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192 Nazar PYRCHProof. Let Y = {x1, x2, ..., xn}, G = (R,+) and τ be the topology on G with the base
{[x; +∞) : x ∈ R}. Then (G, τ) is a paratopologial group [14, Ex. 2.14℄. We shalldenote this group by R

∗. Sine X is a T0-spae, for eah pair {i, j} suh that i 6= jthere exists an open set Uij ontaining exatly one of the points xi and xj . Considerthe mapping fij : X → R
∗ de�ned by fij(Uij) = 2ni+j and fij(X \ Uij) = 0. Themapping fij is ontinuous [13, Lem. 2.3℄. Sine R

∗ is a paratopologial group, the mapping
g : X → R

∗ suh that g(x) =
∑
fij(x) is ontinuous. Then fij(x) = 2ni+j([g(x)/2ni+j ]

mod 2) for every x ∈ X and i 6= j. Sine fij(xi) 6= fij(xj) provided i 6= j, we see that
g|Y is an injetion. Let g(Y ) = {a1, a2, ..., an} where a1 > a2 > · · · > an. Consider themapping h : R

∗ → Dn suh that h(x) = i, where i = n if x < an and i is the smallestnumber suh that x ≥ ai otherwise. It is easy to hek that h is ontinuous. Now we put
f = hg : X → Dn. Sine g|Y is an injetion and h(ai) = i for eah i, the map f |Y is aninjetion too.Lemma 2. (T.O. Banakh) A Markov free paratopologial group Fp(Dn) is a T0-spaefor every positive integer n.Proof. It was proved in [13, Pr. 3.4℄ that a Markov free abelian paratopologial group ona T0-spae is a T0-spae. Let ϕ : Fp(Dn) → Ap(Dn) be a ontinuous homomorphism suhthat ϕ(x) = x for eah x ∈ Dn, K be the ommutant of Fp(Dn). Sine Ap(Dn) is abelian,
K ⊂ kerϕ. Let π : Fp(Dn) → Fp(Dn)/K be the quotient homomorphism. Sine the group
Fp(Dn)/K is abelian, there exists a ontinuous homomorphism ψ : Ap(Dn) → Fp(Dn)/Ksuh that ψ(x) = π(x) for every x ∈ Dn. Sine the group Fp(Dn) is generated by the set
Dn, we obtaine π = ψϕ. Then K = kerπ ⊃ kerϕ, thus K = kerϕ.Therefore, in order to prove that Fp(Dn) is a T0-spae it su�es to onstrut atopology τ on F (Dn) whih separates every point from K\{e} and the identity {e} of
Fp(Dn) andDn is a subspae of (Fp(Dn), τ). Using results from [15℄ it is easy to prove thatthe group Fp(Dn) is algebraially free over the set Dn. For every word A ∈ Fp(Dn) let
ϕi(A) be the sum of degrees of the letters �i� in the word A. Consider the subsemigroup Sof Fp(Dn) generated by {e} and the set of all the words A ∈ Fp(Dn) over the alphabet Dnsuh that the last nonzero element in the sequene (ϕ1(A), ϕ2(A), . . . , ϕn(A)) is positive.For every s ∈ S and for every g ∈ Fp(Dn) we see that g−1xg ∈ S, thus the semigroup Sde�nes a semigroup topology τ on Fp(Dn) [14, 2℄ suh that S ⊂ τ . Then Dn is a subspaeof (Fp(Dn), τ) and the topology τ indues the disrete topology on K.Proof of the theorem. Using results from [15℄ it is easy to prove that the group Fp(X) isalgebraially free over the setX . Sine the spae of paratopologial group is homogeneous,it is su�ient to prove that for eah word A ∈ Fp(X) over the alphabet X there existsan open set U separating A and the identity of Fp(X). Let A = xǫ1

1 x
ǫ2
2 ...x

ǫn
n be a wordin the irreduible form and a1, a2, ..., ak, k 6 n, be its letters. Then by Lemmma 1 thereexists a ontinuous mapping f : X → Dk suh that f(ai) 6= f(aj) provided i 6= j. Wemay extend the mapping f to a ontinuous homomorphism f∗ : Fp(X) → Fp(Dk). Then

f∗(A) 6= eFp(Dk). Sine Fp(Dk) is a T0-spae, there exists an open set U ⊆ Fp(Dk)ontaining exatly one of the points f∗(A) and eFp(Dk). The set (f∗)−1(U) is open andontains exatly one of the points A and eFp(X).



ON THE ISOMORPHISMS OF FREE PARATOPOLOGICAL GROUPS... 1933. The re�etions of spaes and the isomorphisms of free paratopologi-al groups. A topologial spae is totally disonneted if eah its quasiomponent is asingleton.Let T be a lass of spaes satisfying the following property:Let X be a spae suh that for every x, y ∈ X there exists f : X → Y , where Y ∈ Twith f(x) 6= f(y), then X ∈ T . (∗)Examples of the lasses spaes satisfying property (∗) are: T0-spaes, T1-spaes,
T2-spaes, funtionally Hausdor� spaes, totally disonneted spaes.A lass T of spaes is hereditary provided that if X ∈ T then Y ∈ T for eahsubspae Y of X . The following observation was made by T. O. Banakh.Proposition 1. A lass T of spaes satis�es ondition (∗) if and only if T is a hereditarylass losed under Tyhono� produts and strengthening of topology.Let T be a lass of spaes satisfying ondition (∗) and let X be a spae. Consi-der the following equivalene relation on X . Let x, y ∈ X . Put x ∼T y if and only if
f(x) = f(y) for eah ontinuous mapping f : X → Y , where Y ∈ T . The quotient spae
X/ ∼T is alled the T-re�etion of X and is denoted by TX . If X ∈ T then the identityhomeomorphism i : X → X separates all pairs of di�erent points of X , thus X = TX .For some lasses T of spaes the equivalene relation ∼T has an other desriptions.If T0 is the lass of T0-spaes and x, y ∈ X then x ∼T0

y if and only if either x = yor there is no open subset of the spae X ontaining exatly one of the points x, y. If
fT2 is the lass of funtionally Hausdor� spaes and x, y ∈ X then x ∼fT2

y if and only
f(x) = f(y) for eah ontinuous mapping f : X → [0; 1], where the segment [0; 1] has thestandard topology. If TD is the lass of totally disonneted spaes and x, y ∈ X then
x ∼TD y if and only if the points x and y have the same quasiomponent (see also [5,�46, V.℄).Proposition 2. Any lass T satisfying ondition (∗) determines a ovariant funtor T ·from the ategory of spaes and ontinuous mappings to the ategory of spaes from thelass T and their ontinuous mappings.Proof. Let us hek that TX ∈ T for eah spaeX . Note that for eah ontinuous mapping
f : X → Y ∈ T there exists a ontinuous mapping g : TX → Y suh that f = g ◦ tX ,where tX : X → TX is the quotient mapping. Let x, y ∈ TX , x 6= y. Choose points
x1 ∈ t−1

X (x), y1 ∈ t−1
X (y). Then there exists a ontinuous mapping f : X → Y ∈ T suhthat f(x1) 6= f(y1). Then for the above de�ned g we have that g(x) 6= g(y), therefore

TX ∈ T .Let f : X → Y be a ontinuous mapping, tX : X → TX , tY : Y → TY bethe quotient mappings. Let us prove that there exists a unique ontinuous mapping
g : TX → TY suh that g ◦ tX = tY ◦ f . Let u ∈ TX and x ∈ t−1

X (u). Put
g(u) = tY (f(x)). Let us hek that the mapping g is well-de�ned. If z ∈ t−1

X (u)then h(x) = h(z) for all ontinuous mappings h : X → Z, where Z ∈ T . Sine TY ∈ T ,we obtaine tY (f(x)) = tY (f(z)), and we are done. Sine tX is the quotient mapping andthe omposition tY ◦ f is ontinuous, the mapping tX is ontinuous too. Put Tf = g.It is easy to hek that the rule whih orresponds a spae TX to eah spae Xand a mapping Tf : TX → TY to eah ontinuous mapping f : X → Y is a ovariantfuntor.



194 Nazar PYRCHThe funtor from Proposition 2 is alled the T -re�etion.Theorem 2. Let T be a lass of spaes satisfying ondition (∗) suh that Fp(X
′) ∈ Tfor eah spae X ′ ∈ T . Let X and Y be spaes suh that the Markov free paratopologi-al groups Fp(X) and Fp(Y ) are topologially isomorphi. Then the quotient map-pings tX : X → TX and tY : Y → TY are Mp-equivalent and hene the Markov freeparatopologial groups Fp(TX) and Fp(TY ) are topologially isomorphi.Proof. Let i : Fp(X) → Fp(Y ) be a topologial isomorphism, tX : X → TX , tY : Y → TYbe the quotient mappings, t∗X : Fp(X) → Fp(TX) and t∗Y : Fp(Y ) → Fp(TY ) be theirhomomorphi extensions.Let us onstrut a ontinuous mapping h : TX → Fp(TY ) suh that h ◦ tX =

= t∗Y ◦ (i|X). Let x′ ∈ TX . Choose an arbitrary point x ∈ X suh that with tX(x) = x′and put h(x′) = t∗Y i(x). Let y ∈ X . There is a point x ∈ X suh that tX(x) = tX(y) and
htX(x) = t∗Y i(x). Thus htX(y) = htX(x) = t∗Y i(x) = t∗Y i(y) sine TY ∈ T and therefore
Fp(TY ) ∈ T . Thus h ◦ tX = t∗Y ◦ (i|X). The ontinuity of the mapping h is implied fromthe ontinuity of i and t∗Y and the fat that the mapping tX is quotient.Similarly, we an onstrut a ontinuous mapping g : TY → Fp(TX) suh that
g ◦ tY = t∗X ◦ (i−1|Y ). Let us extend the mappings h, g to the ontinuous homomorphisms
h∗ : Fp(TX) → Fp(TY ) and g∗ : Fp(TY ) → Fp(TX). Let x ∈ X . Then

h∗t∗X(x) = h∗tX(x) = htX(x) = t∗Y i(x).Sine the group Fp(X) is generated by the set X , we have h∗ ◦ t∗X = t∗Y ◦ i. Similarly wean show that g∗ ◦ t∗Y = t∗X ◦ i−1. Sine
g∗ ◦ h∗ ◦ t∗X = g∗ ◦ t∗Y ◦ i = t∗X ◦ i−1 ◦ i = t∗X ,we obtain g∗ ◦ h∗ = 1Fp(TX). Similarly, we an prove that h∗ ◦ g∗ = 1Fp(TY ). Thus

h∗ : Fp(TX) → Fp(TY ) is a topologial isomorphism. Sine h∗◦t∗X = t∗Y ◦i, the mappings
tX and tY are Mp-equivalent.Corollary 1. Let T be one of the following lasess:

• T0-spaes,
• funtionally Hausdor� spaes,
• totally disonneted spaes.Let X and Y be spaes suh that the Markov free paratopologial groups Fp(X) and Fp(Y )are topologially isomorphi. Then the Markov free paratopologial groups Fp(TX) and

Fp(TY ) are topologially isomorphi too.Proof. If X ′ is a T0-spae then Fp(X
′) is a T0-spae too [12℄. If X ′ is a funtionallyHausdor� spae then Fp(X

′) is a funtionally Hausdor� spae too [13, Pr. 3.8℄. If X ′is a totally disonneted spae then by [13, Pr. 2.15℄ the quasiomponent of the unit in
Fp(X

′) is a singleton, thus Fp(X
′) is a totally disonneted spae too.Corollary 2. Let T be a lass of spaes satisfying ondition (∗) suh that Fp(X

′) ∈ Tfor eah spae X ′ ∈ T . Let X1, X2, Y1, Y2 be spaes, f1 : X1 → Y1 and f2 : X2 → Y2 be
Mp-equivalent mappings. Then the mappings Tf1 and Tf2 are Mp-equivalent.



ON THE ISOMORPHISMS OF FREE PARATOPOLOGICAL GROUPS... 195Proof. Let i : Fp(X1) → Fp(X2), j : Fp(Y1) → Fp(Y2) be topologial isomorphisms suhthat f∗

2 ◦ i = j ◦ f∗

1 . Similarly to the proof of Theorem 2 we an build topologialisomorphisms iT : Fp(TX1) → Fp(TX2) and jT : Fp(TY1) → Fp(TY2) suh that iT ◦t∗X1
=

= t∗X2
◦ i and jT ◦ t∗Y1

= t∗Y2
◦ j. Proposition 2 implies that Tf1 ◦ tX1

= tY1
◦ f1 and

Tf2 ◦ tX2
= tY2

◦ f2. If x ∈ X2 then
t∗Y2
f∗

2 (x) = t∗Y2
f2(x) = tY2

f2(x) = (Tf2)tX2
(x) = (Tf2)

∗tX2
(x) = (Tf2)

∗t∗X2
(x).Sine the group Fp(X2) is generated by the set X2, we have t∗Y2

◦ f∗

2 = (Tf2)
∗ ◦ t∗X2

. Let
x ∈ X1. Then

jT (Tf1)
∗t∗X1

(x) = jT (Tf1)
∗tX1

(x) = jT (Tf1)tX1
(x) = jT tY1

f1(x) = jT t
∗

Y1
f1(x) =

= t∗Y2
jf1(x) = t∗Y2

jf∗

1 (x) = t∗Y2
f∗

2 i(x) = (Tf2)
∗t∗X2

i(x) = (Tf2)
∗iT t

∗

X1
(x).Sine the group Fp(TX1) is generated by the set t∗X1

(X1), we obtain (Tf2)
∗ ◦ iT =

= jT ◦ (Tf1)
∗. Thus, the mappings Tf1 and Tf2 are Mp-equivalent.If we replae the words �free paratopologial group� by the words �free abelianparatopologial group� in the De�nitions 1.8 and 1.9 from the paper [11℄ then we obtainthe de�nitions of Ap-equivalent spaes and Ap-equivalent mappings (remark that in thepaper [11℄ the author did misprints in these de�nitions; there must we written �in De�-nitions 1.8 and 1.9� instead of �in De�nitions 1.10 and 1.11�).Similarly to Theorem 2 we an prove the followingTheorem 3. Let T be a lass of spaes satisfying ondition (∗) suh that Ap(X

′) ∈ Tfor eah spae X ′ ∈ T . Let X and Y be spaes suh that the Markov free abelianparatopologial groups Ap(X) and Ap(Y ) are topologially isomorphi. Then the quotientmappings tX : X → TX and tY : Y → TY are Ap-equivalent and hene the Markov freeabelian paratopologial groups Ap(TX) and Ap(TY ) are topologially isomorphi.Corollary 3. Let T be one of the following lasess:
• T0-spaes,
• T1-spaes,
• funtionally Hausdor� spaes,
• totally disonneted spaes.Let X and Y be spaes suh that the Markov free abelian paratopologial groups Ap(X)and Ap(Y ) are topologially isomorphi. Then Markov free abelian paratopologial groups

Ap(TX) and Ap(TY ) are topologially isomorphi too.Proof. If X ′ is a T0-spae then Ap(X
′) is a T0-spae too [13, Pr. 3.4℄. If X ′ is a T1-spaethen Ap(X

′) is a T1-spae too [12, Pr. 3.5℄. If X ′ is a funtionally Hausdor� spae then
Fp(X

′) is a funtionally Hausdor� spae too [13, Pr. 3.8℄.Now let X ′ be a totally disonneted spae. We are going to show that the quasi-omponent of the zero in Ap(X
′) is a singleton. Let x ∈ Ap(X

′)\{0}. Then there existsa �nite nonempty subset F ∈ X ′ and a set {ny : y ∈ F} of non-zero integers suh that
x =

∑
{nyy : y ∈ F}. Sine the spae X ′ is totally disonneted, for every point y ∈ Fthere exists a lopen neighborhood Uy ⊂ X ′ of y suh that Uy ∩F = {y}. For every point

y ∈ F put Vy = Uy\
⋃
{Uy′ : y′ ∈ F\{y}}. Then {Vy : y ∈ F} is a family of pairwisedisjoint lopen subsets of X ′. Let f : X → Z be a mapping suh that f(z) = ny if z ∈ Vyfor some y ∈ F and F (X ′\

⋃
{Vy : y ∈ F}) = {0}. Then f is a ontinuous mapping.



196 Nazar PYRCHLet f∗ : Ap(X
′) → Z be a ontinuous homomorphi extension of the mapping f . Then

f∗(0) = 0 but f∗(x) =
∑

{n2
y : y ∈ F} > 0. Therefore f∗−1(0) is a lopen neighborhoodof the zero of the group Ap(X

′) not ontaining x. Thus Ap(X
′) is a totally disonnetedspae.Corollary 4. Let T be a lass of spaes satisfying ondition (∗) suh that Ap(X

′) ∈ Tfor eah spae X ′ ∈ T . Let X1, X2, Y1, Y2 be spaes, f1 : X1 → Y1 and f2 : X2 → Y2 be
Ap-equivalent mappings. Then the mappings Tf1 and Tf2 are Ap-equivalent.Proof. The proof is similar to the proof of Corollary 2.Let X1, X2, Y1, Y2 be spaes. A mapping f1 : X1 → Y1 is alled B-equivalent to amapping f2 : X2 → Y2 if there exist isomorphisms i : H(X1) → H(X2) and j : H(Y1) →
H(Y2) suh that j ◦ f̄1 = f̄2 ◦ i. Reall that here by H(X) = (HB(X), G(X), h) we denotethe free homogeneous spae on a spae X desribed in the beginning of [11, Part 2℄.We shall need the followingLemma 3. Let X,Y be spaes and (i, ϕ) : H(X) → H(Y ) be a morphism. Let n ≥ 0and z1, z2, . . . , z2n+1 ∈ HB(X). Then z = z1z

−1
2 · · · z−1

2n z2n+1 ∈ HB(X) and
i(z) = i(z1)i(z2)

−1 · · · i(z2n)−1i(z2n+1).Proof. Let x, y ∈ HB(x). Then xy−1 ∈ G(X) and sine (i, ϕ) is a morphism,
ϕ(xy−1) = i(xy−1y)i(y)−1 = i(x)i(y)−1.It is lear that z ∈ HB(X). Put g = z1z

−1
2 · · · z−1

2n if n > 0 and g = e if n = 0. Then
g ∈ G(X) and i(z) = i(gz2n+1) = ϕ(g)i(z2n+1). Sine ϕ is a homomorphism,

ϕ(g) = ϕ(z1z
−1
2 ) · · ·ϕ(z2n−1z

−1
2n ) = i(z1)i(z2)

−1 · · · i(z2n−1)i(z2n)−1.Corollary 5. Let X,Y be spaes and (i, ϕ), (j, ψ) : H(X) → H(Y ) be morphisms. If
i|X = j|X then (i, ϕ) = (j, ψ).Theorem 4. Let T be a lass of spaes satisfying ondition (∗) suh that HB(X ′) ∈ T foreah spae X ′ ∈ T . Let X and Y be spaes suh that the free homogeneous spaes H(X)and H(Y ) are isomorphi. Then the quotient mappings tX : X → TX and tY : Y →
TY are B-equivalent and hene the free homogeneous spaes H(TX) and H(TY ) areisomorphi.Proof. Let (i, ϕ) : H(X) → H(Y ) be an isomorphism of the homogeneous spaes,
tX : X → TX , tY : Y → TY be the quotient mappings and t̄X = (t∗X , ψX) : H(X) →
H(TX), t̄Y = (t∗Y , ψY ) : H(Y ) → H(TY ) be the morphisms onstruted from themappings tX and tY (see [11, Part 2℄).Let us onstrut a ontinuous mapping h : TX → HB(TY ) suh that h ◦ tX =
= t∗Y ◦ (i|X). Let x′ ∈ TX . Choose an arbitrary point x ∈ X suh that with tX(x) = x′and put h(x′) = t∗Y i(x). Let y ∈ X . There is a point x ∈ X suh that tX(x) = tX(y)and htX(x) = t∗Y i(x). Thus htX(y) = htX(x) = t∗Y i(x) = t∗Y i(y) beause TY ∈ T andtherefore HB(TY ) ∈ T . So h ◦ tX = t∗Y ◦ (i|X). The ontinuity of the mapping h followsfrom the ontinuity of i and t∗Y and the fat that the mapping tX is quotient.



ON THE ISOMORPHISMS OF FREE PARATOPOLOGICAL GROUPS... 197Similarly, we an onstrut a ontinuous mapping g : TY → HB(TX) suh that
g ◦ tY = t∗X ◦ (i−1|Y ). Let (h∗, ϕX) : H(TX) → H(TY ), (g∗, ϕY ) : H(TY ) → H(TX) bethe morphisms onstruted from the mappings h and g. Let x ∈ X . Then

h∗t∗X(x) = h∗tX(x) = htX(x) = t∗Y i(x).Corollary 5 implies that h∗ ◦ t∗X = t∗Y ◦ i. Similarly we an show that g∗ ◦ t∗Y = t∗X ◦ i−1.Sine g∗ ◦ h∗ ◦ t∗X = g∗ ◦ t∗Y ◦ i = t∗X ◦ i−1 ◦ i = t∗X , g∗ ◦ h∗ = 1HB(TX). Similarly, wean prove that h∗ ◦ g∗ = 1HB(TY ). Corollary 5 implies that (h∗, ϕX) ◦ (g∗, ϕY ) = 1H(TY )and (g∗, ϕY ) ◦ (h∗, ϕX) = 1H(TX). Hene (h∗, ϕX) is an isomorphism. Sine h∗t∗X = t∗Y i,
t̄Y ◦ (i, ϕ) = h∗ ◦ t̄X by Corollary 5 and the mappings tX and tY are B-equivalent.Corollary 6. Let T be one of the following lasess:

• T0-spaes,
• T1-spaes,
• T2-spaes,
• funtionally Hausdor� spaes,
• totally disonneted spaes.Let X and Y be spaes suh that the free homogeneous spaes H(X) and H(Y ) areisomorphi. Then the free homogeneous spaes H(TX) and H(TY ) are isomorphi too.Proof. If T is either the lass of T0-spaes or the lass of totally disonneted spaes orthe lass of funtionally Hausdor� spaes and X ′ ∈ T then Fp(X

′) ∈ T (see the proofof Corollary 1) and therefore Hp(X
′) ∈ T thus HB(X ′) ∈ T by Lemma 1 from [11℄. If

X ′ is a T1-spae then HB(X ′) is a T1-spae too [6℄. If X ′ is a T2-spae then HB(X ′) isa T2-spae too [7℄.Corollary 7. Let T be a lass of spaes satisfying ondition (∗) suh that HB(X ′) ∈ Tfor eah spae X ′ ∈ T . Let X1, X2, Y1, Y2 be spaes, f1 : X1 → Y1 and f2 : X2 → Y2 be
B-equivalent mappings. Then the mappings Tf1 and Tf2 are B-equivalent.Proof. Let (i, ϕ) : H(X1) → H(X2), (j, ψ) : H(Y1) → H(Y2) be topologial isomorphismssuh that f̄2 ◦ (i, ϕ) = (j, ψ) ◦ f̄1. Similarly to the proof of Theorem 4 we an onstrutisomorphisms (iT , ϕT ) : H(TX1) → H(TX2) and (jT , ψT ) : H(TY1) → H(TY2) suh that
(iT , ϕT ) ◦ t̄X1

= t̄X2
◦ (i, ϕ) and (jT , ψT ) ◦ t̄Y1

= t̄Y2
◦ (j, ψ). Proposition 2 implies that

Tf1 ◦ tX1
= tY1

◦ f1 and Tf2 ◦ tX2
= tY2

◦ f2. If x ∈ X2 then
t∗Y2
f∗

2 (x) = t∗Y2
f2(x) = tY2

f2(x) = (Tf2)tX2
(x) = (Tf2)

∗tX2
(x) = (Tf2)

∗t∗X2
(x).Corollary 5 implies that t∗Y2

◦ f∗

2 = (Tf2)
∗ ◦ t∗X2

. Let x ∈ X1. Then
jT (Tf1)

∗t∗X1
(x) = jT (Tf1)

∗tX1
(x) = jT (Tf1)tX1

(x) = jT tY1
f1(x) = jT t

∗

Y1
f1(x) =

= t∗Y2
jf1(x) = t∗Y2

jf∗

1 (x) = t∗Y2
f∗

2 i(x) = (Tf2)
∗t∗X2

i(x) = (Tf2)
∗iT t

∗

X1
(x).Sine the set HB(TX1) is generated by the set t∗X1

(X1), we see that Tf2 ◦ (iT , ϕT ) =

= (jT , ψT ) ◦ Tf1 by Corollary 5. Thus the the mappings Tf1 and Tf2 are B-equivalent.4. On T0-re�etion.Proposition 3. For eah topologial spae X the quotient mapping tX has a ontinuousright inverse.



198 Nazar PYRCHProof. Let X1 be a subset of X suh that X1 ∩ C is a singleton for eah lass C ofthe relation ∼T0
on X . De�ne the mapping f : T0X → X1 by putting f(x) = y, where

y = t−1(x) ∩ X1. It is lear that tX ◦ f is the identity mapping on the spae TX . Letus hek that the mapping f is ontinuous. Let U be an open subset in X1. Let us put
V = {x ∈ X : there exists a point y ∈ U suh that x ∼T0

y}. Sine U is open in X1,there exists an open set W in X suh that U = W ∩ X1. Let us prove that V = W .Suppose that there exists z ∈ V \W . Then there exists z1 ∈ U suh that z ∼T0
z1. Sinethe points z and z1 are not separated by open subsets in X , we see that z1 /∈W . We geta ontradition with the fat that U = W ∩X1. Let z ∈ W . Then there exists z1 ∈ X1suh that z ∼T0

z1. Sine the points z and z1 are not separated by open subsets in X ,we have z1 ∈W , therefore z1 ∈ U and z ∈ V . Thus V = W and the set V is open in X .By the onstrution, V = t−1
X (f−1(U)). Sine the mapping tX is quotient and V is opensubset in X , we see that f−1(U) is an open subset in T0X .Remark 1. Let X be a topologial spae. Let X1 be a subset of X suh that X1 ∩ C isa singleton for eah lass C of the relation ∼T0

on X . The above lemma imply that themapping tX |X1 is a homeomorphism. Sine every neighborhood of the set X1 oinideswith X , the quotient spae X/X1 is antidisrete. It easy to hek that the size of the set
X/X1 does not depend on the hoie of X1. The ardinal of this size with antidisretetopology is denoted as the spae X/T0X .Let (X,x0) and (Y, y0) be pointed spaes suh that X ∩ Y = ∅. The quotient spae
(X ⊕ Y )/{x, y} is alled a bouquet of pointed spaes (X,x0) and (Y, y0) and is denotedby (X,x0) ∨ (Y, y0).Lemma 4. Let X,Y be disjoint spaes, x1, x2 ∈ X, y1, y2 ∈ Y . Then spaes (X,x1) ∨
(Y, y1) and (X,x2) ∨ (Y, y2) are B-equivalent.Proof. For i = 1, 2 put Ki = {xi, yi} and de�ne maps ri : X ⊕ Y → Ki suh that
ri(X) = {xi} and ri(Y ) = {yi}. Then the maps r1 and r2 are parallel retrations. So by[11, Pr. 3℄ the spaes (X,x1) ∨ (Y, y1) and (X,x2) ∨ (Y, y2) are B-equivalent.We shall write sometimes �X ∨ Y � instead of �(X,x0)∨ (Y, y0)�. We also reall thatthe B-equivalene of spaes implies their Mp-equivalene.Lemma 5. Let X,Y be spaes and f : X → Y be a ontinuous map. Let f∗ : Fp(X) →
Fp(Y ) be the homomorphi extension of the map f . Then ker f∗ is the subgroup N of
Fp(X) generated by the set {g−1xy−1g : x, y ∈ X, g ∈ Fp(X), f(x) = f(y)}.Proof. It is lear that N ⊂ ker f∗. Now we prove the opposite inlusion. Using resultsfrom [15℄ it is easy to prove that the group Fp(X) is algebraially free over the set Xand the group Fp(Y ) is algebraially free over the set Y . If w is an arbitrary element of
Fp(X) then w = xε1

1 · · ·xε1

1 where {x1, . . . , xn} ⊂ X and {ε1, . . . , εn} ⊂ {−1, 1}. Thenby easy indution on n we an prove that if f∗(w) = e then w ∈ N .Proposition 4. Let X be a nonempty topologial spae. Then X
Mp

∼ (T0X × {1} ∨
(X/T0X) × {2}).



ON THE ISOMORPHISMS OF FREE PARATOPOLOGICAL GROUPS... 199Proof. Let X1 be a subset of X suh that X1 ∩ C is a singleton for eah lass C of therelation ∼T0
on X . Put Z = X1 ×{1}⊕X ×{2}. Choose an arbitrary point x0 ∈ X andput Z ′ = Z/{(x0, 1), (x0, 2)} and π : Z → Z ′ be the quotient mapping.De�ne a mapping r : X → X1 as follows. Let x ∈ X . There is a unique point

x1 ∈ X1 suh that x1 ∼T0
x. Put r(x) = x1. The proof of Proposition 3 implies that

r−1(U) is open for eah open subset U of X1 so r is ontinuous.Let t ∈ {1, 2}. De�ne a mapping rt : Z → Z putting rt(x, s) = (r(x), t) for eah
x ∈ X, s ∈ {1, 2} suh that (x, s) ∈ Z. Sine

r−1
t (U × {t}) = (r−1(U ∩X1) ∩X1) × {1} ∪ r−1(U ∩X1) × {2}for eah open set U ⊂ X1, the mapping rt is a ontinuous retration. Sine rt((x0, 1)) =

= rt((x0, 2)), there exists a mapping r′t : Z ′ → Z ′ suh that r′tπ = πrt. Sine π is thequotient mapping and the mapping rtπ is ontinuous then the mapping r′t is ontinuoustoo. It is easy to hek that r1 and r2 are parallel retrations. Let t, t′ ∈ {1, 2}. Then
r′tr

′

t′π = r′tπrt′ = πrtrt′ = πrt = r′tπ. Sine the mapping π is surjetive then r′tr′t′ = r′t sothe mappings r′1 and r′2 are parallel retrations too.Let i : Z ′ → Fp(Z
′) be the mapping suh that i(z′) = r′1(z

′)z′−1r′2(z
′) for eah

z′ ∈ Z ′. Let us hek that the mapping i is ontinuous. It is su�ient to prove that itsrestritions onto π(X1 × {1}) and π(X × {2}) are ontinuous. If z ∈ X1 × {1} then
iπ(z) = r′1π(z) × π(z)−1 × r′2π(z) = πr1(z) × π(z)−1 × πr2(z) =

= π(z) × π(z)−1 × πr2(z) = πr2(z) = r′2π(z).Therefore i|π(X1 × {1}) is a ontinuous map. Now let z ∈ X × {2}. De�ne a mapping
j : π(X × {2}) → Fp(Z

′) putting j(z′) = z′−1r′2(z
′) for eah z′ ∈ π(X × {2}). Let ushek that the mapping j is ontinuous. For this purpose we prove that jπ(X × {2}) isan antidisrete subspae of Fp(Z

′). It is easy to hek that for eah point z′ ∈ π(X×{2})suh that z′ 6= r′2(z
′) there is no open subset U of Z ′ suh that U ontains exatly one ofthe points z′ and r′2(z′). Let z′ be an arbitrary point of π(X×{2}). Let Rz′ be a subset of

Fp(Z
′) suh that Rz′ = z′−1{z′, r′2(z

′)} = {e, j(z′)}. Thus, by the homogeneity, for eahopen subset U of Fp(Z
′) we have the following dihotomy: Rz′ ⊂ U or Rz′ ⊂ Fp(Z

′)\U .Let V be an open subset of Fp(Z
′) suh that V ∩ jπ(X × {2}) 6= ∅. Choose a point

z′ ∈ π(X × {2}) suh that j(z′) ∈ V . Then Rz′ ⊂ V so e ∈ V . The dihotomy impliesthat Ru′ ⊂ V for eah point u′ ∈ π(X × {2}) so jπ(X × {2}) ⊂ V . Sine Fp(Z
′) is aparatopologial group and the mappings j and r′2 are ontinuous and i(z′) = j(z′)×r′2(z

′)for eah z′ ∈ π(X × {2}), the mapping i is ontinuous too.Denote by i∗ : Fp(Z
′) → Fp(Z

′) the ontinuous homomorphi extension of themapping i. It was proved in [9℄ that i∗ ◦ i∗ = 1Fp(Z′).Let t ∈ {1, 2}. Let Yt be the quotient spae Z ′/π(X1 × {t}), pt : Z ′ → Yt be thequotient mapping and p∗t : Fp(Z
′) → Fp(Yt) be the ontinuous homomorphi extensionof pt. Lemma 5 implies that ker p∗t is a smallest normal subgroup of Fp(Z

′) ontainingthe set {xy−1 : x, y ∈ Z ′, f(x) = f(y)} = {xy−1 : x, y ∈ π(X1 × {t})}.Let x ∈ X1. Then iπ((x, 1)) = r′2π((x, 1)) = πr2((x, 1)) = π((r(x), 2)) = π((x, 2)).So i(π(X1 × {1}) = π(X1 × {2}) and thus i∗(ker p∗1) = kerp∗2. Then Proposition 6 from[11℄ implies that the spaes Y1 and Y2 are Mp-equivalent.



200 Nazar PYRCHLet f1 : Z → X be a mapping suh that f1(x, 1) = x0 for eah x ∈ X1 and
f1(x, 2) = x for eah x ∈ X . Using this mapping we an onstrut a homeomorphismfrom Y1 to X .Let q1 : X → X/X1 be the quotient mapping, f̃2 : Z → X1 × {1} ⊕ (X/X1) × {2}be a mapping suh that f̃1(x1, 1) = (x1, 1) for eah x ∈ X1 and f̃2(x, 2) = (q1(x), 2) foreah x ∈ X . Let

Y ′

2 = X1 × {1} ⊕ (X/X1) × {2}/{(x0, 1), (q1(x0), 2)}and q : X1 × {1} ⊕ (X/X1) × {2} → Y ′

2 be the quotient mapping. Let f2 = qf̃2. Usingthis mapping we an onstrut a homeomorphism from Y2 to Y ′

2 .Sine the spae X1 is homeomorphi to the spae T0X and the spae X/X1 ishomeomorphi to the spae X/T0X , we obtain that the spae Y ′

2 isMp-equivalent to thespae T0X × {1} ∨ (X/T0X) × {2}. Thus
X

Mp

∼ Y1
Mp

∼ Y2
Mp

∼ Y ′

2

Mp

∼ T0X × {1} ∨ (X/T0X) × {2}.LetX be a pseudometrizable spae, and d be a pseudometri generating the topologyof X . Then one an easily hek that T0X is a metrizable spae.Corollary 8. Eah pseudometrizable spae is Mp-equivalent to the bouquet of metrizableand antidisrete spaes.Proposition 5. Let X1 and X2 be spaes with topologially isomorphi Graev freeparatopologial groups, Y1 and Y2 be spaes with topologially isomorphi Markov freeparatopologial groups. If Xi ∩ Yi = ∅ for i ∈ {1, 2} then Graev free paratopologialgroups on spaes X1 ⊕ Y1 and X2 ⊕ Y2 are topologially isomorphi.Proof. Let i : FGp(X1) → FGp(X2) be an isomorphism of the Graev free paratopolo-gial groups with distinguished points ai ∈ Xi, i = 1, 2, j : Fp(Y1) → Fp(Y2) be anisomorphism of the Markov free paratopologial groups.Let t ∈ {1, 2}. Let iXt : Xt → Xt ⊕ Yt and iY t : Yt → Xt ⊕ Yt be the identityembeddings, and i∗Xt : FGp(Xt) → FGp(Xt⊕Yt, at) and i∗Y t : Fp(Yt) → FGp(Xt⊕Yt, at)be their extensions to the ontinuous homomorphisms of paratopologial groups.Consider the mapping k : X1⊕Y1→FGp(X2⊕Y2) de�ned as k(z)= i∗X2i(z) if z∈X1and k(z) = i∗Y 2j(z), if z ∈ Y1. Similarly to [4, Pr. 8.8℄ one an hek that the extensionof the mapping k to the ontinuous homomorphism k∗ : FGp(X1 ⊕Y1) → FGp(X2 ⊕Y2)is a topologial isomorphism of the Graev free paratopologial groups FG(X1 ⊕ Y1) and
FG(X2 ⊕ Y2) with the distinguished points ai ∈ Xi ⊕ Yi.Proposition 6. Let X1 and X2 be spaes with topologially isomorphi Graev free abelianparatopologial groups, Y1 and Y2 spaes with topologially isomorphi Markov free abelianparatopologial groups. If Xi∩Yi = ∅ for i ∈ {1, 2} then Graev free abelian paratopologialgroups on spaes X1 ⊕ Y1 and X2 ⊕ Y2 are topologially isomorphi.Proof. The proof is similar to the proof of the previous proposition.Corollary 9. Let X1 and X2 be nonempty topologial spaes with topologially isomor-phi Markov free paratopologial groups, Y be a nonempty topologial spae suh that
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Y ∩ (X1 ∪ X2) = ∅. Then Markov free paratopologial groups on spaes X1 ∨ Y and
X2 ∨ Y are topologially isomorphi.Proof. By Proposition 5 we have that Graev free paratopologial groups on the spaes
X1 ⊕ Y and X2 ⊕ Y are topologially isomorphi. Similarly to [3, �5℄ one an hek thatGraev free paratopologial groups on the spaes Xi ⊕ Y and (Xi ∨ Y )+ are topologi-ally isomorphi. Sine Graev free paratopologial group on the spae X+ is naturallyisomorphi to the Markov free paratopologial group on the spae X ,

Fp(X1 ∨ Y ) ≃ FGp((X1 ∨ Y )+) ≃ FGp(X1 ⊕ Y ) ≃

≃ FGp(X2 ⊕ Y ) ≃ FGp((X2 ∨ Y )+) ≃ Fp(X2 ∨ Y ).Corollary 10. Let X1 and X2 be nonempty topologial spaes with topologiallyisomorphi Markov free abelian paratopologial groups, Y be a nonempty topologialspae suh that Y ∩ (X1 ∪X2) = ∅. Then Markov free abelian paratopologial groups onspaes X1 ∨ Y and X2 ∨ Y are topologially isomorphi.Proof. The proof is similar to the proof of the previous orollary.Theorem 5. Topologial spaes X and Y are Ap-equivalent if and only if T0X
Ap

∼ T0Yand X/T0X = Y/T0Y .Proof. Without loss of the generality it su�es to onsider only the ase X 6= ∅ and
Y 6= ∅.Su�ieny. Sine Ap(T0X) ≃ Ap(T0Y ) and X/T0X = Y/T0Y , Corollary 10 impliesthat Ap(T0X × {1} ∨ (X/T0X) × {2}) ≃ Ap(T0Y × {1} ∨ (Y/T0Y ) × {2}). Sine the
Mp-equivalene of two spaes implies the Ap-equivalene,

Ap(X) ≃ Ap(T0X × {1} ∨ (X/T0X) × {2})and Ap(Y ) ≃ Ap(T0Y × {1} ∨ (Y/T0Y ) × {2}) by proposition 4. Thus
X

Ap

∼ T0X × {1} ∨ (X/T0X) × {2}
Ap

∼ T0Y × {1} ∨ (Y/T0Y ) × {2}
Ap

∼ Y.Neessity. Let X and Y be Ap-equivalent. Then Corollary 3 implies that T0X
Ap

∼
T0Y . Theorem 3 implies that the quotient mappings tX : X → T0X and tY : Y → T0Y be
Ap-equivalent. Sine ker t∗X is an algebraially free abelian group on the set of generatorswith ardinality X/T0X , X/T0X = 1 + rankker t∗X = 1 + rankker t∗Y = Y/T0Y .Theorem 6. Topologial spaes X and Y are Mp-equivalent if and only if T0X

Mp

∼ T0Yand X/T0X = Y/T0Y .Proof. The proof of the neessity is similar to the abelian ase. Let us prove the su�ieny.Let X and Y be Mp-equivalent. Then Corollary 1 implies that T0X
Mp

∼ T0Y . Sine thespaes X and Y are Ap-equivalent, Theorem 5 implies that X/T0X = Y/T0Y .1. Bel'nov V. K. On the dimension of the topologially homogenous spaes and freehomogeneous spaes / Bel'nov V. K. //Dokl. Aad. Nauk SSSR. � 1978. � V. 238,�4. � P. 781�784.
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