebraically free over the set Xand the group $F_p(Y)$ is algebraically free over the set Y. If w is an arbitrary element of $F_p(X)$ then $w = x_1^{\varepsilon_1} \cdots x_1^{\varepsilon_1}$ where $\{x_1, \ldots, x_n\} \subset X$ and $\{\varepsilon_1, \ldots, \varepsilon_n\} \subset \{-1, 1\}$. Then by easy induction on n we can prove that if $f^*(w) = e$ then $w \in N$.

Proposition 4. Let X be a nonempty topological space. Then $X \stackrel{M_p}{\sim} (T_0 X \times \{1\} \vee (X/T_0 X) \times \{2\}).$

Proof. Let X_1 be a subset of X such that $X_1 \cap C$ is a singleton for each class C of the relation \sim_{T_0} on X. Put $Z = X_1 \times \{1\} \oplus X \times \{2\}$. Choose an arbitrary point $x_0 \in X$ and put $Z' = Z/\{(x_0, 1), (x_0, 2)\}$ and $\pi : Z \to Z'$ be the quotient mapping.

Define a mapping $r : X \to X_1$ as follows. Let $x \in X$. There is a unique point $x_1 \in X_1$ such that $x_1 \sim_{T_0} x$. Put $r(x) = x_1$. The proof of Proposition 3 implies that $r^{-1}(U)$ is open for each open subset U of X_1 so r is continuous.

Let $t \in \{1,2\}$. Define a mapping $r_t : Z \to Z$ putting $r_t(x,s) = (r(x),t)$ for each $x \in X, s \in \{1,2\}$ such that $(x,s) \in Z$. Since

$$r_t^{-1}(U \times \{t\}) = (r^{-1}(U \cap X_1) \cap X_1) \times \{1\} \cup r^{-1}(U \cap X_1) \times \{2\}$$

for each open set $U \subset X_1$, the mapping r_t is a continuous retraction. Since $r_t((x_0, 1)) = r_t((x_0, 2))$, there exists a mapping $r'_t : Z' \to Z'$ such that $r'_t \pi = \pi r_t$. Since π is the quotient mapping and the mapping $r_t \pi$ is continuous then the mapping r'_t is continuous too.

It is easy to check that r_1 and r_2 are parallel retractions. Let $t, t' \in \{1, 2\}$. Then $r'_t r'_{t'} \pi = r'_t \pi r_{t'} = \pi r_t r_{t'} = \pi r_t = r'_t \pi$. Since the mapping π is surjective then $r'_t r'_{t'} = r'_t$ so the mappings r'_1 and r'_2 are parallel retractions too.

Let $i: Z' \to F_p(Z')$ be the mapping such that $i(z') = r'_1(z')z'^{-1}r'_2(z')$ for each $z' \in Z'$. Let us check that the mapping *i* is continuous. It is sufficient to prove that its restrictions onto $\pi(X_1 \times \{1\})$ and $\pi(X \times \{2\})$ are continuous. If $z \in X_1 \times \{1\}$ then

$$i\pi(z) = r'_1\pi(z) \times \pi(z)^{-1} \times r'_2\pi(z) = \pi r_1(z) \times \pi(z)^{-1} \times \pi r_2(z) =$$
$$= \pi(z) \times \pi(z)^{-1} \times \pi r_2(z) = \pi r_2(z) = r'_2\pi(z).$$

Therefore $i|\pi(X_1 \times \{1\})$ is a continuous map. Now let $z \in X \times \{2\}$. Define a mapping $j: \pi(X \times \{2\}) \to F_p(Z')$ putting $j(z') = z'^{-1}r'_2(z')$ for each $z' \in \pi(X \times \{2\})$. Let us check that the mapping j is continuous. For this purpose we prove that $j\pi(X \times \{2\})$ is an antidiscrete subspace of $F_p(Z')$. It is easy to check that for each point $z' \in \pi(X \times \{2\})$ such that $z' \neq r'_2(z')$ there is no open subset U of Z' such that U contains exactly one of the points z' and $r'_2(z')$. Let z' be an arbitrary point of $\pi(X \times \{2\})$. Let $R_{z'}$ be a subset of $F_p(Z')$ such that $R_{z'} = z'^{-1}\{z', r'_2(z')\} = \{e, j(z')\}$. Thus, by the homogeneity, for each open subset U of $F_p(Z')$ we have the following dichotomy: $R_{z'} \subset U$ or $R_{z'} \subset F_p(Z') \setminus U$. Let V be an open subset of $F_p(Z')$ such that $V \cap j\pi(X \times \{2\}) \neq \emptyset$. Choose a point $z' \in \pi(X \times \{2\})$ such that $j(z') \in V$. Then $R_{z'} \subset V$ so $e \in V$. The dichotomy implies that $R_{u'} \subset V$ for each point $u' \in \pi(X \times \{2\})$ so $j\pi(X \times \{2\}) \subset V$. Since $F_p(Z')$ is a paratopological group and the mappings j and r'_2 are continuous and $i(z') = j(z') \times r'_2(z')$ for each $z' \in \pi(X \times \{2\})$, the mapping i is continuous too.

Denote by $i^*: F_p(Z') \to F_p(Z')$ the continuous homomorphic extension of the mapping *i*. It was proved in [9] that $i^* \circ i^* = 1_{F_p(Z')}$.

Let $t \in \{1,2\}$. Let Y_t be the quotient space $Z'/\pi(X_1 \times \{t\}), p_t : Z' \to Y_t$ be the quotient mapping and $p_t^* \colon F_p(Z') \to F_p(Y_t)$ be the continuous homomorphic extension of p_t . Lemma 5 implies that ker p_t^* is a smallest normal subgroup of $F_p(Z')$ containing the set $\{xy^{-1} : x, y \in Z', f(x) = f(y)\} = \{xy^{-1} : x, y \in \pi(X_1 \times \{t\})\}.$

Let $x \in X_1$. Then $i\pi((x,1)) = r'_2\pi((x,1)) = \pi r_2((x,1)) = \pi((r(x),2)) = \pi((x,2))$. So $i(\pi(X_1 \times \{1\}) = \pi(X_1 \times \{2\})$ and thus $i^*(\ker p_1^*) = \ker p_2^*$. Then Proposition 6 from [11] implies that the spaces Y_1 and Y_2 are M_p -equivalent.

Let $f_1: Z \to X$ be a mapping such that $f_1(x,1) = x_0$ for each $x \in X_1$ and $f_1(x,2) = x$ for each $x \in X$. Using this mapping we can construct a homeomorphism from Y_1 to X.

Let $q_1: X \to X/X_1$ be the quotient mapping, $f_2: Z \to X_1 \times \{1\} \oplus (X/X_1) \times \{2\}$ be a mapping such that $f_1(x_1,1) = (x_1,1)$ for each $x \in X_1$ and $f_2(x,2) = (q_1(x),2)$ for each $x \in X$. Let

$$Y'_2 = X_1 \times \{1\} \oplus (X/X_1) \times \{2\}/\{(x_0, 1), (q_1(x_0), 2)\}$$

and $q: X_1 \times \{1\} \oplus (X/X_1) \times \{2\} \to Y'_2$ be the quotient mapping. Let $f_2 = q\widetilde{f}_2$. Using this mapping we can construct a homeomorphism from Y_2 to Y'_2 .

Since the space X_1 is homeomorphic to the space T_0X and the space X/X_1 is homeomorphic to the space X/T_0X , we obtain that the space Y'_2 is M_p -equivalent to the space $T_0X \times \{1\} \lor (X/T_0X) \times \{2\}$. Thus

$$X \stackrel{M_p}{\sim} Y_1 \stackrel{M_p}{\sim} Y_2 \stackrel{M_p}{\sim} Y_2' \stackrel{M_p}{\sim} T_0 X \times \{1\} \lor (X/T_0 X) \times \{2\}.$$

...

Let X be a pseudometrizable space, and d be a pseudometric generating the topology of X. Then one can easily check that T_0X is a metrizable space.

Corollary 8. Each pseudometrizable space is M_p -equivalent to the bouquet of metrizable and antidiscrete spaces.

Proposition 5. Let X_1 and X_2 be spaces with topologically isomorphic Graev free paratopological groups, Y_1 and Y_2 be spaces with topologically isomorphic Markov free paratopological groups. If $X_i \cap Y_i = \emptyset$ for $i \in \{1,2\}$ then Graev free paratopological groups on spaces $X_1 \oplus Y_1$ and $X_2 \oplus Y_2$ are topologically isomorphic.

Proof. Let i: $FG_p(X_1) \to FG_p(X_2)$ be an isomorphism of the Graev free paratopological groups with distinguished points $a_i \in X_i$, $i = 1, 2, j: F_p(Y_1) \to F_p(Y_2)$ be an isomorphism of the Markov free paratopological groups.

Let $t \in \{1,2\}$. Let $i_{Xt} : X_t \to X_t \oplus Y_t$ and $i_{Yt} : Y_t \to X_t \oplus Y_t$ be the identity embeddings, and $i_{Xt}^*: FG_p(X_t) \to FG_p(X_t \oplus Y_t, a_t)$ and $i_{Yt}^*: F_p(Y_t) \to FG_p(X_t \oplus Y_t, a_t)$ be their extensions to the continuous homomorphisms of paratopological groups.

Consider the mapping $k: X_1 \oplus Y_1 \to FG_p(X_2 \oplus Y_2)$ defined as $k(z) = i_{X_2}^* i(z)$ if $z \in X_1$ and $k(z) = i_{Y2}^* j(z)$, if $z \in Y_1$. Similarly to [4, Pr. 8.8] one can check that the extension of the mapping k to the continuous homomorphism $k^* \colon FG_p(X_1 \oplus Y_1) \to FG_p(X_2 \oplus Y_2)$ is a topological isomorphism of the Graev free paratopological groups $FG(X_1 \oplus Y_1)$ and $FG(X_2 \oplus Y_2)$ with the distinguished points $a_i \in X_i \oplus Y_i$.

Proposition 6. Let X_1 and X_2 be spaces with topologically isomorphic Graev free abelian paratopological groups, Y_1 and Y_2 spaces with topologically isomorphic Markov free abelian paratopological groups. If $X_i \cap Y_i = \emptyset$ for $i \in \{1, 2\}$ then Graev free abelian paratopological groups on spaces $X_1 \oplus Y_1$ and $X_2 \oplus Y_2$ are topologically isomorphic.

Proof. The proof is similar to the proof of the previous proposition.

Corollary 9. Let X_1 and X_2 be nonempty topological spaces with topologically isomorphic Markov free paratopological groups, Y be a nonempty topological space such that $Y \cap (X_1 \cup X_2) = \emptyset$. Then Markov free paratopological groups on spaces $X_1 \vee Y$ and $X_2 \vee Y$ are topologically isomorphic.

Proof. By Proposition 5 we have that Graev free paratopological groups on the spaces $X_1 \oplus Y$ and $X_2 \oplus Y$ are topologically isomorphic. Similarly to [3, §5] one can check that Graev free paratopological groups on the spaces $X_i \oplus Y$ and $(X_i \vee Y)^+$ are topologically isomorphic. Since Graev free paratopological group on the space X^+ is naturally isomorphic to the Markov free paratopological group on the space X,

$$F_p(X_1 \lor Y) \simeq FG_p((X_1 \lor Y)^+) \simeq FG_p(X_1 \oplus Y) \simeq$$
$$\simeq FG_p(X_2 \oplus Y) \simeq FG_p((X_2 \lor Y)^+) \simeq F_p(X_2 \lor Y).$$

Corollary 10. Let X_1 and X_2 be nonempty topological spaces with topologically isomorphic Markov free abelian paratopological groups, Y be a nonempty topological space such that $Y \cap (X_1 \cup X_2) = \emptyset$. Then Markov free abelian paratopological groups on spaces $X_1 \vee Y$ and $X_2 \vee Y$ are topologically isomorphic.

Proof. The proof is similar to the proof of the previous corollary.

Theorem 5. Topological spaces X and Y are A_p -equivalent if and only if $T_0X \stackrel{A_p}{\sim} T_0Y$ and $X/T_0X = Y/T_0Y$.

Proof. Without loss of the generality it suffices to consider only the case $X \neq \emptyset$ and $Y \neq \emptyset$.

Sufficiency. Since $A_p(T_0X) \simeq A_p(T_0Y)$ and $X/T_0X = Y/T_0Y$, Corollary 10 implies that $A_p(T_0X \times \{1\} \lor (X/T_0X) \times \{2\}) \simeq A_p(T_0Y \times \{1\} \lor (Y/T_0Y) \times \{2\})$. Since the M_p -equivalence of two spaces implies the A_p -equivalence,

$$A_p(X) \simeq A_p(T_0 X \times \{1\} \lor (X/T_0 X) \times \{2\})$$

and $A_p(Y) \simeq A_p(T_0Y \times \{1\} \lor (Y/T_0Y) \times \{2\})$ by proposition 4. Thus

$$X \stackrel{A_p}{\sim} T_0 X \times \{1\} \lor (X/T_0 X) \times \{2\} \stackrel{A_p}{\sim} T_0 Y \times \{1\} \lor (Y/T_0 Y) \times \{2\} \stackrel{A_p}{\sim} Y.$$

Necessity. Let X and Y be A_p -equivalent. Then Corollary 3 implies that $T_0 X \stackrel{A_p}{\sim} T_0 Y$. Theorem 3 implies that the quotient mappings $t_X \colon X \to T_0 X$ and $t_Y \colon Y \to T_0 Y$ be A_p -equivalent. Since ker t_X^* is an algebraically free abelian group on the set of generators with cardinality $X/T_0 X$, $X/T_0 X = 1 + \operatorname{rank} \ker t_X^* = 1 + \operatorname{rank} \ker t_Y^* = Y/T_0 Y$.

Theorem 6. Topological spaces X and Y are M_p -equivalent if and only if $T_0 X \stackrel{M_p}{\sim} T_0 Y$ and $X/T_0 X = Y/T_0 Y$.

Proof. The proof of the necessity is similar to the abelian case. Let us prove the sufficiency. Let X and Y be M_p -equivalent. Then Corollary 1 implies that $T_0X \stackrel{M_p}{\sim} T_0Y$. Since the spaces X and Y are A_p -equivalent, Theorem 5 implies that $X/T_0X = Y/T_0Y$.

Bel'nov V. K. On the dimension of the topologically homogenous spaces and free homogeneous spaces / Bel'nov V. K. // Dokl. Acad. Nauk SSSR. - 1978. - V. 238, №4. - P. 781-784.

- 2. Engelking R. General topology / Engelking R. // Moscow. Mir, 1986. 751 p.
- Graev M. I. Free topological groups / Graev M. I. // Izvestiya Akad. Nauk SSSR Ser.Mat. - 1948. - V. 12. - P. 279-381.
- Guran I. Y. To the theory of the topological groups / Guran I. Y., Zarichniy M. M. // Kiyv, 1991. - 75 p.
- 5. Kuratowski K. Topology / Kuratowski K. // Moscow, Mir, 1969. 624 p.
- Megrelishvili M. G. Topological spaces with isomorphic free homogeneous spaces / Megrelishvili M. G. // Bull. of Acad. Scien. Georgian SSR. 1981. V. 103, №3. P. 549-552.
- Okromeshko N. G. On retractions of homogeneous spaces / Okromeshko N. G. // Dokl. AN SSSR. - 1983. - V. 268, №3. - P. 547-551.
- 8. Okunev O. G. A method for constructing examples of M-equivalent spaces / Okunev O. G. // Topology and its Applications. 1990. V. 36. P. 157-171.
- Okunev O. G. M-equivalence of products / Okunev O. G. // Transactions of the Moscow Mathematical Society. - 1995. - V. 56. - P. 149-158.
- Pyrch N. M. On isomorphisms of free paratopological groups and free homogeneous spaces / Pyrch N. M. // International conference "Analysis and related topics", Lviv, November 17-20, 2005. - 87 p.
- Pyrch N. M. On isomorphisms of free paratopological groups and free homogeneous spaces I / Pyrch N. M. // Visnik LNU, 2006.
- 12. Pyrch N. M. Free products of paratopological groups / Pyrch N. M. // Matematychni Studii. (submitted). (in Ukrainian)
- Pyrch N. M. Free paratopological groups / Pyrch N. M., Ravsky O. V. // Matematychni Studii. - 2006. - V. 25. - P. 115-125.
- 14. Ravsky O. V. The topologically and algebraical properties of paratopological groups / Ravsky O. V. // Ph.D. thesis, Lviv, 2002. (in Ukrainian)
- 15. Romaguera S. Free paratopological groups / Romaguera S., Sanchis M., Tkachenko M. // Topology Proceedings. 2002. V. 27. P. 1-28.

ІЗОМОРФІЗМИ ВІЛЬНИХ ПАРАТОПОЛОГІЧНИХ ГРУП І ВІЛЬНИХ ОДНОРІДНИХ ПРОСТОРІВ ІІ

Назар ПИРЧ

Українська академія друкарства, 79020, Львів, вул. Підголоско, 19 e-mail: pnazar@ukr.net

Доведено, що вільна паратопологічна група T_0 -простору є T_0 -простором. Подано приклади функторів, які зберігають ізоморфізми вільних (абелевих) паратопологічних груп і вільних однорідних просторів. Також наведено метод зведення ізоморфної класифікації вільних (абелевих) паратопологічних груп над топологічними просторами до ізоморфної класифікації вільних (абелевих) паратопологічних груп над топологічних груп над T_0 -просторами.

Ключові слова: вільна паратопологічна група, вільний однорідний простір, ізоморфізм паратопологічних груп, ізоморфізм однорідних просторів.

ИЗОМОРФИЗМЫ СВОБОДНЫХ ПАРАТОПОЛОГИЧЕСКИХ ГРУПП И СВОБОДНЫХ ОДНОРОДНЫХ ПРОСТРАНСТВ II

Назар ПЫРЧ

Украинская академия печати, 79020, Львов, ул. Подголоско, 19 e-mail: pnazar@ukr.net

Доказано, что свободная паратопологическая группа T_0 -пространства является T_0 -пространством. Рассмотрено функторы, сохраняющие изоморфизмы свободных (абелевых) паратопологических групп и свободных однородных пространств.

Ключевые слова: свободная паратопологическая группа, свободное однородное пространство, изоморфизм паратопологических групп, изоморфизм однородных пространств.

Стаття надійшла до редколегії 25.01.2008

Прийнята до друку 16.12.2009